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Abstract.  

The optimization of heat and power systems operation is a complex task that 

involves continuous and discrete variables, operating and environmental con-

straints, uncertain prices and demands and transition constraints for startups or 

shutdowns. This work proposes a novel methodology for integrating scheduling 

optimization and real-time optimization (RTO) in order to face and solve such 

optimization problem. In a first stage, an offline optimization finds a scheduling 

for the whole horizon under study, which sets the startups and shutdowns of 

pieces of equipment with long transition times. A second stage solves a multi-

period RTO, which corrects the forecasts and adapts the model before optimiz-

ing the process. Although the proposed methodology is illustrated through a 

case study consisting in a heat and power system, it can be generalized to other 

systems and processes. The obtained results show significant improvements in 

comparison with applying the results of a single offline scheduling optimiza-

tion. 

Keywords: real-time optimization, scheduling optimization, combined heat and 

power systems, energy optimization 

1 Introduction 

The optimization of industrial heat and power systems is often a significant source 

of savings. It is frequently subjected to changes in steam and power demands along 

the day, as well as in power prices (which may even change in real-time according to 

the market power demand). The decision variables can be both continuous (boilers 

and gas turbine loads, for example) and discrete (startups and shutdowns). The in-

volved constraints can include operating limits of pieces of equipment, operative de-

cisions (control strategies, for example) and environmental regulations. 

Scheduling optimization is a possible approach to operate this kind of systems. Mi-

tra et al. [1] have suggested a MILP formulation which accounts for operating modes 

and transitional behavior of pieces of equipment. That work also includes an excellent 

review of previous approaches. Other authors present an industrial application of a 
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MILP multiperiod formulation which optimizes a refinery utilities system, although it 

is oriented to mid-term planning [2]. A strategy to find the optimal operation of an 

utility system for a single period has been developed [3]. It takes into account fixed 

operating costs and transition costs for startups and shutdowns, as well as the period 

duration; a successive-MILP approach is used to solve the nonlinearities of energy 

balances. All these approaches need a forecast of prices and demand, and they solve 

the schedule assuming no uncertainties in the forecasts and no plant-model mismatch. 

Therefore, the implementation of the schedule can lead to a suboptimal operation, or 

it may cause constraint violations. 

Real-time optimization (RTO), on the other hand, makes use of process measure-

ments to deal with plant-model mismatch [4], as well as of updated prices and de-

mands. A recent work presents an RTO strategy which exploits the structure of ener-

gy systems, and included an example of a sugar and ethanol plant utility system [5]. 

Industrial applications of  RTO of energy systems in refineries have been reported [6, 

7]. The main drawback of real-time optimization of heat and power systems is that it 

generally optimizes a single steady state, which does not allow for including transition 

constraints and accumulated variables, such as tank levels or daily emissions. Fur-

thermore, in general, RTO formulations are of NLP type, which do not account for 

startups and shutdowns. Some MINLP formulations for single-period RTO including 

disjunctions have been recently presented by the authors [8, 9]. 

In other research areas , some desirable properties of RTO have been proposed for 

scheduling, and vice versa. In the scheduling of batch processes, the uncertainties in 

forecasts and the plant-model mismatch can be partially overcome by solving itera-

tively the scheduling problem in a rolling horizon [10]. A multi-period RTO strategy 

with shrinking (fixed) horizon has been proposed to obtain an optimal blending of 

gasolines [11], using an NLP model. 

This work proposes a novel framework for integrating real-time optimization 

(RTO) and scheduling optimization (SO). The approach is based on a MINLP formu-

lation and is solved in two stages. Firstly, the optimal schedule is solved for the full 

period under study (for example, 7 days). This solution provides the startups and 

shutdowns of pieces of equipment with long transition times (gas turbine and boilers). 

Secondly, the operation for each period is obtained by a real-time optimization strate-

gy (i.e. adapting the process model and the forecasts), with a fixed horizon at the end 

of the day. The proposed methodology is illustrated through a case study consisting in 

a heat and power system, which includes a gas turbine with heat recovery steam gen-

erator, two fired boilers, an extraction-condensing turbine that generates electric pow-

er and a set of steam turbines that can be replaced by electric motors. A limit to the 

total NOx production per day is imposed. The results of the strategy are compared 

with those obtained by the offline optimal schedule. 

2 Problem Statement 

The problem to solve can be stated in a simplified way as follows: 
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where k (from k0 to kf) is the index corresponding to a period, uk are the process in-

puts, yk are the measured outputs and Ddzdkk ,z are discrete variables corre-

sponding to disjunctions d. The variables DdηdkGkk ,,ηη  are performance fac-

tors, whose functionality with respect to u is only known in an approximate way by 

functions DdpdG ,,p . These functions contain all the plant-model mismatch, 

while the process model DddG ,,hh  includes mass, energy and entropy balances 

[5], including forecasted demands. Inequality constraints are expressed by func-

tions DddG ,,gg . Equations  include logical constraints. Equations  contain 

the links between periods. Qk is a cost function (which includes forecasted prices), 

and cdk are fixed costs. For the sake of simplicity, transition discrete variables and 

constraints, as well as transition costs tdk, are included implicitly in . For a detailed 

description on possible transition variables, constraints and costs, the reader is di-

rected to reference [1]. 

3 Integration of Real-Time Optimization and Scheduling Optimization 

(SO+RTO) 

3.1 Proposed Methodology 

Let the disjunctions set D be divided in two subsets, D1 and D2. Set D1 includes all 

discrete decisions (i.e. operating mode selection, startups and shutdowns) with rela-

tively long transition periods. The rest of the discrete decisions are included in set D2. 

In an industrial application, the size of a problem such as that of Eq. (1) can be too 

computationally expensive to be solved with high frequency and applied in real-time. 

On the other hand, if it is only solved offline and with low frequency,  the errors in 

3º Simposio Argentino de Informatica Industrial, SII 2014

43 JAIIO - SII 2014 - ISSN: 2313-9102 - Página 120



modeling (plant-model mismatch) and the deviations from actual and forecasted pric-

es and demands can lead to a suboptimal operation or to constraint violations. 

The optimization problem given by Eq. (1) is solved in two stages. Stage 1 solves 

the optimal scheduling problem for the whole horizon, in order to exploit the higher 

number of degrees of freedom of the scheduling formulation. As a result of this stage, 

all the discrete decisions belonging to the set D1 are fixed and applied to the plant. 

Stage 2 makes use of the desired feedback properties of real-time optimization, and 

is solved with a higher frequency. This stage has two main objectives: The first is to 

update the forecasts of prices and demands. The second is to adapt the model using 

the available measurements in order to overcome the plant-model mismatch. Having 

this updated model and information, the optimal operation is recalculated. The de-

grees of freedom are the decisions belonging to set D2 and the continuous process 

inputs u. In order to reduce the size of the problem in this stage, the number of peri-

ods considered for optimization is reduced, as well as the number of discrete varia-

bles.  

3.2 Stage 1: Full Schedule 

The problem given by Eq. (1) is solved from the initial time to the final horizon (k 

= 1…N) with an initial forecast for demands and prices. The optimal value of the 

discrete variables belonging to D1, NkDdz
opt
dk ...1,, 1 , is stored and will not be 

modified by the real-time optimization stage. A new constraint is added to Eq. (1): 

 NkDdzz
opt
dkdk ...1,, 1   (2) 

Stage 1 can be performed with a fixed horizon length and repeated when the final 

time N is reached, but it can also be performed in a rolling horizon strategy, or updat-

ed when a significant change in the forecasts or the system conditions is detected. The 

key characteristic of this stage is that it is performed offline and it sets the startups 

and shutdowns of pieces of equipment with longer transition periods. 

3.3 Stage 2: Real-Time Optimization 

Adaptation Strategy. At each time k, online measurements will be used to adapt 

performance equations from Eq. (1): 
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where a and b are constant and gradient modifiers (i.e. correction terms) [12], and vG,i 

and vd are subsets or linear combinations of the input set u [5]. ng is the number of 

“global” performance factors (i.e., the dimension of vector G).  

 

The modifiers are updated using the following procedure: 
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1. The actual performance factors Ddηreal
kd

real
kG ,, 1,1,η  are obtained from online 

measurements and the process mass, energy and entropy balances. 

2. The differences between model and actual values are calculated: 
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The modifiers a and b are obtained with a weighted linear regression, using the last 

nr periods and a weight w. The number of periods and the weighting strategy can be 

selected for each implementation, and even for each performance equation. Different 

criteria for choosing the weights have been proposed [13, 14]. For a disjunction d, if 

modifiers ad and bd only appear if zd = true, they will only be updated when this dis-

junction was active in the last RTO cycle:   
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Forecast Update.  At the same time, prices and demand forecasts are updated. If a 

new forecast is available, it can be used; otherwise, the original forecasts can be 

biased using the current error between actual and forecasted values.  

Optimization. After updating the model and the forecasts, the real-time optimization 

stage is performed before the beginning of each period k. In order to reduce 

computational time of the problem, the full scheduling horizon is divided in smaller 

subsets j: 

NkkkkN fTfff ...1......1...1...1 211  (6) 

where kfj ( j=1…T) is the final period of each subset. In practice, a possible size for 

each subset is of 1 day (with kfj the last period of the day). It allows dealing with 

common constraints and costs present in heat and power systems (maximum daily 

power consumption, total daily natural gas use, total daily emissions, among others). 

The optimization problem to be solved is that of Eq. (1), with the addition of Eq. 

(2). The prediction of the performance factors DdηdG ,,η  is modified as pro-

posed in Eq.(3), using the most recent results of Eq. (5). The next period k is set as the 

initial period, and the closest future kf,j is selected as the scheduling horizon. If k is 
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equal to the current kf,j, a single-period optimization is performed, and the next in-

stance of the optimizer will run with kf,j+1 as horizon. 

Figure 1 shows a diagram of the integrated SO+RTO system. In addition to Stages 

1 and 2, a data validation step is proposed for correcting the measured inputs and 

outputs 
k
mu  and 

m
ky , respectively [15, 16]; and also a validation or filtering step for 

the optimal results [17, 18]. 

 

 

Fig. 1. Diagram of the integrated  SO+RTO system. 

4 Case Study: Application to a Heat and Power System 

4.1 Case Description 

A heat and power system (shown in Figure 2) was modeled. It consists of three 

boilers, a gas turbine, a heat recovery steam generator with supplementary firing (af-

terburning), an extraction-condensing turbine generating power, three steam turbines 

with spare motors for driving pumps, a steam demand from an industrial process, 

letdown valves and steam vents. The level of total daily NOx emissions is constrained 

to be lower than 1000 kg/day. The system is studied with an horizon of 7 days; boilers 

startups and shutdowns are selected in Stage 1 (initial schedule), while on/off deci-

sions for afterburning and steam turbines are selected in real-time (with a fixed hori-

zon at the end of each day).  The periods have a length of 6 hours.  

All mass, energy and entropy balances were modeled rigorously. For performance 

factors (boilers efficiencies, gas turbine heat rate and maximum power, turbines effi-

ciencies), as well as for NOx emissions in boilers, gas turbine and afterburning, an 

approximate model is has been built. NOx emissions have been modeled using emis-

sion factors [19]. 

For the purpose of evaluating the proposed strategy, a different model of the per-

formance factors was built. It is assumed to represent exactly the process under study. 
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This model (called hereafter real plant) is used to simulate the real process, evaluate 

the actual cost achieved after applying optimization solutions and provide the factors 
real
Gη  required for Eq.(4). The main (structural) differences between the approximate 

model and the real plant are summarized in Table 1. It can be noticed that the NOx 

factor for the afterburning changes with time (i.e. with the cycle k). The rest of the 

differences (performance of turbines, turbogenerator and gas turbine) can be obtained 

from reference [8]. 

A forecast for power price, power demand, steam demand and ambient temperature 

is used for scheduling and RTO. For the purpose of evaluation of the approach, a 

different set of demands, power price and temperature represents the actual values of 

these properties along the scheduling horizon. These actual values are used for simu-

lation (together with the real plant model) and for updating the forecast for the real-

time optimization model (by biasing the current and future values using the error be-

tween actual and forecasted value at current cycle k).  Forecasted and actual values 

are shown in Figure 3. 

Table 1. Differences between the approximated model and the real plant. F: Boiler steam flow 

(t/h); Q: Boiler/Gas Turbine/Afterburning fuel use (Gcal/h); k: Period number 

Performance index Approximate model Real plant 

Efficiency Boilers (%) 92 75 + 0.48·F -0.0035·F2 

NOx Boiler 1 (kg/Gcal) 0.08 0.07+2·Q-1 

NOx Boiler 2 (kg/Gcal) 0.08 0.08+3·Q-1 

NOx Boiler 3 (kg/Gcal) 0.08 0.06+4·Q-1 

NOx Gas Turbine (kg/Gcal) 0.055 0.03+10·Q-1 

NOx Afterburning (kg/Gcal) 0.07 0.05+5·Q-1+0.001·k 
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Fig. 2. Heat and power system diagram. 

The objective function to minimize is the operating cost: 
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where QTG,k, QAB,k and Qbl,k are the fuel consumptions in the gas turbine, the afterburn-

ing and a boiler, respectively, in Gcal/h); FWk is the boiler feedwater use in t/h, Cpow,k 

is the power purchase cost ($/MWh) and Pk is the net power import (MW); and 
offon

kt
z

,
and 

onoff
ktz ,

are binary variables indicating that, a turbine t has been turned 

off or on, respectively, in cycle k.  After each day j, the excess NOx produced over the 

constraint xNO
jEX  (i.e. all NOx production higher than 1000 kg/h) is penalized with a 

cost. 

Other constraints include the need for keeping always one boiler in operation, and 

that each backpressure turbine can only be turned on or off once every 24 hours. The 

turbogenerator cannot be stopped. 

4.2 Results and Discussion 

The case study was implemented in GAMS and solved using DICOPT. Stage 1 

(full schedule) has 2541 equations and 2745 variables (196 discrete). It is solved in a 

computer with an Intel Core i7-2670QM (2.2 GHz) processor and 8 GB of RAM 

memory RAM. The CPU time required for the solution was of 8.7 s. Each of the real-

time stages requires a CPU usage < 1.9 s, and it has a maximum size of 362 equations 

and 418 variables (16 discrete). 

The results obtained by applying only Stage 1 are also calculated for comparison. 

The actual cost and constraints are calculated for each period using the real model.  

The total operating cost for the comparison case is $204792, while the proposed 

strategy leads to a cost of $161182. The relative reduction in cost is 21.3%. 

Figure 4 shows the cost evolution for the proposed strategy and the comparison 

case. It can be observed that the model and forecast updates provided by the real-time 

optimization strategy impact on a reduction of total cost in all periods. The NOx pen-

alty cost cannot be related to each period but for each day, but for the purpose of illus-

trating the results it is distributed equally over the periods of the corresponding day 

(25% of the total daily NOx penalty is added to the cost of each period of the day). 

Figure 5 shows the evolution of NOx total production. Again, the feedback proper-

ties of real-time optimization reduce the number and the size of violations of the daily 

3º Simposio Argentino de Informatica Industrial, SII 2014

43 JAIIO - SII 2014 - ISSN: 2313-9102 - Página 125



 

 

NOx production constraint. The plant-model mismatch and the uncertainty in the 

forecasted demands and prices lead to errors in the predicted fuel use and NOx pro-

duction in the boilers and the gas turbine, which is (at least partially) corrected by 

real-time optimization. In this example, the model does not predict any violations of 

the NOx constraint for any of the days. However, the application of the results of the 

comparison case to the real plant causes a NOx production higher than the allowed 

limit. In this case, the limit is modeled as a “soft” constraint, which can be slightly 

violated but with a high penalization in the objective function. In other situations, a 

limit like this could be a hard constraint, and therefore the proposed schedule would 

be infeasible. 

 

Fig. 3. Forecasted and actual values for ambient temperature, power price and steam and power 

demand. 
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Fig. 4. Evolution of the objective function for the proposed SO+RTO strategy and the compari-

son case (offline scheduling optimization) 

 

Fig. 5. Daily accumulated NOx production for offline scheduling optimization and SO+RTO  

strategies. 

Figure 6a shows the steam vents for each period, with significant improvements 

when using the proposed methodology. This is directly related with the real-time 

management of backpressure turbines, shown in Figure 6b. Again, the real-time cor-

rections of the model and the current and forecasted conditions lead to a reduction of 

the cost. 

 

Fig. 6. (a) Steam vent and (b) Number of turbines operating for offline scheduling optimization 

and SO+RTO strategies. 
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5 Conclusions 

A novel framework for integrating optimal scheduling and real-time optimization 

of continuous processes has been presented. It can be particularly useful for continu-

ous improvement of the operation of combined heat and power systems. However, it 

can be generalized to other systems or processes. 

This framework makes use of the higher number of degrees of freedom of an opti-

mal scheduling formulation, as well as of the feedback properties and the lower com-

putational cost of real-time optimization. Decision variables with long transition peri-

ods are fixed in the offline scheduling stage, while the remaining degrees of freedom 

are set in a multi-period RTO stage. The scheduling optimization can be performed 

offline and with low frequency, while RTO is performed using online measurements, 

which allows correcting the forecasted conditions and the model parameters. Except 

for the corrected parameters, the mixed-integer nonlinear models used in the schedul-

ing and the RTO stage are the same. 

A case study that optimizes 7-days a week operation of a combined heat and power 

system was used to illustrate the proposed methodology. A combined scheduling 

optimization+RTO strategy with a fixed horizon for the offline scheduling and a 

shrinking horizon for the RTO stage was implemented. The results show a significant 

improvement in operating cost reduction and constraint satisfaction, in comparison 

with the direct implementation of the offline scheduling results. 

 The MINLP problem solved in the real-time stage may present convergence prob-

lems that lead to an infeasible solution or to not obtaining a solution in the required 

(limited) time. A multiperiod MINLP real-time optimization system must have a 

strategy to recover from these problems, which will be the subject of future work. 
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