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Abstract. The increasing trend towards delegating complex tasks to autono-
mous artificial agents in safety-critical socio-technical systems makes agent be-
havior monitoring of paramount importance. In this work, a probabilistic ap-
proach for on-line monitoring using optimal action selection and twin Gaussian 
processes (TGP) is proposed. A Kullback-Leibler (KL) based metric is proposed 
to characterize the deviation of an agent behavior (modeled as a controlled sto-
chastic process) to its specification. The optimal behavior specification is ob-
tained using Linearly Solvable Markov Decision Processes (LSMDP) whereby 
the Bellman equation is made linear through an exponential transformation such 
that the optimal control policy is obtained in an explicit form. 
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1 Introduction 

Safety-critical systems increasingly integrate autonomous software agents in an in-
creasing number of applications which requires new monitoring tools. As an example, 
consider the case of collision avoidance in driving systems [1] where the monitoring 
task involves a number of autonomous vehicles interacting with each other in a high-
speed highway. Any monitoring system aimed to warn or prevent collisions and dan-
gerous circumstances must contemplate the expected behavior of nearby cars to detect 
quickly a collision scenario. Also, automating the task of gazing in video surveillance 
to find suspicious behaviors [2] highlights the importance of agent behavior monitor-
ing. Detecting dangerous objects and intruders is essential for safety in crowded envi-
ronments, but monitoring human behaviors and reporting about potential threats is a 
complex task to be automated.   

The novelty and relevance of information contained in a data stream, can be corre-
lated with the effect such data has on the observer (monitor) [3]. The amount of in-
formation can be measured in a natural way by the Kullback-Leibler (KL) distance -or 
relative entropy- between the prior and posterior distributions in the monitor beliefs, 
i.e. regarding the available space of hypotheses about the state of a controlled system. 
In this work, the novelty of information in a data stream regarding deviations from the 
specified agent behavior is measured using twin Gaussian Processes [4]. For behavior 
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specification, optimal choice of actions under uncertainty is used here to characterize 
the desired behavior of an intelligent agent.  

2 Optimal Action Selection 

To characterize the expected behavior of an agent, the novel approach of LSMDP is 
used [5]. This is a class of optimal control problems in which the Bellman’s equation 
can be converted into a linear equation by an exponential transformation of the state 
value function. Consider an agent that by perceiving an environmental state xn∈x R , 
chooses the scalar action 1uu ∈R , which causes the system to evolve to the state 

1k +x  and receives an immediate cost ( ),uxℓ . The state transition function obey to a 
controlled Ito’s diffusion process of the form 

 a( ) ( )( )d dt B udt dσ ω= + +x x x    (1) 

where 1uω ∈R  (same space as actions) and σ  denote Brownian noise and its scaling 
parameter, respectively. The term a( )x describes the so called passive dynamics and

( )B x  is the input-gain matrix. The passive dynamics represents the behavior of the 
stochastic dynamics in absence of control actions, it is defined as a diffusion process 
in continuous domains [5]. To put it in a more convenient form, the h-step transition 
probability for the uncontrolled dynamics is expressed as 

 ( )0
1 1 a( ) ( ), ( ) ( )( | ) |k k k k

ThBp h B Bh σ+ += + +x x xx x x x xN  (2) 

In turn, the controlled diffusion is approximated as a deterministic function ex-
pressed as a Gaussian distribution with mean and covariance given as 

 ( )( )1 1 a( ) ( ) , ( ) (( | )) |k
k k k k

ThBp u h Bh Bσ+ += + +u x x xx x x x xN  (3) 

The controller shifts the probability mass from one region of the state space to an-
other by acting on the system dynamics. A control policy )(π x  is thus defined as a 
probability of selecting the action ku  at state kx . For any optimal control application, 
the main objective is to find an optimal control policy ( )π∗ x  which minimizes the 
expected cumulative cost function ( )v x  as 

 ( ) ( ) [ ]{ }~ ( | )
min , ( )( ) upu

v vπ∗ = +
x' x

x x x E x'
i

ℓ  (4) 

where x'  denotes the next state for a given action u . The minimum cumulative cost 
for starting at state x  and acting optimally thereafter enables greedy computation of 
optimal actions. Eq. (4) is fundamental to optimal control theory and is called the 
Bellman fundamental equation. The Bellman equation can be simplified by assuming 
the immediate cost function is given as 
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 ( ) ( ) ( )0, ( | ) || ( | )uu hq KL p p= +x x x' x x' xℓ  (5) 

The state cost ( )q x  is an arbitrary function encoding how (un)desirable different 
states are, and KL is the Kullback–Leibler divergence that measures the distance from 
the optimally-controlled dynamics to the passive one. The distance can be understood 
as the price to pay for the optimal shift of the passive dynamics by action u . The KL 
divergence between the above Gaussians can be proven to be 2 22h uσ  which is the 
quadratic energy cost accumulated over interval h . Defining a desirability function as 

 ( ) ( )( )*expz v= −x x  (6)  

the Bellman equation can be now expressed linearly as 

 ( ) ( )( ) [ ]( )expz hq z= −x x xG�  (7) 

where [ ]( )z xG� is an integral operator given by 

 [ ]( ) 0 ( | ) ( )f p f d= ∫x x' x x' x'G�  (8) 

The optimal control policy is computed analytically and expressed as 

 ( ) ( ) ( )T* 2u B vσ= − xx x x  (9) 

Case study: Car-on-a-hill 
The car-on-a-hill continuous control problem illustrated in Fig. 1 and details fol-

lows. The admissible range of forces is not sufficient to drive up the car greedily from 
the initial state. The state vector is 1 2[ , ]x x=x , where 1x and 2x  denote horizontal 
position and the tangential velocity of the car, respectively. The dynamics is given by 

 
( )( )

( )( )
1 2 1

2 2 1 1 2

cos atan '( )

sgn( )sin atan '( )

dx x s x dt

dx x x s x dt x dt udt dβ ω

=

= − − + +g
  (10) 

where ( )2
1 1 1'( ) 2 exp 2s x x x= −  is the slope over the horizontal plane, g = 9.8 is the 

gravitational constant and β = 0.5 is the damping coefficient. The goal states for the 
driving agent are all states such that |1x − 2.5| < 0.2 and |2x | < 0.5. The cost model 
thus encodes the task of parking the car at the horizontal position 2.5 in minimal time 
and with minimal control energy. This is a first-exit setting, since costs are accumu-
lated from time 0 to infinity but accumulation stops when the system reaches a termi-
nal state. Error tolerance is needed because the dynamics is stochastic. 

As the continuous problem is in the form given in Eq. (1) it can be approximated 
with a LSMDP. The approximation is constructed by choosing a set of states { }nx  
and adjusting the matrix , 1k kP +  of transition probabilities from kx  to 1k+x  given by the 
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passive dynamics described
and the matrix Q with elements
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form. The approximation use

1x ∈ [−3, +3], 2x ∈ [−9, +9].
time axis (with time step 
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lines show stochastic trajectories resulting from the optimal behavior with di
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used as the specification for agent behavior monitoring.

spond to smaller values and red to larger values.

Fig. 1. The car moves along a curved road in the presence of gravity
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and the matrix Q with elements ( )( )exp nhq− x  on its main diagonal Eq. (7) becomes

QPλ =z z   (11
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3 Behavior Monitoring 

3.1 Learning Transition Probabilities 

A Gaussian process (GP) is a collection of random variables, any finite number of 
which has a joint Gaussian distribution. For GP regression (GPR), random variables 
represent the value of the function ( )f x  for inputs x . GPR assumes ( )f x  is a zero 
mean stationary GP with covariance function ( )k ,i jx x , encoding correlations be-
tween pairs of random variables 

 ( ) ( )2
k , expi j r i j r ijγ λ δ= − +x x x - x  (12) 

with 0rγ ≥  the kernel width parameter, 0rλ ≥  the noise variance and ijδ  the 
Kronecker delta function, which is 1 if i j= , and 0 otherwise. This prior for the kernel 
function constrains input samples that are nearby to have highly correlated outputs. 

Short-term transition dynamics are modeled based on interactions between the 
agent and its environment [6]. Given a state vector x a separate GP model is trained 
for each state dimension x , in such a way the effect of uncertainty about its change 
due to a control action is modeled statistically as 

 ~ ( , k)kx GP m∆  (13) 

where m  is the mean function and k  is the covariance function. The training inputs 
to the Gaussian model GP  are the states, whereas the targets are the differences be-
tween the successor state and the state in which the action is applied. For an input kx , 
the predictive distribution ( )1 |k kp +x x  is Gaussian distributed. We can build the 
optimal transition probability ( )1

* |k kp +x x as a *GP  model which describes the 
stochastic specification of the agent behavior. The superscript indicates the transition 
probability is shifted by the optimal control policy ( )*π x . On the other hand, gGP  
describes the observed agent behavior modeled as the transition probability 

( )1 |g
k kp +x x  which may deviate from optimal action selection. Noteworthy, the 

gGP  model that characterize the current system functioning requires to be updated 
on-line to accommodate the arriving data stream. 

3.2 Twin Gaussian Processes 

Agent behavior monitoring must quantify how observing new data affects the in-
ternal beliefs that the agent may have over a set of hypotheses or models M  of the 
world. Since the agent acts over an uncertain environment, the monitoring approach 
should be probabilistic using distributions to capture subjective expectations or beliefs 
over the current space. Agent’s beliefs must be updated on-line, as data is acquired, 
transforming prior belief distributions ( )P M  into posterior ones ( )|P M D  and 
computing the distance between them, which is best done using the KL divergence 
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  ( ) ( )( ) ( ) ( )
( )

|
| | | log

P M D
KL P M D P M P M D d

P M
= ∫M M   (14) 

To provide a sensitive on-line estimation of the divergence from optimal behavior 
with small samples TGP are used. TGP can be described as a structured prediction 
method that employs GPs to estimate outputs, by minimizing the KL distance between 
a given system implementation and its specification. Both processes are modeled as 
normal distributions over a finite set of L training examples [4]. Through TGP, we 
obtain a powerful monitoring tool by comparing the two GPs. 

Suppose a particular set containing a sequence of the last W  state differences 
{ }g k

k W
g

kx −∆=X  for the stochastic process that results from applying an arbitrary 
control policy gπ . Then, the joint distribution of observed state differences can be 
modeled using a zero mean multivariate Gaussian distribution as 

 ( )Tg
X ~ , ij ig

T
i r

   
  
   

N� 0
R r

r
 (15) 

whose covariance gK  is given by the kernel matrix ( )k ,g g
iij jx x= ∆ ∆R , the kernel 

vector ( )k ,g g
i ki x x∆= ∆r  and the kernel value ( )k ,g g

k kx xr = ∆ ∆ . For the given 
Gaussian dynamics ( ),g gN K0  of a sampled sequence of state transitions, the offset 
or distance to a specified distribution ( )* *,N K0  is key to calculate a robust measure 
of the twinned Kullback-Leibler divergence (KLT ). Considering the KL divergence as 
a measure of the alignment between two kernels, the divergence between Gaussian 
(stochastic) processes is defined as 

 ( ) ( ){ }1* * *1 1 1
log Tr log

2 2 2 2
g g g

KL
N

T
−

= − − + +�N N K K K K   (16) 

The KL divergence is non-negative and zero if and only if the two multivariate 
Gaussian distributions have the same covariance. In Fig. 2,KLT  is used to compute the 
performance of the controlled dynamics gGP  against the specified dynamics pGP  
for the optimal agent behavior. Notice that instead of computing the KL distance 

 

Fig. 2. The data ordinates are x and GP are the GP distributions for the implemented and the 
specification. The horizontal black lines indicate fully-connected sets. 
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pointwise (green rectangles) 
observed state transitions 
a more robust description of a

Case study (Cont’d). 
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ture any deviant behavior from the specification
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measure emphasizes the fact that similar states should produce similar estimates of 

 

Fig. 3. a) Sample trajectories are generated using different values of the noise scale parameter 
The performance degradation in the agent behavior

lation outcome for random act

(green rectangles) for each new estimation kx∆ , TGP uses a sequence of 
 { } k

k k Wx −∆  over a finite horizon (red rectangle), which gives 
tion of a deviant behavior.  

It is clear the importance of describing any change in the system dynamics using a 
reduced and relevant data set for modeling the corresponding GPs. Hence, a data 

50 state-transition pairs is used to train the GP in order to ca
deviant behavior from the specification. KLT  is computed using a moving 

over the last W=30 estimations of state transitions. The number of
a tradeoff between the speed of detection of any event or distur

ance and the proper characterization of the degradation in the agent behavior. KLT
implemented dynamics gGP  to its specification *GP  in Fig. 3. This 

emphasizes the fact that similar states should produce similar estimates of 

 

a)  b) 

a) Sample trajectories are generated using different values of the noise scale parameter 
gradation in the agent behavior is clearly revealed below by KLT  . b) Sim

lation outcome for random actions between samples 100 to 150. 

a sequence of 
, which gives 

dynamics using a 
data set 

in order to cap-
is computed using a moving 

number of 
detection of any event or disturb-

KLT  is 
This 

emphasizes the fact that similar states should produce similar estimates of 

a) Sample trajectories are generated using different values of the noise scale parameter σ. 
b) Simu-
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both covariates and responses. In a), the noise scale parameter σ is increased from 0.1 
to 0.5 and 1.0, to simulate different degrees of variability. It is quite clear that an in-
crease of parameter σ certainly change the agent behavior. In b), a failure in the car 
actuator is simulated. During samples 100-150 the car dynamics is governed by a 
random policy with u ∈ [−1, +1]. 

Discussion 

 
This paper presents a probabilistic approach for on-line to monitoring of an 

agent behavior under uncertainty based on Bayesian surprise and optimal action 

selection. The desired behavior is modeled by a prior Gaussian distribution for 

state transitions, in order to assess if an observed control policy respects its 

specification. An analytical specification of the desired optimal behavior is ob-

tained using a class of Markov decision processes which are linearly solvable. 

Twin Gaussian processes are used to compare on-line observe state transitions 

due to the actual agent behavior with the stochastic specification. 
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