

Living Objects: Towards Flexible Big Data Sharing

Jonathan Martí
Barcelona Supercomputing Center

jonathan.marti@bsc.es

Anna Queralt
Barcelona Supercomputing Center

anna.queralt@bsc.es

Daniel Gasull
Barcelona Supercomputing Center

daniel.gasull@bsc.es

Toni Cortes
Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

toni.cortes@bsc.es

ABSTRACT
Data sharing and especially enabling third parties to build
new services using large amounts of shared data is clearly a
trend for the future and a main driver for innovation.
However, sharing data is a challenging and involved process
today: The owner of the data wants to maintain full and
immediate control on what can be done with it, while users
are interested in offering new services which may involve
arbitrary and complex processing over large volumes of data.
Currently, flexibility in building applications can only be
achieved with public or non-sensitive data, which is released
without restrictions. In contrast, if the data provider wants to
impose conditions on how data is used, access to data is
centralized and only predefined functions are provided to the
users. We advocate for an alternative that takes the best of
both worlds: distributing control on data among the data
itself to provide flexibility to consumers. To this end, we
exploit the well-known concept of object, an abstraction that
couples data and code, and make it act and react according to
the circumstances.
Keywords: Data sharing, data control, offloading,
enrichment, persistent objects, Data as a Service (DaaS), Big
data.

1. INTRODUCTION
Traditionally, data has been seen as a passive element, with
applications being in charge of consuming it to perform
useful tasks. This paradigm was reasonable when
computation was the main goal and data was just something
needed to perform that computation. Today, data has become
the key element in most computing infrastructures, both
because of its relevance and because of its size, and the term
big data has emerged to refer to the challenges resulting
from data sets becoming so large, diverse and complex that
they cannot be handled by traditional methods. Thus, new
requirements regarding how data is managed and served
have to be addressed.
First, data is becoming more open and thus building new
services by enriching existing sources will become the
general trend. Actually, initial steps in this direction are
already appearing in open data initiatives [2], data markets
[1] or Google Maps and Google Fusion Tables [15, 11],
among others, where providers allow third parties to create
new services based on data enrichments. For instance, under
the philosophy of open data, many governments worldwide
are releasing data for free access to promote innovation via
data-centric services (a couple of examples among many
others are PublicData.eu in Europe, and Data.gov in the
United Sates). In the private sector, Google Maps allows
third parties to add information about restaurants, hotels,
etc., that are shown when querying the maps. Google Fusion
Tables enables users to upload table-structured datasets,

merge them with other datasets, and visualize them using,
e.g., a Google Maps mash-up.
Although adding data layers on top of existing data is a good
starting point to build more complex services, this simple
mechanism does not help if some kind of processing is
required, e.g. to offer a service that merges data from
different providers. As of today, in order to build such
services, data (or a subset of the data) has to be copied from
the infrastructure of the data providers to the infrastructure
of the service providers where it will be processed and
served. This movement has many drawbacks, such as energy
waste when moving the data, decreased data quality when
data is simplified or cached (thus not up to date) to reduce
traffic, and a potential performance reduction in the service,
among others.
A possible solution consists of data providers implementing
the operations needed by their clients and offering them via a
data service [3]. This approach becomes unviable if many
different services, with diverse and arbitrary needs, want to
process the data. The provider cannot have the expertise to
write the code needed by all its clients and, as a result, client
services are limited by the functions offered by the data
provider.
Second, in the cases where data is copied to the
infrastructure of the new service providers, the owner of the
data should not lose control over what can be done to the
data, which is not t
For instance, if a mandatory update has to be done to some
data, this will not be possible for data copied to a third party
infrastructure. Although not vital in all cases, this loss of
control of the shared data may prevent providers from
releasing data that they would be willing to provide if such
control was guaranteed.
And third, although there are solutions to handle large
amounts of data (such as parallel databases [12, 10, 22] with
a MapReduce [6] interface, or NoSQL stores [5, 7]), the
resources available are limited to the ones accessible to the
data provider. This limitation becomes a challenging
problem if the required processing, especially from multiple
clients, exceeds resource capacity. In this case, the system
should be able to offload part of the data and computation to
a resource owned by the client or a third-party resource
available to the client or provider. Again, as the data leaves
the infrastructure of the provider, the control over what can
be done needs to be guaranteed, otherwise this offloading
becomes unacceptable from the provider point of view.
We argue that all these issues, which can be summarized as
maximizing both the control of the data provider on his data,
and the flexibility of the service provider in the deployment
of new services, are important problems to be solved in big
data sharing.

JCS&T Vol. 13 No. 2 October 2013

56

We advocate that the way to solve the previous problems
consists in an evolution of the concept of data service, taking
it to the limit by moving control even closer to data, or
rather, letting data control itself.
This paper is organized as follows. In section 2 we present
real problems that cannot be easily solved with current
technology. Section 3 presents the idea of living objects,
while in section 4 we explain how they can help to solve the
real problems presented in section 2. An overview of some
technological issues related to the implementation of living
objects is given in section 5, and in section 6 we review
related work. Finally, conclusions are presented in section 7.

2. DATA SHARING PROBLEMS IN THE REAL
WORLD

The requirements described in the previous section have
been identified while discussing current problems with the
industry and how current technology limits their products
and services. Now, we present four use cases that will
demonstrate the actual needs that are not yet solved by
current technology. Each of the first three use cases puts
emphasis on one of these requirements (though all
requirements are present in all use cases), whereas the last
one combines them all.
Although the use cases are real, the names of the companies
and organizations are fictitious to preserve their privacy.
Enrichment: Geospatial Data Enrichment
The National Geospatial Agency (NGA) is a public
geospatial data provider. Current users download the portion
of the data needed to their own infrastructure and then
perform complex computations to serve their clients.
Although the volume of the data for a single request may not
be large, the aggregated volume that needs to be served for
all requests is very large and cannot be easily transferred
over the Internet. In addition, downloaded data may become
inconsistent if it is not kept up-to-date in an explicit way.
Avoiding these large data movements, and thus guarantee
data consistency, is the main challenge for NGA and its
users, since this would improve the quality of the service as
well as the speed of processing.
A possible way to use the data on-site would be to deploy a
WPS (Web Processing Service) platform, since it enables
executing transformations and analytics directly on the data.
WPS is a standardized interface, developed and maintained
by the Open Geospatial Consortium, for invoking geospatial-
processing services, ranging from simple coordinate
transformations to complex simulations based on spatial
data. However, WPS only allows execution of functionality
that is predefined by the service provider, which is not
necessarily the one required by a given user or application
developer. In addition, WPS needs all data to be present at
the location of a service to be able to process them.
Rather than this traditional scenario in which providers
determine which functionality is required or which data is
copied to another infrastructure where any processing can be
done, NGA would like to provide to its users with the ability
to deploy new processing functionality directly on their data
by enriching the data with code stored in NGA
infrastructure. This requires taking into account security
issues in the sense that the execution of third party code is

done in an isolated environment, so that it has no impact on
the data itself, the general distribution of data, or on other
running processes.
A concrete example of the problem can be seen in a cycling
event scenario. Organisers of the event want to provide
graphical representation about the positions of the cyclists on
the track, which is of particular importance for TV
audiences. E.g., several graphic views are available,
providing the TV audience with a quick overview about the
track difficulty (cumulative elevation the cyclists need to
overcome), the position of the leaders vs. peloton, etc.
However, this information is usually offered in a simplified
form, ready for fast consumption and does not provide a
complete assessment of the current situation. In this example
NGA would want to offer its maps, its Digital Elevation
Model and the event organizers would implement the views

technology, the organize
elevation models and make their computation on their own
infrastructures.
Control: Exporting News Archives to the B2B Market
In a newspaper archive, such as the one from Today News
(TN), there are large archives that have been obtained from
digitizing old newspaper items. Once scanned, images are
processed using state-of-the-art OCR systems, and users can
then perform simple searches over the texts generated from
them, which take them to the relevant scanned pages.
While this search functionality is enough for individual use,
TN is interested in exploiting this valuable source of
information by opening it to other companies outside the
news domain. The main problem TN finds is related to the
provision on dynamic data access policies over pieces of
data. On the one hand, there are legal restrictions on some
specific content of some pages, which imply that it cannot be
accessed under any circumstances. Importantly, these
restrictions can appear at any time, and must be immediately
enforced (e.g. a person that discovers his name in an old
piece of news and wants to preserve his privacy). On the
other hand, there are copyright issues over some pieces of
data that are not owned by TN, such as images, which can be
reproduced or managed as part of the newspaper but cannot
be used individually.
For all these reasons, TN needs to allow access to its data,
enabling third parties to enrich it with code to offer new
services, but is not willing to lose control over the data it
owns. The ability for third parties, specialised in handling
such type of data sources, to provide higher level views over
the content that is made available, or to build applications
using that content, has the potential to benefit consumers of
this information (be they citizens or businesses) and more
importantly will foster the creation of a business ecosystem
around this information source.
A concrete example of T needs consists of enriching the
archive data by identifying persons, events, locations, etc.,
using state-of-the-art techniques already successfully applied
in other contexts (including the news domain). Once these
relevant entities and the relationships between them have
been established, TN will be able to define refined access
policies. For instance, a given company is allowed only to
see news concerning a specific country, or items related to

JCS&T Vol. 13 No. 2 October 2013

57

crime, or conversely items related to a certain person can
never be accessed. This allows TN to share its data under the
precise conditions they want to impose. Then, third parties
can build applications that consume this information and
manage concepts instead of plain text pages, enabling more
sophisticated treatment of the data.

ing
the data to the new provider infrastructure, and then TN
loses control over what can be done to its data, how it can be
modified, who can see what, etc.
Offloading: Event Organization
Event Solutions (ES) is currently developing a B2B
application that enables companies to organize events
involving a large amount of people. The application must
automatically negotiate and book at once resources from
different providers (hotels, restaurants, cars, venues...),
taking into account the obvious availability and pricing
conditions, as well as a great number of additional customer-
related restrictions that make the problem very complex.
An example that illustrates the problem is a British company
with 200 employees that organizes its annual meeting in
Barcelona. The company needs to book flights for all of
them, and also 200 hotel rooms (2 suites, 188 single rooms,
and 10 double rooms, and one of these double rooms must
be in the 1st floor). They also need 1 private car with
chauffeur, and enough buses for the rest of people. They
need a venue to hold all the employees and will hire
catering, taking into account that 20 employees are
vegetarian. They will need pink chairs as well. All these
resources have to be in a range of 500 meters from each
other.
Solving this problem is very CPU intensive, because a lot of
different conditions have to meet for each resource, and
several resources have to be combined in order to find a
valid solution. An application doing this task can easily
overload the resources of the service providers (ES), and ES
may thus not be able to make a timely offer to the customer,
nor coordinate the bookings of the providers that contribute
services to the event.
The ideal solution in this case would be to offload this
computation (and the portions of data required) to third-party
resources, either those of the application consuming the data,
or the cloud, while guaranteeing that the access permissions
and the business rules imposed by the data provider are
satisfied. Otherwise, the owners of the data (hotels, airlines,
etc.) would not allow such offloading.
Everything Together: Business Intelligence
Business Intelligence (BI) aims to provide organization-wide
IT-based decision support, usually based on processing large
volumes of strategically relevant and highly confidential data
subject to a variety of legal, contractual, and intra-company
restrictions.
In particular, for their planning and budgeting tasks,
PharmaLab (PL) aims for a BI solution that allows them to
come up with realistic budget values for their set of Key
Performance Indicators. This process is intensive on data
processing, since indicators are interdependent and the
planning process is based on terabytes of confidential data.
In addition, current processing requirements prohibit fully
interactive planning scenarios.

On the other hand, since social media more and more shapes
opinions, PL are interested in the analysis of data from social

their products.
This is a prime example of a big data application, and the
combination with confidential company specific data enables
this information to serve marketing and sales purposes, e.g.
when assessing the potential sales impact of certain opinions
or during the design of viable pricing strategies.
In both scenarios, integration with market data e.g. from
sales partners would improve PL analysis. This integration
should be done under the precise conditions imposed by the
different partners when sharing their data, and providing
different views of the data to different players. Given the
temporal nature of both processes, a solution taking
advantage of the elasticity of the cloud would be ideal.
However, current cloud solutions are not enough since
computation (and the portions of data involved) cannot be
offloaded to the cloud while guaranteeing security and
privacy as if it was performed at PL infrastructures.

3. LIVING OBJECTS: CONTROL IS IN THE DATA
We propose the concept of living objects as a solution to the
problems we have identified. A living object is a piece of
data that is bound to all the logic needed to process it
(methods), and the policies that manage its behaviour with
respect to security, integrity, etc.

This approach can be seen as an evolution of the concept of
data service [3], taking it to the limit by moving control even
closer to data. Data services encapsulate data by providing a
set of functions that guarantee that the rules and policies that
the data provider wants to enforce are always satisfied. Then,
instead of providing a single access point for a dataset as a
whole, our proposal is to encapsulate each piece of data, i.e.,
an object, by providing a set of functions that protect it and
guarantee its correct behavior, regardless of their physical
location.
With this change in the paradigm, objects can leave the data
store without losing their properties, because not just the
data is moved, but also its associated methods and expected
behaviour. For instance, we can move objects to the
application space (or to a third-party resource) without
worrying about their correct behavior. This freedom of
movement increases the flexibility of object management
because we can decide where an object is manipulated
depending on its size (we can avoid moving it), the
complexity of their methods (if they are very CPU intensive
we can compute them in a high-performance computing
site), the current usage and state of resources, etc.
In this way, one of the main problems of data services is
overcome, since capacity is not limited by the resources
accessible to the data provider.
Another drawback of data services is the lack of flexibility
from the point of view of data consumers, since they can
only access data in the ways that the data owner has defined.
But if the shared data is protected as we propose, third
parties can safely enrich the original data with new types of
information, change how information is exported to
applications, and even add new functionality to process the
integrated dataset, while the data provider is sure that his

JCS&T Vol. 13 No. 2 October 2013

58

rules are never broken, since rules are an indivisible part of
the objects.
In order to do so, we revisit the concept of persistent object,
which is a mechanism to store data close to how applications
understand and deal with it. We argue that the potential of
objects has been underexploited because they become
passive when made persistent. If persistent objects could
take care of themselves, working with data would be a much
simpler task. Thus, we propose bringing objects to life and
make the objects themselves be the ones that manage their
own integrity, privacy, security, synchronization, and even
their own life cycle. Objects should also be in charge of
choosing the most appropriate resources to carry out a given
task depending on the circumstances and their relationships
with other objects. These actions should be performed by the
objects regardless of whether there is one, many, or no
application accessing them.
In the following subsections we present some relevant tasks
that can be assigned to objects. This list is by no means
exhaustive, but it should be enough to show the potential of
this approach.
They Enforce Integrity
In our target environment, different applications want to
access and modify the same data, while the data provider
wants to guarantee that his data always satisfies the integrity
constraints that formalize his business rules. In this scenario,
it is clear that enforcing integrity from the applications is
unfeasible, since they may be built by third party businesses.
Thus, the solution in these cases is to move the responsibility
of integrity close to the data by means of data services or
constraints and triggers when possible.
Following the idea of moving integrity enforcement closer to
the data, the next and final step is to move this task to the
objects themselves. This converts passive data managed by a
third party code (the storage system, e.g. a DBMS) into an
active object that makes sure that all integrity constraints that
affect it are enforced.
In addition to the common benefits explained above,
assigning the responsibility of integrity enforcement to the
objects also simplifies the enforcement of integrity
constraints involving third-party data, for instance referential
integrity across remote databases or services, since they can
be accessed inside the methods. Furthermore, if we cannot
guarantee that the third-party data store will enforce our
constraints, the object can wake up every while (or every

and react to maintain integrity. It will not be an immediate
enforcement, but will do the job in many cases.

They Control Privacy and Security
Privacy and security are becoming the key issue when
managing data, especially in the emerging scenarios where
the same data is to be shared by different users, applications,
organizations, etc.
Analogously to integrity enforcement, we can move the
responsibility of privacy and security to the object itself, so
the expressiveness available in the application is maintained
and the security is kept independent of it. If living objects
themselves are in charge of security and privacy, any
application built on top of them will follow the rules

imposed by the owner of the data, which provides extra
flexibility. Taking this idea to the limit, an individual object
should be able to decide, for example, in which conditions it
appears in query results (for instance depending on the
location from which the query is executed), or even that it
never appears.
Besides, it can perform these decisions even after migrating
among different services or when it raises from lowest layers
to the application. The object itself keeps the necessary
security and privacy rules for it.
They Keep Sync
With today approaches, if data is always under the control of
the data store (i.e. like in data services), all modifications to
the data need to go through the data services and this
protocol may add significant latency to data-update
operations and potential overload of the data services in
general. This approach implies contacting the data service
even if the data does not need to be made persistent. For
instance, a given object may require being stored
immediately when a critical value is modified, but an
asynchronous update may be sufficient for the rest of its
properties. In this last case, the application cannot know this
policy, and the data service is always contacted.
It would be ideal if applications could take the decision on
when contacting a data store is a must and when it can be
delayed. Unfortunately, this would imply that this kind of
code is replicated in all applications, and we have already
discussed that this approach is complex and prone to errors.
With our new paradigm, objects take their decisions
regardless of their location. Thus, the objects themselves
decide when they need to become persistent and when not.
Following the same rationale, the objects could take care of
keeping their replicas consistent with the consistency
semantics defined by the data programmer (which gives the
programmer full control and flexibility over these policies).
They Manage Their Life Cycle
Another clear example of why objects should come to life is
the management of their life cycle. By data life cycle we
understand things such as when an object can be
removed/modified as well as auto compressing when seldom
accessed, or migrating to new data formats (i.e. from mp3 to
mp4).
If the object is the responsible of its own life cycle, we can
add methods that are triggered at some intervals, or when a
given event or condition occurs, that perform the needed
action. This approach has several advantages. First, the
possible actions to be done are not limited to a restricted set
known by the storage system, but are as open as anything
that can be expressed in a method (similar to the data
services case). Second, like in the previous examples, these
kinds of operation are also enforced while the object is
managed in the application space, and not only in its
persistent state in the data store, avoiding code replication or
contacting a given service constantly. Third, given that the
object itself decides when such actions need to be
performed, no scanning through the whole set of objects is
needed (like in backup operations today). Furthermore, as
we have already seen, if these operations are resource
intensive, they can be easily offloaded to a third-party

JCS&T Vol. 13 No. 2 October 2013

59

resource given that they are self-contained as part of the
object.
They Are Versatile
An important feature of object-orientation is method
overloading, consisting on the existence of several versions
of a method with the same name and different signature in a
given class. In our living objects we can take this further and
allow not only several versions of a method, but also several
implementations for each version. In this way, a method with
the same name and signature can also have different
versions, which may differ in the required resources such as
memory needs, possibility of Graphics Processing Unit
(GPU) optimization, use of object processors [16], etc. At
runtime, when a method is called on an object, this object
proactively chooses the most appropriate implementation
according to the available resources.
We can use the same mechanism to offer several
implementations of a method coded in different languages,
and thus allow a given method to be executed in the
application space from a java application as well as from a
C++ (or any other language). The data provider, depending
on the expected clients, would decide what languages need
to be supported for each class.
Not only can an object choose the method implementation to
be executed, but also the location. Depending on factors such
as the current load or the available resources, an object may
decide to execute a method either in the same resource the
application is running (client machine), in the local resources
of the data store, or using a third-party resource such as a
Cloud computing or high-performance computing (HPC)
datacenter. For instance, assume a scientific application
executed in a smartphone that includes a method requiring
plenty of computational power. In this case, the object can
decide to offload execution to an HPC resource, as long as it
has an appropriate implementation and available resources.

4. HOW LIVING OBJECTS SOLVE REAL DATA
SHARING PROBLEMS

The objective of this section is to demonstrate the benefits of
taking the living objects approach, showing how they help in
the scenarios described in Section 2.
Enrichment: Geospatial Data Enrichment
To address issues related to publishing data from a cycling
event, NGA would allow the organizers to enrich their maps
and digital elevation model with the new objects (data and
logic) needed to compute the graphical representations
needed to be shown to the TV audience. This graphical
representation will be computed in NGA infrastructure and
the result will be sent to the organizers (which is less than
the elevation model and maps for the whole race).
This enrichment of the information at NGA can be achieved
by merging, in a single infrastructure, objects from data
providers and objects from third parties that will perform the
needed computation without breaking the rules imposed by
NGA.
Living objects enable cycling-event organizers to include its
objects into NGA infrastructure because the behaviour will
be as defined by the cycling-event organizers even if it is
stored and computed in NGA infrastructure because both
methods and behaviour are part of the objects themselves.

On the other hand, original data can be enriched with new
methods because living objects guarantee that even new
methods will follow the security, integrity, sync, and life
cycles behaviour defined by NGA.
Control: Exporting News Archives to the B2B Market
To allow third parties to use TN
control over the data, TN should allow third parties to insert
new objects into their infrastructure and thus they would be
able to get the needed information for their new business. On
the other hand, data would not leave TN and thus all security
and privacy rules would be applied immediately. For
instance, if somebody asks that his name disappears from the
news, it will disappear for all services because no copies of
the data are out of T control.
Again, this secure enrichment of the information at TN can
be achieved by merging, in a single infrastructure, objects
from data providers and objects from third parties that will
add value to the original data, using only the information that
TN allows at any given time. This can be done because the
policies are embedded in the objects and, thus, enrichments
or new methods cannot break the rules imposed on existing
data.
Offloading: Event Organization
To avoid overloading the providers with many queries and
computations, these providers will allow objects to migrate
and computation to be offloaded as long as the privacy,
security and integrity rules are met regardless of the
destination of the data and computation.
With living objects, providers would be able to define their
security policies, integrity constraints, sync policies, or life
cycle behaviour and no application consuming their data
would be able to break their rules, even if the objects have
been migrated to a different infrastrcutre, since they are
delegated to the objects themselves. In particular, this greatly
facilitates the development of ES and guarantees
the conditions imposed by the data provider.
Everything Together: Business Intelligence
A good way to address typical BI pain points and in
particular those of PL, like the flexibility needed to respond
to fluctuating workloads, would be outsourcing to the cloud.
However, the privacy and security issues regarding highly
confidential data are the reason for the slow adoption of
cloud-based BI.
Living objects do not only address these issues by combining
performance, cloud based elasticity and built-in security, but
will go beyond and above by allowing fast data sharing
within and across enterprise borders and the integration of
external (and possibly unstructured) data for analytical
purposes, thus enabling new types of BI solutions. This is
possible since data management logic and data are kept
together in living objects, which enforce the rules of the data
owner. Performance and flexibility are achieved also in this
way, since living objects can be offloaded to any
infrastructure (including the cloud) to perform computation.
In addition, since living objects include the rules imposed by
the data provider, different views (or enriched versions of
PL data) can be offered, thus allowing to perform BI
directly on the data, without the need to move it to a
dedicated data store to analyse it. At the same time, this
provides the ability to offload computation to the cloud or to

JCS&T Vol. 13 No. 2 October 2013

60

any other resource implies an important performance gain
for parallelizable tasks.

5. CHALLENGES TO REALIZING LIVING
OBJECTS

Although the idea of living objects may seem very
philosophical, it is based on a very simple technical concept:
keeping the object methods with the data when an object is
made persistent and let the objects manage the precise
conditions under which their methods are executed, and even
let objects execute methods independently of applications.
Object-oriented programming languages already couple data
and processing logic. In addition, there are some languages,
such as Java, that provide a mechanism to control the access
to an object by means of GuardedObjects [13].
GuardedObjects wrap an object together with its access
control policies, implemented in a separate Guard object.
Our proposal innovates by including the policies in the
objects themselves, thus providing transparent access to
them even when they include policies. This mechanism
applies not only to access-control policies, but also to any
kind of rule that the object must satisfy (i.e. integrity
constraints, synchronization rules, life-cycle management...).
In this way, third-party developers can add new methods or
refine existing ones, always following the rules defined by
the data providers, which cannot be separated from the
objects.
The technology supporting living objects should enable the
combination of these policies and rules (integrity constraints,
security policies, etc.) at different levels such as country of
origin, infrastructure, data owner, etc. The result of this
combination could then be compiled and injected into the
methods of the object; thus the methods of a living object
would contain the original logic plus whatever is needed to
check/enforce the afore-mentioned policies and rules. It is
important to notice that this injection will be done to all
relevant methods regardless of whether they are original or
enrichments, thus guaranteeing the right behaviour
independently of who developed the methods code. This way
of implementing rules has two key advantages. On the one
hand, it allows objects to embed policy and rule behaviour
into the object logic and thus enable its migration to any
infrastructure. On the other hand, policy enforcement
becomes more efficient and scalable because we eliminate
the process of searching all rules when checking a given
object. In most cases, this process will be managed at rule-
compilation time. This scalability comes at the cost of an
overhead when policies are added or changed. In this case,
all needed rules have to be recompiled and re-injected in the
class methods. With current trends, the frequency of policy
updates is much less that the frequency of policy checking.
Thus, the benefits of faster and more scalable policy
checking outweigh this initial overhead.
In order to implement this process of rule injection into the
code, we need to make sure that anything that can be
expressed as a rule can be compiled and then injected. A
solution could be using a Domain Specific Language (DSL)
to specify policies and rules in areas such as security or
integrity, which should be especially designed to ease the
task of rule and policy combination, and their further
injection into the adequate object methods.

The last step that needs to be solved before living objects can
become a reality relies on the security of the infrastructures
themselves. If we send an object with all its data and code to
a third-party infrastructure, data privacy could be
endangered. For this reason different security levels should
be defined for the infrastructure and in the objects. Then, the
system will be able to guarantee that a given object will
never be offloaded to a resource with a lower security level
than the one specified in the object.
Another way of sharing data consists of building new
services by iteratively enriching the available data. As we
have seen, current technology is still quite simplistic when
trying to share data and allow third parties to exploit it.
Today, mechanisms to enrich both data and code in an
arbitrary way using the same infrastructure where the
original data resides are very basic. In particular, if we want
to modify/enrich how this data is processed in an arbitrary
way, we need to move the data from the infrastructure where
the data is provided to an infrastructure where this arbitrary
code can be added.
In order to enable third parties to create/modify how data is
seen by applications without having to move any data
around, a new mechanism is needed that allows the
definition of data and code enrichments without
compromising the security or integrity of the original data.
For instance, we need to be able to guarantee that third party
code does not break a rule that specifies that no single value
can be returned, but only aggregates with at least 1000
elements, which is a condition that the data provider wants to
enforce. To guarantee that the third-party logic does not
break any rule, these methods should be automatically
checked with the relevant rules and policies. Only when this
checking guarantees that no rules will be broken by the code,
these methods can become part of the enriched object in the
infrastructure. As this automatic checking cannot be done on
arbitrary code, the language should be limited by removing
those abstractions that make this automatic checking
impossible, while trying to remain as general as possible.

6. RELATED WORK
Persistence of object-oriented programming language
objects, our ground stone abstraction, has been around since
the late eighties. Their usage was first standardized in 1993
with the ODMG standard, which was revised for the last
time in 2003 [4]. This standard applies both to object
database management systems that store objects directly, and
to object-to-database mappings that convert and store objects
in a relational or other database system representation.
Storing objects as seen by the program was first investigated
in the eighties in object-oriented databases (OODB).
Although they are used in several niche markets where
performance or a rich data model is needed, OODBs did not
succeed as a general-purpose data management system since,
among other reasons, it was difficult to have a database
shared by several applications. This, together with the fact
that relational database management systems were an
established technology that could already handle the
amounts of data managed at that time, harmed the adoption
of OODBs. However, the success of relational databases did
not remove the need of programmers to store objects as seen
by the program instead of explicitly managing a set of

JCS&T Vol. 13 No. 2 October 2013

61

relations in a relational database. For this reason, solutions
such as Hibernate [14] or TopLink [18], which implement
the Java Persistence API to map objects into relational
databases, have appeared and are taking over the market.
However, it is interesting to note that today, when relational
databases have problems scaling and becoming elastic as
needed in cloud environments, OODB such as the Versant
Object Database [23], ObjectStore [20] or Perst [17] are
claiming to be the solution for these problems. Though their
popularity is still far from that achieved by relational
databases, a new interest in OODBs is raising in the
industry.
Our approach is different from both approaches because it
takes the whole concept of objects into account, not just its
data. The ability to store methods together with the data has
been implemented in a few products, such as EyeDB [8] or
Oracle Objects [19]. They implement the basic mechanism
that allows storing methods and executing them in the
server, with the aim of making applications easier to
understand and maintain, and to bring computation closer to
data. However, self-contained objects require making
persistent not just the data and the methods, but also the
rules and policies that restrict their behaviour so that they
can be safely used by third party applications, or migrated to
other infrastructures for the sake of scalability.
In addition, this technology should be further matured to
make living objects come true. In particular, to realize the
envisioned versatility, several implementations of a method
are needed, as well as the ability to choose where they are
executed. Existing products store a single implementation of
each method, which in Oracle Objects is always executed in
the server, while in EyeDB can be either executed in the
server or in the client, but always in the same site, which
must be specified by the data owner. In addition, the
methods that are to be executed in the client are not stored in
the database. This does not allow offloading computation to
the most appropriate site depending on the circumstances.
Also, to be able to implement the rest of responsibilities of
living objects, it is necessary that objects react to several
kinds of events. Triggers can be useful in some situations,
mainly related to maintaining integrity and synchronization,
but they are only fired due to events that occur on an object
(e.g. creation, update...) or in the database (e.g. startup,
error...). Some other issues regarding these and other
responsibilities of living objects can be incorporated in the
methods, but they are only executed after an invocation. To
make objects proactive, objects should be able to respond
also to time events and to conditions on their environment
and their relationships with other objects.
Another important feature of living objects is the idea of
moving computation closer to the data and thus avoiding
unnecessary data movements. This technique is not new and
has been applied in many different fields.
Stored procedures are the mechanism to this end offered by
database systems. Using them to move application logic to
the DBMS allows avoiding the overheads of the client/server
model [21], but all the weight of the computation must be
supported by the system. Modern data services are based on
this idea [3], and encapsulate one or several data stores so
that applications have services executed disregarding their

internal details. This also benefits data providers, since it
alleviates the problems derived from the lack of control they
have over their client applications, and at the same time
allows distributing the computational load. In fact, a data
service can be seen as a huge object encapsulating its data,
but the fact that it must be managed as a whole does not
provide the flexibility we gain by moving computation even
inner and managing everything at the finest granularity.
The idea of having computation close to data also appears in
other fields of the storage technology, such as file systems
management. For instance, active disks [9] allow moving
computation to the disk drive itself, but the kind of
operations is very limited, and changing them implies a
change in the firmware. This idea of joining computation
and data is also present in MapReduce [6], where data is
partitioned and processed in parallel by different machines
on a cluster. Data is distributed in such a way that each
storage node can perform local access to the data and then
return the merged results, thus avoiding moving unnecessary
data. This approach places computation close to data, but
does not decouple it from applications, which is the essence
of bringing data to life.

7. CONCLUSIONS
In this paper we propose a change in the view of how data is
seen. So far data has been passive, with applications or
services being in charge of handling it. We propose to
change this view and make data an active element that
controls itself.
We have presented the notion of living objects, which are
born when control on data is pushed to the most atomic
element: a meaningful piece of data.
Bringing objects to life has many implications. On the one
hand, it moves issues such as integrity or security
enforcement, or life cycle operations into the data,
facilitating data sharing among many different applications
and enabling custom enrichments, with the full guarantee
that data behaves as desired. At the same time, since objects
remain tied to their responsibilities, computation can be
more easily distributed and parallelized, and the usage of
resources can be optimized.
Summarizing, bringing objects to life means guaranteeing
that the data provider has full control over his data, while the
flexibility of building services based on external data and the
elasticity in the usage of resources are maximized. This
radically changes how applications and services are designed
and opens the door to a new dimension of business models.

8. ACKNOWLEDGMENTS
We thank the following researchers that have helped us to
mature the idea of bringing objects to life in our frequent
discussion: Ramón Nou and Ernest Artiaga from BSC, Maria
S. Pérez from the UPM, André Brinkmann from JGU,
Angelos Bilas from FORTH, Henning Baars from USTUTT,
and Oscar Romero from UPC.
This work has been realized within the frame of the BSC-
CNS Severo Ochoa program and under grant TIN2007
60625, both with the support of the Spanish Government.

JCS&T Vol. 13 No. 2 October 2013

62

REFERENCES

[1] M. Balazinska, B. Howe
in the Cloud: An Opportunity for the Databa
PVLDB 4, no. 12, 2011, pp. 1482-1485.
[2] D. Bennett, and A. Harvey. Publishing Open
Government Data . W3C Working Draft. 2009.
http://www.w3.org/TR/gov-data/ (accessed January 2013)
[3] M. J. Carey, N. Onose, and M.
Se 2012, pp. 86-97.
[4] R. G. G. Cattell, and D. K. Barry. The Object Data
Standard: ODMG 3.0. Morgan Kaufmann, 2000.
[5] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R.E.
Gruber.

, no.
2, 2008.
[6] J. Dean, and S. Ghem

Operating System Design and Implementation, OSDI, 2004,
pp. 137-150.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels -

SOSP, 2007, pp. 205-220.
[8] EyeDB - Open Source Object Database.
http://www.eyedb.org (accessed July 2012).
[9] B. G. Fitch, A. Rayshubskiy, M. C. Pitman, T. J. Ward,
and R. S. Germain. Using the Active Storage Fabrics Model
to Address Petascale Storage Challenges Annual
Workshop on Petascale Data Storage, PDSW, 2009, pp. 47-
54.
[10] E. Friedman, P. M. Pawlowski, and J. Cieslewicz

-describing,
polymorphic and parellelizable user-
PVLDB 2 no. 2, 2009, pp. 1402-1413.
[11] H. Gonzalez, A.Y. Halevy, C. Jensen, A. Langen, J.
Madhavan, R. Shapley, and W.
Tables: Data Management, Integration, and Collaboration in
t ACM Symposium on Cloud Computing, SoCC,
2010, pp. 175-180.

[12] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
and A. Kumar: r MAD

12, 2012, pp. 1700-1711.
[13] Java Platform, Standard Edition 7, API Specification,
http://docs.oracle.com/javase/7/docs/api/java/security/Guard
edObject.html (accessed July 2013).
[14] JBoss Community, Hibernate, http://www.hibernate.org
(accessed January 2013).
[15] J. Madhavan, S. Balakrishnan, K. Brisbin, H. Gonzalez,
N. Gupta, A. Y. Halevy, K. Jacqmin-Adams, H. Lam, A.
Langen, H. Lee, R. McChesney, R. Shapley, and W. Shen

Data Engineering Bulletin 35, no. 2, 2012, pp. 46-54.
[16] N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and
A. Cristal. Object Oriented Execution Model (OOM) . In
NDCA, held in conjunction with ISCA, 2011.
[17] McObject, Perst, http://www.mcobject.com/perst
(accessed January 2013).
[18] Oracle TopLink,
http://www.oracle.com/technetwork/middleware/toplink/ove
rview/index.html (accessed January 2013).
[19] Oracle Database App de -
Object-Relational Features,
http://docs.oracle.com/cd/B19306_01/appdev.102/b14251.pd
f (accessed January 2013).
[20] Progress Software, ObjectStore,
http://www.progress.com/en/objectstore/index.html
(accessed January 2013).
[21] M. Stonebraker, S. Madden, D. J. Abadi, S.
Haziropoulos, N. Hachem, and P. Helland. The End of an
Architectural Era (It's Time for a Complete Rewrite) ,
International Conference on Very Large Data Bases, VLDB,
2007, pp. 1150-1160.
[22] Teradata Aster, http://www.asterdata.com (accessed
January 2013).
[23] Versant Object Database,
http://www.versant.com/products/versant-object-database
(accessed January 2013).

JCS&T Vol. 13 No. 2 October 2013

63

	invited: Invited Paper:
	Text1: Thesis Overview

