
Toolchain and workflow for the design of an

ISO 11783-compatible ECU based on ISOAgLib

Joaquin Ezpeleta and Sebastián Rossi,

Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario,
Av. Pellegrini 250, S2000BTP Rosario, Argentina
ezpeleta@fceia.unr.edu.ar, srossi@inti.gob.ar

Abstract. This paper describes a basic toolchain for the design of an
ISO 11783-compatible electronic control unit (ECU), from its conception to the
implementation of a working embedded prototype, along with a suggested
workflow for dividing application programming, mask design and
hardware-related tasks in a debugging-friendly and time-efficient manner. The
toolchain is centered on the open source ISOAgLib programming library
distributed and maintained by OSB AG and the paper will refer to other specific
tools and devices, but is otherwise intended to provide a general introductory
overview of the process rather than focus on specific vendors or platforms.

Keywords: toolchain, workflow, ISO 11783, ISOBus, ISOAgLib, controller
area network (CAN), embedded system.

1 Introduction

ISO 11783 [1 et seq.] –commonly known as ISOBus– defines a serial data network
for agricultural or forestry equipment based on the CAN 2.0 B [4] protocol. It is
intended to provide an interconnection system for on-board electronics. A typical
ISOBus network is shown on Figure 1. A basic element of such network is the
electronic control unit (ECU), which is defined in [1] as an ‘electronic item consisting
of a combination of basic parts, subassemblies and assemblies packaged together as a
physically independent entity’.
This paper describes the process for creating one such ECU, from its design to the

implementation of an embedded prototype. Specifically, it suggests a toolchain and a
workflow for this process. The toolchain is based on the open-source library
ISOAgLib and other related tools distributed and maintained by OSB AG [7], but
alternatives are given wherever possible to provide maximum flexibility. Similarly,
the process described is mostly platform-independent (both in terms of the operating
system used for development on a desktop environment and in terms of the embedded
hardware platform used for the actual implementation), but examples are given at
various points for the purpose of clarity and reproducibility. For an implementation on
specific hardware see, for example, [6].
Section 2 presents the suggested toolchain, along with explanations and brief

examples; Section 3 describes the physical and virtual elements needed to test and use

1353

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301050813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

software- and firmware-level applications; Section 4 presents the proposed workflow
for an efficient and debugging-friendly task division using the tools and resources
presented in Sections 2 and 3.

Fig. 1. Example ISO 11783 network on a tractor with two implements.

2 Toolchain

A summary of the suggested toolchain is shown graphically in Figure 2. It presents
the tasks needed to design an ISOBus system with ISOAgLib, the tools needed for
each task and the relationship between these tasks. As will be seen on Section 4,
however, many of these tasks can often be undertaken independently, so a roughly
left-to-right and top-to-bottom order will be followed.

2.1 Mask design and parsing

The first tool to be discussed is VT designer, which is a graphic interface for
designing masks which are compatible with [3]. It is currently available from OSB
AG in both a trial and a full version. It has a simple and intuitive interface and
includes examples which can be modified to gain insight into its use. The purpose of
this tool within the suggested toolchain is to take an abstract design concept for the
necessary mask(s) and create files which can be further processed for use in the
application. Given one or more manually-loaded masks (collectively, an object pool),
VT Designer creates a .vtp project file and a number of .xml files which contain the
actual objects and attributes.
An alternative for the use of VT Designer is PoolEdit, developed by Matti Öhman

and Jouko Kalmari at Aalto University [9] and distributed under GNU General Public
License (GPL). The former is discussed here for its greater affinity with the OSB AG
toolchain, but the latter produces almost identical results.

1354

Fig. 2. Toolchain for the development of an ISO 11783-compatible application.

 The .xml files output by VT Designer cannot typically be included directly into
the source code of the application. A second tool is needed to transform the .xml files
into source files which can be handled by the C++ compiler. An example of an
application which serves this purpose is vt2iso.exe, available free of charge from
OSB AG. It is a console application which essentially takes the .vtp and .xml files
from the previous step and produces a group of .inc and .h files which can then be
included directly by the compiler. Below is a basic use example on the Microsoft
Windows command line, where myDisplay.vtp is a VT Designer project file. A
number of optional arguments are also available but are not typically necessary.

C:\IsoAgLib\tools\vt2iso\bin>vt2iso.exe myDisplay.vtp

1355

2.2 Project Configuration

Another step in the design process is defining project settings. These are to be entered
manually in a configuration file and include basic parameters, such as the project
name, the folder where the user and library files are stored, the number of CAN
instances and the target platform (e.g. PC running Microsoft Windows, PC running
Linux, embedded system, etc.), among others.
It is advisable to adapt the template (conf_template) included with ISOAgLib

rather than enter the settings directly on a blank file, as the former approach will be
both faster and less error-prone. In either case, the resulting file is to be processed by
a shell script (conf2build.sh) to produce a configuration header
(isoaglib_project_config.h) which can be included directly into the application.
The shell script is included with ISOAgLib and can be run natively in Linux and

other UNIX systems. Microsoft Windows users will need to install
MSYS/MINGW [11] or other similar software which makes it possible to run UNIX
shell scripts under this OS. A typical command for executing the script is shown
below, where myconfig is a copy of conf_template adapted to a specific project.

$ conf2build.sh myconfig

Also note that the resulting isoaglib_project_config.h header is included via the
library header isoaglib_config.h and is not to be included directly (the preprocessor
will issue an error if it is).

2.3 Hardware Abstraction Layer (HAL)

ISOAgLib includes a Hardware Abstraction Layer (HAL) which acts as an
intermediary between the rest of ISOAgLib and the actual hardware on which it runs.
This includes system startup, time tracking, power management, CAN
communication, non-volatile storage and similar hardware-dependent functions, along
with definitions for data types, error codes and configuration parameters.
The HALs for certain hardware platforms (most notably, PCs running Microsoft

Windows or Linux) are already included with the library, but others must be
programmed by the user (e.g. ARM-based MCUs). It is advisable to use an existing
HAL as model when creating a new one. It should also be borne in mind that, when
changing platforms, the project configuration described in 2.2 must be updated
accordingly.
In embedded systems, it may also be necessary to include additional files outside

the HAL, such as a startup file (see Figure 2, bottom left).

2.4 User Code

While ISOAgLib provides for most communication and compliance requirements, it
is up to the user to design and program the actual application. The typical application
includes initialization code which is run once at the start, a main application loop

1356

which performs all communication and normal operation tasks and closing code
which shuts down the application and all associated hardware in a controlled manner.
In addition, on embedded systems, startup code is typically needed before the rest of
the application can be executed.
The initialization code should perform the following basic functions: (a) initialize

instances of the system, the scheduler, the bus, the monitor and the CAN controller;
(b) declare or retrieve parameters needed for subsequent address claim; (c) register
the necessary tasks on the scheduler, initialize the system components and register the
object pool on the monitor; (d) transfer control to the main loop. In addition, it should
perform any application-specific or hardware-dependent initialization functions (such
as interrupt vector, watchdog, real-time clock, analog-digital converter or output
configuration or pin remapping), although these can usually be called automatically
during system initialization by including them in the HAL.
The main application loop should run after initialization and until the application

needs to terminate for any reason. As far as the ISOAgLib library is concerned, the
only requirement for the main application loop is that the time event of the scheduler
instance be called within the time constraints defined in [1 et seq.], but other functions
will be needed for any specific application.
Finally, the closing code unregisters all elements, deallocates memory, calls the

close method for each of the active instances and takes all associated hardware to a
safe condition (e.g. deenergized actuators).
Gaining insight into the use of ISOAgLib can be challenging given the lack of

freely available training and tutorials. OSB AG offers customized workshops and
training sessions which include examples, but the examples themselves cannot be
bought alone. If workshops or training are not an option due to cost, examples are
freely available for earlier versions of ISOAgLib (up to 2.2.1) from OSB AG’s
repository. These can be adapted to more current versions by following the changelog
and inferring necessary changes in the user files, but this involves considerable
guesswork and can be a time-consuming process.

2.4 Compilation, Linkage and Loading

The tools used for compilation, linkage and (in the case of embedded systems)
loading are highly platform-dependent and are usually managed by a single IDE.
General purpose compilers such as GCC [10] can be used for early stages of
development where the application is to run entirely within the desktop environment,
while vendor- or platform-specific compilers are generally needed to compile the
application for specific hardware (e.g. armcc for ARM-based MCUs).

Remark 1. ISOAgLib is written in C++. This must be taken into account when
selecting the product and compiler, as some products do not offer C++ compilers or
do so at relatively high prices.

1357

3 Hardware framework

Figure 3 shows an example interconnection of system elements. It is intended to
provide a summary of the connection options available throughout the entire design
process. In each stage of the development proces, however, not all of the elements are
simultaneously necessary in general. For example, while initially programming and
debugging the application, all work is typically done within a desktop environment
without resorting to additional external hardware. Similarly, the process for
preliminary design and implementation of sensors and actuators will not normally
require access to a virtual terminal, whether physical or simulated.
The interconnection between system elements is done basically by means of three

CAN buses, namely a physical bus, a socket bus and a proprietary virtual bus.
The physical bus is an actual wired bus complying with the requirements set forth

in [2]. It includes a pair of data wires CAN_H and CAN_L and should be terminated
with impedance-matching resistors.

Remark 2. While [2] defines a nominal characteristic bus impedance of 75 Ω, existing
CAN hardware not developed specifically for ISOBus may use 120 Ω instead, as
defined in [5] (the original Bosch document, [4], did not specify this and other
electrical aspects of the physical layer).

Data transmission from and to the bus is normally done through CAN transceivers.
These convert 3.3 V or 5 V logic values from the RX/TX pins on an MCU (or other
levels from other hardware) to dominant and recessive bits on the CAN bus and vice
versa. Examples of CAN transceivers are SN65HVD230 and MAX3051 for 3.3 V
systems and SN65HVD255 and MAX3058 for 5 V systems.
The socket bus is an internal socket connection which emulates a CAN bus within

a desktop environment. The ISOAgLib toolchain includes several similar tools for
this purpose, one which is designed solely for interaction between several ISOAgLib
applications within the desktop (can_server_simulating.exe) and others which
additionally provide functionality for connection with vendor-specific hardware and
software. For example, can_server_vector.exe and can_server_vector_xl.exe are
designed for communicating with hardware and software from Vector Informatik
GmbH [8], which is achieved by using Vector’s CAN DLL library. The CAN server
thereby acts as a bridge between the socket bus and the proprietary virtual bus,
discussed below.
The proprietary virtual bus is an emulated CAN bus like the socket bus, and can be

thought of as an extension of the latter. It is used for communication between
proprietary hardware and software from a given vendor and the corresponding CAN
server. In addition, by communicating with a CAN card, the proprietary virtual bus in
turn enables access to the physical external bus. For example, Vector offers
CANcardXL, a two-channel driver card which provides access to up to two external
physical buses. Additionally, they offer an application by the name of CANoe which
manages the card and also serves as a bus analyzer. When both CANcardXL and
can_server_vector_xl.exe are running, the socket bus, the proprietary virtual bus and
the physical bus merge, for all practical purposes, into a single CAN bus. This and
other similar setups offer great versatility, as they make it possible for a number of

1358

applications running either on the desktop or on an embedded system to communicate
seamlessly with each other and with third-party devices, such as a virtual terminal. In
addition, software like CANoe can emulate a virtual terminal, which is essential for
running preliminary tests entirely within the desktop environment, with further tests
on actual virtual terminals being done at a later stage of development.

Fig. 3. Hardware framework.

In addition to the CAN buses, Figure 3 shows a UART connection between the
MCU and a terminal emulator within the PC. This provides a simple means of
transmitting debugging information between the PC and the MCU without loading the
CAN bus, but is entirely optional.

4 Workflow

This Section describes a proposed workflow for the design process of an
ISO 11783-compatible application. The basic stages in this process are application
programming (with and without masks), mask design, hardware-related tasks and
prototyping. A way of organizing these stages is shown in Figure 4. The basic concept
is to run tasks in parallel in order to make better use of available time, hardware and

1359

human resources. Time is better used as different teams can work on the different task
simultaneously. In addition, each task can be assigned to a specialist in the
corresponding field, such as a programmer for building the application and an
electrical engineer for working wiring, sensors and actuators, making better use of
available human resources. Finally, available hardware can be used more efficiently,
as each task requires only some of the hardware tools. Some examples of this were
discussed in the previous Section, which described a flexible hardware framework.

Fig. 4. Proposed workflow for the design process.

1360

Another advantage of task division is to facilitate the debugging and
troubleshooting process. When each task is undertaken individually, the possible error
sources are confined to a subdomain of the entire system. For example, if the
application is initially debugged using a virtual bus and simulated data (maskless
application or application programming stage in Figure 4), no communication- or
hardware-related errors arise and the debugging domain is thereby restricted only to
the application itself.
The maskless application programming stage consists in the design and

programming of a virtual application which does not resort to any virtual terminal
(physical or otherwise) for display. Additionally, such application would be
developed entirely within a desktop environment, without resorting to external data or
elements and without being loaded onto an MCU or other embedded system. The
application uses the PC HAL at this point. As the application will be isolated from
data which it normally needs for its operation (data from sensors, other network
devices or user input), simulated data can be used during this stage to examine the
behavior of the application in different situations.
The mask design stage basically involves the task of designing one or more masks

(an object pool) and parsing then into a format which can be handled directly by the
compiler used for building the application. This stage can be completed mostly using
the tools described in 2.1 above, although some previous design work is necessary to
create a visual concept for the masks (colors, layout, shape and position of various
elements, expected functionality, etc.).
The application programming stage is an extension of the maskless application

programming stage with the addition of the masks designed in the mask design stage.
The goal of this stage is to ensure that the application can upload the object pool to a
simulated virtual terminal and interact with it (i.e. receive user input and make
necessary changes on the elements of the object pool). Except for data flowing to and
from the virtual terminal, the rest of the data used during this stage is still simulated.
Similarly, the application continues to run within the desktop environment using a
PC HAL.
The hardware-related tasks stage encompasses all hardware or platform-specific

tasks. These basically include the design and implementation of actuators, drivers,
sensors, data acquisition means, the creation of a HAL for ISOAgLib if one does not
exist for the intended platform and the inclusion or programming of other platform-
dependent elements which cannot be included within the HAL (such as a startup file).
The creation of the HAL in turn involves implementing functions for CAN
communication, configuration of interrupt vectors, watchdogs, real-time clock,
analog-digital converters or outputs and pin remapping.
Finally, the application (included the masks) can be loaded onto the embedded

hardware and combined with sensors, actuators, CAN peripherals and other hardware
elements to produce a working embedded prototype. This prototype can then be tested
for minor bugs or problems within a laboratory environment (possibly using a
simulated VT) to create a final version of the device, which can be further tested with
actual equipment on field prior to its commercial production.

1361

References

1. ISO 11783-1:2007, Tractors and machinery for agriculture and forestry — Serial control and
communications data network — Part 1: General Standard for mobile data communication,
International Organization for Standardization, Geneva (2007)

2. ISO 11783-2:2002, Tractors and machinery for agriculture and forestry — Serial control and
communications data network — Part 2: Physical Layer, International Organization for
Standardization, Geneva (2002)

3. ISO 11783-6:2004, Tractors and machinery for agriculture and forestry — Serial control and
communications data network — Part 6: Virtual Terminal, International Organization for
Standardization, Geneva (2004)

4. CAN Specification Version 2.0 Part B, Robert Bosch GmbH, Stuttgart (1991)
5. ISO 11898-2:2003, Road vehicles — Controller area network (CAN) — Part 2: High-speed
medium access unit, International Organization for Standardization, Geneva (2003)

6. Tumenjargal, E., Badarch, L., Kwon, H., Ham, W.: Embedded software implementation
system for a human machine interface based on ISOAgLib. Journal of Zheijang
University (2013)

7. OSB AG, http://www.osb-ag.com/osb-ag.html
8. Vector Informatik GmbH, http://vector.com
9. PoolEdit - Open Source XML ISO 11783 User Interface Editor,
http://autsys.aalto.fi/en/Farmix/PoolEdit

10.GCC, the GNU Compiler Collection, http://gcc.gnu.org
11.MSYS, http://www.mingw.org/wiki/MSYS

1362

