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Abstract. Gesture recognition is a major area of interest in human-
computer interaction. Recent advances in sensor technology and com-
puter power has allowed us to perform real-time joint tracking with com-
modity hardware, but robust, adaptable, user-independent usable hand
gesture classi�cation remains an open problem. Since it is desirable that
users can record their own gestures to expand their gesture vocabulary,
a method that performs well on small training sets is required. We pro-
pose a novel competitive neural classi�er (CNC) that recognizes arabic
numbers hand gestures with a 98% success rate, even when trained with
a small sample set (3 gestures per class). The approach uses the direction
of movement between gesture sampling points as features and is time,
scale and translation invariant. By using a technique borrowed from ob-
ject and speaker recognition methods, it is also starting-point invariant,
a new property we de�ne for closed gestures. We found its performance
to be on par with standard classi�ers for temporal pattern recognition.

Keywords: gesture recognition,scale invariant,speed invariant,starting-
point invariant,neural network,cpn,competitive

1 Introduction

The recent rise of gesture interaction as a practical possibility, through new de-
vices and sensors, has made natural gesture-based software a reality, with appli-
cations ranging from web browsing and gaming to sign language interpretation
and smart home interaction. A gesture recognition system usually consists of
two stages: low-level feature extraction and representation based on sensor data,
for example using depth images taken from a time-of-�ight camera; and ges-
ture classi�cation employing the extracted features. Current research e�orts in
human-computer interaction, computer vision, motion analysis, machine learn-
ing and pattern recognition are contributing to the creation of even more robust
and usable recognition systems [17] in both stages.

The Kinect SDK has been recently used as a stepping stone for doing research
in the second stage of a gesture recognition system based on body joint 3D
positions, for example to perform a comparison of template methods for real-time
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gesture recognition [14], testing a Weighted Dynamic Time Warping algorithm
[2], posture detection [15], to design a system that monitors posture ergnonomics
[16], human behavior recognition by a mobile robot following human subjects
[1], and allowing wheelchair-accessible gesture-based game interaction [5]. This
is a recent trend in vision based gesture-recognition, since previous works mostly
focused on the feature extraction stage [3], and used image based features instead
of performing body joint tracking and using the resulting 3D position data to
construct appropiate features as in [18] for hand-gesture recognition. Also, most
hand gesture recognition research has additionaly employed �nger and palm
information because they tipically address sign language recognition.

In this work, we propose a speed, translation and scale-invariant method,
the Competitive Neural Classi�er (CNC), for recognizing hand gestures based
on a time-labeled sequence of 3D hand positions, with a restricted training set
size. The CNC was partially inspired by Probabilistic SOM's (ProbSOM) [4]
approach to speaker recognition. The proposed methodology for the CNC (and
ProbSOM) discards the sequence information contained in the extracted features
computed from the sample data and thus follows an approach similar to those
employed in object or speaker recognition, that is, the characterization of a
sample by means of a set of distinctive features; an approach unexplored, to
the best of our knowledge, in the area of gesture recognition. The architecture
of each sub-classi�er maps those features into a lower dimensional space by
means of a competitive layer trained also in a competitive fashion, and uses
the resulting activation patterns as a gesture signature employed as input for
another competitive network that outputs the likelihood of each class given each
sample. Finally, the use of many such sub-classi�ers improves the recognition
rate by combining di�erent mappings derived from di�erent clusterings and thus
provides robustness to the method.

We focus directly on the the second stage of the gesture recognition by lever-
aging the Kinect SDK's recognition algorithms to obtain user joint positions
and generate a gesture database to test the method and compare its perfor-
mance against ProbSOM and other two known techniques: Input-Delay Feed-
forward Networks [7], and a modi�ed Ordered Means Model [6] algorithm called
ST-OMM.

This work is organized as follows: we introduce the gesture database in section
2, together with the preprocessing and feature extraction stage; then, we present
the CNC in section 3, a brief introduction to the compared methods in section
4, and �nish with experimental data and conclusions in sections 5 and 6.

2 Preprocessing and Feature Extraction

2.1 Gesture Database

We performed all of our experiments using the Arabic Numbers Hand Gesture
Database 1, a small database of our creation with 10 samples of each of the arabic

1 More information available at https://sites.google.com/site/dbanhg/
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digits performed using the left hand and recorded with Microsoft Kinect's SDK,
which gives a set of classes C = 0 . . . 9. The recording of all samples was done
at an average of 28 fps, by the same person. In the recording of the di�erent
samples of each digit the orientation of the person with respect to the camera
was the same, but the samples were performed starting from di�erent hand and
body positions and each gesture shape was drawn with di�erent sizes.

Each gesture sample si ∈ S, where S is our gesture database, consists of
a sequence si = si[1], si[2], . . . , si[ni], si[j] ∈ R3, j = 1 . . . ni, corresponding
to the hand positions in a 3D space, time-labeled Ti = t1, . . . , tni

, tj ∈
R, 0 = t1 < t2 < · · · < tni

, and gesture class label ci . Each sample si may
have a di�erent number of positions ni, depending on the capture frame rate
and the time used to execute the gesture.

2.2 Preprocessing

In the preprocessing stage, the �rst and last 3 positions of each sample are
discarded because they usually contain unwanted information introduced by in-
correct gesture segmentation. The samples were smoothed individually using an
unweighted moving average with a window of size w in order to remove the high-
frequency information from the signal, because the chosen features are based on
the direction between consecutive sample points and small �uctuations in direc-
tion give too local information to characterize the overall shape of a gesture.

The nature of the feedforward and ST-OMM architectures requires the num-
ber of sample positions ni to be constant across all samples. Also, it is desirable
to obtain speed-invariant features. In order to achieve this each sample is resam-
pled to a sequence of constant length n using cubic splines interpolation with an
arc-length parameterization.

The parameterization of each sample s of length q gives the position of the
hand in the 3D space as a function of the arc-length distance from the �rst
position of the sample. For each position s[j] we calculate the arc-length distance

from the �rst position lj =
∑j

k=2 ||s[j] − s[j − 1]||, where || · || is the Euclidean
norm. The resampling is done at n uniformly distributed knots in the total
sample arc length L = lq, given by kj =

j−1
n−1 ∗ L, j = 1 . . . n. We obtain the

sequence of points r of length n such that r[j] = cubic(kj , near4(kj)) j =
1 . . . n where cubic(x, (x1, x2, x3, x4)) performs the cubic interpolation at distance
x using distances (x1, x2, x3, x4) whose positions are known and near4(x) returns
the 4 distances nearest to the distance x (ie, min4 = (|l1−x|, . . . , |lq −x|)) such
that x1 < x2 ≤ x ≤ x3 < x4.

2.3 Features

From the smoothed, resampled sequence ri we compute the normalized �rst dif-

ference di where di[j] =
ri[j+1]−ri[j]
||ri[j+1]−ri[j]|| , j = 1 . . . n−1, di[j] ∈ R3, which

represents the relative directions between the sample positions. By computing
the �rst di�erence, we obtain a translation invariant representation. By normal-
izing, we remove all speed information contained in the length of each direction
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Fig. 1. Projection on the xy plane of a sample of the gesture 1, before and after
resampling with n = 10, 30. The greater density of sampling points, shown as dots,
in the upper part in relation to the lower part of the original that was caused by a
di�erence in speed when performing the gesture has been compensated by resampling
with di�erent degrees of detail.

vector, making the signal invariant to the speed and scale with which the ges-
ture was drawn. Note that without the resampling the normalizing would still
leave a considerable amount of velocity information in the signal because the
amount of sampling points in the segments (in the arc-length sense) where the
user performs the gesture at high speed is lower than in those segments where
the hand moves more slowly.

As an alternative to the direction vectors, we also employed the angles of the
spherical representation of the direction vectors, obtaining a representation ai,
where ai[j] = (θ, φ)j ∈ R2 . The z coordinate is left out because it is always 1 as
a consequence of the previous normalization, and we rescaled the angles so that
θ, φ ∈ [−1, 1].

Given the periodical nature of the angle representation, in all angle di�erences
calculated for all classi�cation algorithms we utilized the di�erence function
d(α, β) = min(|α− β|, 2− |α− β|). Although both features are mathematically
equivalent and share the same desirable properties (translation, scale and speed
invariance [12]), they produce slightly di�erent results in our experiments. In
the following sections we will refer to a secuence of sample features as s, where
s[j] ∈ Rd could represent either feature (with d = 2 for angles and d = 3 for
cartesian directions).

2.4 Starting point invariance

We de�ne the starting-point invariance property for closed gestures, which are
those that, ideally, start and �nish in the same position. In such a case, like when
recognizing the gesture corresponding to the digit 0, we would like the recognition
algorithm to be able to detect the gesture without regard to where the user
started performing it. Therefore, a feature given by f :: Samples → Features
is starting-point invariant if f(s) = f(shift(s, k)), k = 1..n− 1 where n is the
length of the sample, shift(s, k) = (s(k)%(n+1), s(k+1)%(n+1), . . . , s(n+k)%(n+1))
and % is the modulo operator.
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3 Competitive Neural Classi�er (CNC)

The CNC, a new gesture recognition strategy based on competitive neural net-
works, employs a combination of competitive neural networks and a decision
mechanism that integrates information generated by multiple subclassi�ers to
add robustness to the recognition process and improve the recognition rate. The
structure of a CNC with p subclassi�ers is shown in �gure 2 a).

Fig. 2. a) CNC Architecture b) Subclassi�er module

3.1 Classi�er structure and functioning

When a sample s enters the classi�er, the Splitter module generates the sequence
of basic components bc and sends a copy to each of the p subclassi�ers. Note
that each basic component bc[j] is simply the cartesian or angle representation
of the jth direction vector described in the previous section. The Competitive
Feature Encoder Module (CFEM ) in each subclassi�er (�gure 2 b) implements a
neural network nn′ with m neurons h′1, h

′
2, . . . , h

′
m, trained with the well-known

CPN learning algorithm [8]. Given a sequence of n basic components (a sample),
the CFEM maps it into a characteristic vector v′ according to:

v′ = (v′1, v
′
2, . . . , v

′
m)

v′k = count(h′k)/n k = 1..m

where count(h′k) represents the number of basic components for which the
neuron h′k had an activation value greater than other neurons. Therefore, v′

codes information about the distribution of each basic component of the sample s
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according to the hidden space. Since the nn′s are trained independently, each will
produce a classi�cation based on di�erent clusterings, hopefully complementary
to each other.

The Competitive Evaluator Module (CEM) contains a neural network nn
with a competitive layer composed of z hidden neurons h1, . . . , hz with corre-
sponding weights w1, . . . ,wz, where z is determined by the learning algorithm.
The neurons of this layer are stimulated with the vector v′ to output a vector
v = (v1, . . . , vz) of scores. The network deviates from the typical competitive
architecture in that instead of identifying a unique winner neuron, this vector
represents the degree of membership of the sample to each neuron using the
inverse of the Manhattan distance || · || as a similarity function, and is given by
vk = 1/||(v′,wk)||k = 1..z.

Each neuron hk is associated with a gesture class c by means of a function
f :: Neuron− > Class, and therefore such scores v also represent the degree of
membership of the sample to each class. Finally, the Integrator module receives
the outputs vi, i = 1..p of every classi�er, and calculates the corresponding
class as class = f(maxk(scores)), where scores =

∑p
i=1 vi and maxk returns

the index of the vector component (hidden neuron) with the maximum value.

3.2 Learning algorithm

The subclassi�ers are trained independently in two stages. First, the nn′ of each
CFEM is trained with the classical CPN iterative learning algorithm using the
basic components of all samples and the Manhattan distance as a similarity
function.

After the CFEM's training is �nished, each h′i corresponds to the centroid of
a cluster of basic components. Given the nontraditional use of each nn′ in the
generation of characteristic vectors v′on the training algorithm can be stopped
very quickly (as early as two iterations in our tests) while still obtaining good
results.

The neural network nn of the CEM requires no training. Once the CFEM's
training is complete, the nn is built with z = |C| × u neurons hi, where u is
the number of samples of each class and |C| the number of classes. To each
hi corresponds a weight vector wi = v′i where v′i is the characteristic vector
generated by the CFEM when presented with the basic components of sample
si. The mapping function f is simply f(i) = ci, that is, given sample index i, it
returns the class label of sample i.

4 Compared Methods

4.1 Probabilistic SOM (ProbSOM)

ProbSOM combines the well know Self Organizing Map (SOM) clustering tech-
nique with a probabilistic decision model which has been succesfully applied
to solve speaker identi�cation problems. CNC has been partially inspired by
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ProbSOM's approach of extracting basic components of a signal to stimulate a
competitive layer, but di�ers substantially in the mapping approach and deci-
sion process. For an accurate comparison with CNC, we tested an ensemble of p
independently trained ProbSOMs used as subclassi�ers, and use as �nal output
the mean of the subclassi�ers scores for each class.

4.2 Input Delay Feedforward Network (ID-FF)

Input Delay Feedforward Networks (ID-FF) are a class of feedforward networks
adapted for temporal sequence processing. Applied to this type of problems, their
main distinctive feature is the grouping of the sequence of feature vectors that
characterize a gesture into a single vector by simply aggregating all the features
while maintaining their temporal ordering. This results in a representation that
simply but e�ectively models the dynamics of the gesture and has the advantage
that the neural network can be designed and trained in a traditional way.

We chose the standard 2-layered feedforward network, trained with resilient
backpropagation, a well-known, fast and proven �rst-order training algorithm
[9]. We employed the transfer function tansig for both the hidden and output
layer. The output layer contains 10 neurons, one for each gesture class c, with
output values oc ∈ −1, 1, c = 1 . . . 10.

4.3 Small-Training-Set Ordered Means Model (ST-OMM)

The Ordered Means Model (OMM) is a simpli�ed Hidden Markov Model (HMM)
which has been successfully applied for solving gesture recognition problems in
a variety of settings. Moreover, HMMs are the de-facto standard for generative
classi�er models, (and, arguably, gesture recognition [10]) and thus a good choice
for comparison.

While most model building methods for both the OMM and HMM commonly
employ some variant of the Expectation-Maximization (EM) algorithm to �nd
optimal values for their parameters, such a choice is ill-suited for small training
sets as required for our problem. Therefore, we have created the Small-Training-
Set-OMM (ST-OMM), an adaptation of the OMM approach to comply with this
requirement.

The ST-OMM takes as input a sample, which is a �xed length sequence
s of n features, and outputs the likelihoods of the sample belonging to each
gesture class c. The ST-OMM is built with n competitive Gaussian Mixture
Models (C-GMM), and each C-GMM Gj , j = 1 . . . n is composed of a set of
states Sj,c, c ∈ C, with constant mixture coe�cients ωc = 1/|C|. To every state
Sj,c corresponds to a set of Gaussian pdfs with means µj,c,k and covariance
matrices Σj,c,k, k = 1 . . . |Sc|, where Sc is the set of samples of class c, which
models the probability of an emission of gesture part j by the gesture class c
in a competitive fashion. This parameters are estimated as µj,c,k = sck[j] and
Σj,c,k = cov(Ij,c), k = 1 . . . |Sc|, where sck is the kth sample of class c and Ij,c
is a matrix whose columns are [ sc1[j] sc2[j] ... sc|Sc|[j] k=1...|Sc| ], that is, Ij,c is the
matrix that contains the jth feature of every sample of class c.
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We are therefore using each part of every sample of the training set - the best
likelihood estimators for that set - as a C-GMM mean, which does not yield a
computationally demanding model because we are speci�cally targeting a very
small training sets. For the classi�cation of a new sample s, we calculate the
likelihood of emission for each state Sj,c as:

P (Sj,c|s[j]) =
P (s[j]|Sj,c)P (Sj,c)

P (s[j])
=

pj,cP (Sj,c)∑
k∈C pj,kP (Sj,k)

=
pj,c∑

k∈C pj,k

where P (Sj,k) = 1
|C| is the same for all classes k, and pj,k = P (s[j]|Sj,c) =

max(N (s[j];µj,c,k,Σj,c,k)) is the maximum of the scores that model the likeli-
hood of the jth feature of the sample belonging to class c.

Then, the likelihood of the whole sample belonging to class c is:

P (c|s) = P (s|c)P (c)∑
k∈C P (s|k)P (k)

=
P (s|c)∑

k∈C P (s|k)

where we de�ne P (k) = 1
|C| and P (s|k) =

∑n
j=1 P (Sj,k|s[j])

n

We can thus picture the ST-OMM as a |C| ×n state HMM, with one left-to-
right submodel for each gesture that does not allow a transition from a state to
itself, that is:

P (Sj,c → Sj′,c) =

{
1 if j′ = j + 1

0 otherwise

This restriction avoids doing a dynamic programming search over state com-
binations and, although it is obviously of lower computational capacity than a
full HMM, works well given a large enough n, since any desynchronization be-
tween a novel performance of the gesture and the model produces only small
mismatches.

5 Experimentation

We compared the recognition rate of the four methods on the gesture database,
using the same preprocessing parameters for all. The resampling size n was set
to 60 and the smoothing window size w to 5. Each algorithm was tested 500
times using random subsampling cross-validation, with 3 samples per class for
the training set (30 total) and 7 for the test set (70 total). In the case of the
feedforward network, 2 samples of each class were taken from the test set to be
used as the validation set, leaving 5 for the test set. For the ID-FF, CNC sub-
classi�ers and ProbSOM networks, we show results for hidden neurons m = 30,
m = 70 andm = 100 respectively, which gave the best results in our experiments
(we tested m ∈ 5, 10, . . . , 150 to determine those values). Both the CNC and
ProbSOM had p = 5 sub-classi�ers. In all experiments, for ProbSOM, ST-OMM
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and ID-FF the class assigned to a sample gesture was the one that gave the best
score for that class, irrespective of its actual value; that is, when presented with
a sample, the method calculates the outputs oc for each class normally and the
corresponding class is assigned according to the rule class = maxc(oc).

Method / Feature Direction Angles

CNC 98.91 (1.20) 95.32 (2.20)

ProbSOM 62.69 (5.94) 43.57 (6.86)

ID-FF 91.54 (9.06) 80.88 (8.81)

ST-OMM 95.54 (2.72) 96.40 (2.09)

Table 1. Sample mean and standard deviation of recognition rates over 500 experi-
ments, with training and test cases chosen randomly, w = 5, n = 60.

We also show the performance without resampling for the ProbSOM and
CNC which do not require a �xed length input vector, although in this case they
are not truly speed independent.

Method / Feature Direction Angles

CNC 98.37 (1.63) 83.30 (4.40)

ProbSOM 56.83 (4.67) 39.57 (6.86)

Table 2. Mean and standard deviation of recognition rates without resampling over
500 trials, w = 5.

As we can see, the recognition rates are slightly lower but not signi�cantly,
which shows that in principle the method could be used without a proper nor-
malization in cases where the need for reduced computation outweights that of
high recognition rates.

6 Conclusion

A novel approach for gesture recognition with small training samples has been
presented that is time, scale and translation invariant, and for closed gestures,
starting-point invariant as well, while achieving high recognition rates compara-
ble to other approaches and with a learning algorithm that requires few iterations
to converge.

In our experiments, the CNC, ST-OMM and the ID-FF all perform reason-
ably well, especially �rst two. In addition, the CNC has the advantage of being
quick to train and starting-point invariant without any modi�cation, although
at a greater intrinsic computational cost. For the other two methods, the same
e�ect can be achieved by shifting the sample in a circular way in all n possible
combinations which also scales up by a factor n their execution order.

In future work, we hope to determine the method's performance on larger
gesture databases, and apply it in a real-time setting to test its ability to rec-
ognize gestures in a unsegmented stream of hand positions. Finally, we intend
to improve and extend our current database with 3D gesture data to provide a
reference point for future comparisons and benchmarkings.
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