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Abstract: In this paper we describe the application in QSPR/QSAR studies of a new 
group of molecular descriptors: atom, atom-type and total linear indices of the molecular 
pseudograph’s atom adjacency matrix. These novel molecular descriptors were used for 
the prediction of boiling point and partition coefficient (log P), specific rate constant (log 
k), and antibacterial activity of 28 alkyl-alcohols and 34 derivatives of 2-furylethylenes, 
respectively. For this purpose two quantitative models were obtained to describe the 
alkyl-alcohols’ boiling points. The first one includes only two total linear indices and 
showed a good behavior from a statistical point of view (R2 = 0.984, s = 3.78, F = 748.57, 
q2 = 0.981, and scv = 3.91). The second one includes four variables [3 global and 1 local 
(heteroatom) linear indices] and it showed an improvement in the description of physical 
property (R² = 0.9934, s = 2.48, F = 871.96, q2 = 0.990, and scv = 2.79). Later, linear 
multiple regression analysis was also used to describe log P and log k of the 2-furyl-
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ethylenes derivatives. These models were statistically significant [(R² = 0.984, s = 0.143, 
and F = 113.38) and (R² = 0.973, s = 0.26 and F = 161.22), respectively] and showed 
very good stability to data variation in leave-one-out (LOO) cross-validation experiment 
[(q2 = 0.93.8 and scv = 0.178) and (q2 = 0.948 and scv = 0.33), respectively]. Finally, a 
linear discriminant model for classifying antibacterial activity of these compounds was 
also achieved with the use of the atom and atom-type linear indices. The global percent 
of good classification in training and external test set obtained was of 94.12% and 
100.0%, respectively. The comparison with other approaches (connectivity indices, total 
and local spectral moments, quantum chemical descriptors, topographic indices and E-
state/biomolecular encounter parameters) reveals a good behavior of our method. The 
approach described in this paper appears to be a very promising structural invariant, 
useful for QSPR/QSAR studies and computer-aided “rational” drug design. 

 
Keywords: TOMOCOMD-CARDD, Total and Local Linear Indices, QSPR, QSAR, 
alkyl-alcohol, 2-furylethylene. 

 
 
Introduction 
 

The graph-theory approach appears to be an important alternative to computer-aided molecular 
design methods. They provide for the discovery of new lead drugs at minimum cost [1]. The high cost 
of development of new bioactive molecular entities using traditional methods has led to the interest of 
the pharmaceutical industry in “rational” drug design assisted by computers. This is manifested by the 
gradually growing interest shown by these companies in quantitative studies of Structure-
Activity/Property Relationships (QSAR/QSPR) directed to the rationalization of the search for new 
biologically active molecules. In this sense, rational combinatorial library design [2] and virtual 
screening [3] have emerged as important foci of attention in drug discovery research.     

An important part of QSAR/QSPR research is the discovery of molecular descriptors applicable to 
physical, chemical and biological properties of interest. At present, there are a great number of 
molecular descriptors that can be used in QSAR/QSPR studies [4]. The so-called topological indices 
(TIs) are among the most useful molecular descriptors known nowadays [5-10]. TIs can be classified 
as “global” and “local”, according to the way in which they characterize the molecular structure [11]. 
However, most TIs known today can be considered as global molecular descriptors. One exception in 
this sense is the electrotopological state (E-state) index [12-13]. Other “global” molecular descriptors, 
such as the spectral moments of the edge adjacency matrix, can be obtained in local form [11]. The 
great success of the E-state and total and local spectral moments in QSPR/QSAR stimulated us to 
propose and validate here some novel local descriptors based on a topological characterization of the 
molecular structure.  

In this sense, our research group has recently introduced the novel computer-aided molecular 
design scheme TOMOCOMD-CARDD (acronym of TOpological MOlecular COMputer Design-
Computer Aided “Rational” Drug Design) [14-16]. This method has been developed to generate 
molecular descriptors based on the linear algebra theory. This approach has been successfully 
employed in QSPR/QSAR studies [15-18], including studies related to nucleic acid-drug interactions 



Molecules 2004, 9 
 

 

1102

[19]. The approach describes changes in the electron distribution with time throughout the molecular 
backbone. The TOMOCOMD-CARDD strategy is very useful for the selection of novel subsystems of 
compounds having a desired property/activity, which can be further optimized by using some of the 
many molecular modeling methods at the disposition of the medicinal chemists. The method has also 
demonstrated flexibility in relation to many different problems. One of the applications involved the 
prediction of the anthelmintic activity of novel drugs [20]. More recently, the TOMOCOMD-CARDD 
approach has been applied to the fast-track experimental discovery of novel antimalarial compounds 
[21]. Codification of chirality and other 3D structural features constitutes another advantage of this 
method [22]. The latter opportunity has allowed the description of the significance-interpretation and 
the comparison to other molecular descriptors [16,23]. The features of the kth total and local linear and 
quadratic indices was illustrated by examples of various types of molecular structures, including chain-
lengthening, branching, heteroatoms-content, and multiple bonds. Besides, the linear independence of 
the quadratic and linear indices to others 0D, 1D, 2D, and 3D molecular descriptors is demonstrated by 
using principal component analysis for several heterogeneous molecules [16,23]. 

The main objective of the present paper was to test the QSPR/QSAR applicability of the 
TOMOCOMD-CARDD approach; and in a second place, to compare the results obtained with other 
cheminformatic methods in order to assess it. For this purpose, we will develop quantitative models to 
describe the boiling points of alkyl alcohols and the partition coefficient (log P), specific rate constant 
(log k) and antibacterial activity of 34 derivatives of 2-furylethylenes. 
 
Theoretical Approach 
 

The current approach is based on the calculation of the linear indices of the molecular 
pseudograph’s atom (vertex) adjacency matrix. The general principle of this approach for small-to-
medium size organic compounds has been explained in some detail elsewhere [16]. However, in this 
paper we offer a global consideration of this approach. 

First, the molecular vector (X) is built to calculate the linear indices of a molecule, where the 
components of this vector are numeric values that represent a certain atomic property. These properties 
characterize each atom type in the molecule. Some of these properties can be the electronegativity, 
density, atomic radii, among others. For example the Mulliken electronegativity (XA) [24] of an atom 
A takes the values XH = 2.2 for Hydrogen, XC = 2.63 for Carbon, XN = 2.33 for Nitrogen, XO = 3.17 for 
Oxygen, XCl = 3.0 for Chlorine, and so on. Therefore, a molecule having 5, 10, 15,..., n atoms can be 
represented by means of vectors, with 5, 10, 15,..., n components, belonging to the spaces ℜ 5, ℜ 10, 
ℜ 15,...,ℜ n, respectively, where n is the dimension of the real sets (ℜ n).  

This focus allows us to code molecules like acetic acid (suppressed H-atoms) through the 
molecular vector X = [XC, XC, XO, XO] = [2.63, 2.63, 3.17, 3.17], in the XA-electronegativity scale 
[24]. This vector belongs to the product space of ℜ 4. The use of other atomic properties defines other 
vectors. In this context, total (and local) linear indices include “bulk” properties and physicochemical 
properties (such hydrophobicity [25], molecular polar surface area [26], molar refractivity [27], 
molecular polarizability [28] and atomic charge summatory [29]), if some atomic physicochemical 
parameters (such as atomic Log P [25], surface contributions of polar atoms [26], atomic molar 
refractivity [27], atomic hybrid polarizabilities [28], and Gasteiger-Marsilli atomic charge [29], 
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respectively) are consider as atom-property (atom-label) for build the n-dimensional molecular vector, 
X.  

 
Local (Atom) Linear Indices of the “Molecular Pseudograph’s Atom (Vertex) Adjacency Matrix” 
 

If we have a molecule composed by n atoms (vector of ℜ n), then the kth atom linear indices, fk(xi), 
will be calculated as linear maps in ℜ n [fk(xi): ℜ n→ ℜ n; thus fk(xi): End on ℜ n ] in the canonical 
bases of this space as is shown in Eq. 1,    

∑
=

=
n

j
jij

k
ik Xaxf

1

)(                                                                                               (1)                

where, kaij = kaji (symmetric square matrix), n is the number of atoms of the molecule, and Xj are the 
coordinates of the molecular vector (X) in a set of basis vectors of ℜ n. One can choose the basis 
vectors; the coordinates of the same vector will be different [30-33]. The values of the coordinates 
depend thus in an essential way on the choice of the basis. With the so-called canonical (‘natural’) 
basis, ej denotes the n-tuple having 1 in the jth position and 0’s elsewhere. In the canonical basis, the 
coordinates of any vector X coincide with the components of this vector [30-33]. For this reason, those 
coordinates can be considered as weights (atom labels) of the vertices of the molecular pseudograph 
[15-23]. 

The coefficients kaij are the elements of the kth power of the matrix M(G) of the molecular 
pseudograph (G). The term pseudograph in chemical graph-theory was introduced by Frank Harary 
[34]. According to him, a pseudograph is a graph with multiple edges or loops between the same 
vertices or the same vertex. Loop-multigraph [35] or general graphs [36] are other terms also used in 
this research area [37].   

Here, M(G) = M = [aij], denotes the matrix of fk(xi) with respect to the natural basis. In this matrix 
n is the number of vertices (atoms) of G and the elements aij are defined as follows [15-23]:  
aij  = Pij if i ≠ j and ∃ ek ∈ E(G)                                                                                                                                   (2)                                                           

     = Lii if i = j 
     = 0 otherwise 
where E(G) represents the set of edges of G. In this adjacency matrix M(G) the row i and column i 
correspond to vertex vi from G. Pij is the number of edges between vertices vi  and  vj, and Lii is the 
number of loops in vi.   

Given that aij = Pij, the elements aij of this matrix represent the number of bonds between an atom i 
and other j. The matrix Mk provides the number of walks of length k that link the vertices vi and vj. For 
this reason, each edge in M1 represents 2 electrons belonging to the covalent bond between atoms vi 

and vj; e.g. the inputs of M1 are equal to 1, 2, or 3 when single, double or triple bonds appear between 
vertices vi and vj, respectively. On the other hand, molecules containing aromatic rings with more than 
one canonical structure are represented by a pseudograph. This happens for substituted aromatic 
compounds such as pyridine, naphthalene, quinoline, and so on, where the presence of PI(π) electrons 
are accounted for by means of loops in each atom of the aromatic ring. Conversely, aromatic rings 
having only one canonical structure, such as furan, thiophene, and pyrrole are represented by a 
multigraph. 
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It should be noted that atom’s linear indices are defined as a linear transformation fk(xi) on an 
molecular vector space ℜ n. This map is a correspondence that assigns to every vector X in ℜ n a 
vector f(x) in such a way that: 
f(λ1X1 + λ2X2) = λ1f(X1) + λ2f(X2)                                                                                  (3) 
for any scalar λ1,λ2 and any vector X1,X2 in ℜ n. The defining equation (1) for fk(xi) may be written as 
the single matrix equation: 
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or in the more compact form, 
fk(xi) = [X’]k = Mk[X]                                                                                                      (5) 
where [X] is a column vector (a nx1 matrix) of the coordinates of X in the canonical basis of ℜ n and 
Mk the kth power of the matrix M of the molecular pseudograph (map’s matrix). 

It should also be noted that this approach is rather similar to the LCAO-MO (Linear Combinations 
of Atomic Orbitals-Molecular Orbitals) method. Reality, the approach (for k = 1) is a quite similar 
approximation to the extended Hückel MO method, due to the formalism each MO ψi is composed of 
n valence AOs of atoms in a molecule. 

The main idea of the LCAO-MO method is that the electrons in a molecule are accommodated in 
definite MOs just as in an atom where they are accommodated in definite AOs. Normally MOs made 
up as LCAO of atoms composing the system, i.e. are written in the form, 

j

n

j
iji c ϕψ ∑

=

=
1

                                                                                                                 (6)    

where i is the number of the MO ψ [in our case,  f1(xi)]; j are the numbers of atomic ϕ–orbitals (in our 
case, Xj); and cij (in our case, 1aij) are  the numerical coefficients defining the contributions of 
individuals AOs into the given MO. Such a way of constructing a MO is based on the assumption that 
an atom represented by a definite set of orbitals remains distinctive in the molecule.  
 
Table 1. Definition and Calculation of Total (whole-molecule) and Local (Atom) Linear Indices of the 

Molecular Pseudograph’s Atom Adjacency Matrix of the 2-Aminobenzaldehyde Molecule. 
 

 
 

HO

NH2

 
2-Amino-

benzaldehyde 
 

Molecular 
Structure 

O1

C3

C8

C7

C6

C5

C4

C2

N9

 
Molecular Pseudograph 

(G) 
(hydrogen suppressed-

pseudograph) 

X = [O1, C2,  C3, C4, C5, C6, C7, C8, N9] 
Molecular Vector: X∈ℜ 9  
In the definition of the X, as molecular vector, the 
chemical symbol of the element is used to indicate the 
corresponding electronegativity value. That is: if we 
write O it means χ(O), oxygen Mulliken 
electronegativity or some atomic property, which 
characterizes each atom in the molecule. Therefore, if 
we use the canonical basis of ℜ 9, the coordinates of any 
vector X coincide with the components of that molecular 
vector 
[X] = [3.17, 2.63, 2.63, 2.63, 2.63, 2.63, 2.63, 2.63, 2.33] 
[X]: column vector of coordinates of X in the Canonical 
base of R9 (a nx1 matrix) 
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Atom linear indices of first order is a linear map; f1(xi): ℜ n→ ℜ n  such that, 
f1(O1, C2, C3, C4, C5, C6, C7, C8, N9) = (2C2, 2O1+1C3, 1C2 +1C3+1C4+1C8, 1C3+1C4+1C5, 1C4+1C5+1C6, 
1C5+1C6+1C7, 1C6+1C7+1C8, 1C3+1C7+1C8+1N9, 1C8) = (5.26, 8.97, 10.52, 7.89, 7.89, 7.89, 7.89, 10.22, 
2.63) and whole-molecule linear indices of first order is a linear functional; 

)()(
1

11 i

n

i
xfxf ∑

=

= =f1(O1) + f1(C2) + f1(C3) + f1(C4) + f1(C5) + f1(C6) + f1(C7) + f1(C8) + f1(N9)= 69.16 

Local  and total linear indices of order 0-5 (k = 0-5) 

Atom (i) f0(xi) f1(xi) f2(xi) f3(xi) f4(xi) f5(xi) 

O1 3.17 5.26 17.94 42.08 146.96 400.72 

C2 2.63 8.97 21.04 73.48 200.36 676.25 

C3 2.63 10.52 37.6 116.2 382.33 1193.57 

C4 2.63 7.89 26.3 87.57 277.41 894.29 

C5 2.63 7.89 23.67 73.64 234.55 739.87 

C6 2.63 7.89 23.67 73.34 227.91 721.81 

C7 2.63 7.89 26 80.93 259.35 820.73 

C8 2.63 10.22 31.26 105.08 333.47 1080.23 

N9 2.33 2.63 10.22 31.26 105.08 333.47 

Total 23.91 69.16 217.7 683.58 2167.42 6860.94 

 
It is useful to perform a calculation on a molecule to illustrate the steps in the procedure. For this, 

we use the 2-aminobenzaldehyde molecule. Table 1 depicts the calculation of the linear indices of the 
molecular pseudograph’s atom adjacency matrix for 2-aminobenzaldehyde. From Table 1, we extract 
the X-values (Mulliken electronegativity) [24] for each atom and the molecular vector X, for encoding 
whole-organic molecule, is obtained. Additionally, all valence-bond electrons (σ - and π -networks) in 
one step are revealed in M1 matrix. Then, the local (and total) linear indices of first-order values, f1(xi), 
for each atom are calculated. Nevertheless, the kth (k = 0-5) local and total values are shown at the 
bottom of Table 1. 
  
Total (Whole-Molecule) Linear Indices of the “Molecular Pseudograph’s Atom (Vertex) Adjacency 
Matrix” 
 

Total linear indices are a linear functions [30-33] (some mathematicians use the term linear form, 
which means the same as linear functional) on ℜ n. That is, the kth total linear indices is a linear map 
from ℜ n to the scalar ℜ [ fk(x): ℜ n→ ℜ ]. The mathematical definition of these molecular descriptors 
is the following: 
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where n is the number of atoms and fk(xi) are the atom’s linear indices (linear maps) obtained by Eq. 1. 
Then, a linear form fk(x) can be written in the matrix form, 
fk(x) = [u]t [X’]k                                                                                                               (8) 
or 
fk(x) = [u]t Mk[X]                                                                                                             (9) 
for each molecular vector X∈ℜ n. [u]t is a n-dimensional unitary row vector. As can be seen, the kth 
total linear index is calculated by summing the local (atom) linear index of all atoms in the molecule. 
 
Local (Atom-type) Linear Indices of the “Molecular Pseudograph’s Atom (Vertex) Adjacency Matrix” 
 

In addition to this, atom linear indices computed for each atom in the molecule, a local-fragment 
(atom-type) formalism can be developed. The kth atom-type linear index of the molecular 
pseudograph’s atom adjacency matrix is calculated by summing the kth atom linear indices of all atoms 
of the same type in the molecule. 

Consequently, if a molecule is partitioned in Z molecular fragments, the total linear indices can be 
partitioned in Z local linear indices fkL(x), L = 1, …, Z. That is to say, the total linear indices of order k 
can be expressed as the sum of the local linear indices of the Z fragments of the same order: 

)()(
1

xfxf
Z

L
kLk ∑

=

=                                                                                               (10)  

In the atom-type linear indices formalism, each atom in the molecule is classified into an atom-type 
(fragment), such as  heteroatoms, H-bonding acceptor heteroatoms (O, N and S), halogens, aliphatic 
carbon chain, aromatic atoms (aromatic rings), an so on. For all data sets, including those with a 
common molecular scaffold as well as those with very diverse structure, the kth fragment (atom-type) 
linear indices provide much useful information. 
 
Methods 
 
Data Set for QSPR/QSAR  studies 
 

In order to illustrate the possibilities of the total and local (atom and atom-type) linear indices in 
the QSPR/QSAR studies, we have selected the following two series to be investigated: 1) boiling point 
of 28 alkyl-alcohols (see Table 2) firstly studied by Kier and Hall using E-state/biomolecular 
encounter parameters [13] and recently by Estrada and Molina [11] using the local spectral moments 
of the edge adjacency matrix, and 2) a set of 34 2-furylethylene derivatives previously studied using 
total and local spectral moments, 2D/3D connectivity indices (vertex and edge ones) and to quantum 
chemical descriptors to model their partition coefficient (log P), specific rate constant (log k) and 
antibacterial activity. These chemicals have different substituents at position 5 of the furan ring as well 
as at the β position of the exocyclic double bond [38,39]. The structures of these 34 furylethylene 
derivatives are given in Table 3. 

The 2-furylethylene compounds have been well-known as antimicrobials, antitumoral, and 
cytotoxic during many years [40-42]. The values of the log k (for nucleophilic addition of the 
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mercaptoacetic acid) and n-octanol/water log P of these compounds have been experimentally 
determined and reported in the literature [38]. Tables 4 and 5 depict theses values, respectively. The 
antibacterial activity of these compounds was determined as the inverse of the concentration C that 
produces 50% of growth inhibition in E. coli at six different times and reported as log (1/C) [38]. This 
antibacterial activity was used to classify furylethylenes in two groups by Estrada and Molina [39]. 
The group of active compounds is composed of those compounds having values of log (1/C) < 3, while 
the rest formed group of inactive compounds. Table 6 illustrates the classification of 2-furylethylene 
derivatives as antibacterial according to this experimental cutoff value. This Table also depicts the 
antibacterial activity of a series of nine new 2-furylethylenes using by Estrada and Molina [39] like 
external prediction (test) set. These compounds have a NO2 group at position R3 and a Br or I at 
positions R1 and/or R2. All these compounds were shown to have antibacterial activity in different 
assays [42,43]. The structures of these compounds are given at bottom of the Table 3.  
 
Computational Methods: TOMOCOMD-CARDD Approach 
 

TOMOCOMD is an interactive program for molecular design and bioinformatics research [14]. It 
is a composite by four subprograms, each one of them allows one to draw the structures (drawing 
mode) and to calculate molecular 2D and 3D structures (calculation mode).The modules are named 
CARDD (Computed-Aided ‘Rational’ Drug Design), CAMPS (Computed-Aided Modeling in Protein 
Science), CANAR (Computed-Aided Nucleic Acid Research) and CABPD (Computed-Aided Bio-
Polymers Docking). In this paper we outline the salient features of only one of these subprograms: 
CARDD.  This subprogram was developed based on a user-friendly philosophy. 

The calculation of total and local linear indices for any organic molecule was implemented in the 
TOMOCOMD-CARDD software [14]. The main steps for the application of this method in 
QSAR/QSPR can be briefly resumed as follows: 

 
1. Draw the molecular pseudograph for each molecule of the data set, using the software drawing 

mode. This procedure is performed by selection of the active atom symbol belonging to 
different groups of the periodic table, 

2. Use appropriate weights in order to differentiate the molecular atoms. In this work, we used as 
atomic property the Mulliken electronegativity [24] for each kind of atom, 

3. Compute the total and local linear indices of the molecular pseudograph’s atom adjacency 
matrix. They can be carried out in the software calculation mode, where you can select the 
atomic properties and the family descriptor previously to calculate the molecular indices. This 
software generates a table in which the rows correspond to the compounds and columns 
correspond to the total and local linear indices or other family molecular descriptors 
implemented in this program, 

4. Find a QSPR/QSAR equation by using mathematical techniques, such as multilinear regression 
analysis (MRA), Neural Networks (NN), Linear Discrimination Analysis (LDA), and so on. 
That is to say, we can find a quantitative relation between a property P and the linear indices 
having, for instance, the following appearance,  
P = a0f0(x)  + a1f1(x) + a2f2(x) +….+ akfk(x) + c                                                (11)                                         
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where P is the measurement of the property, fk(x) is the kth total linear indices, and the ak’s are 
the coefficients obtained by the linear regression analysis. 

5. Test the robustness and predictive power of the QSPR/QSAR equation by using internal and 
external cross-validation techniques, 

6. Develop a structural interpretation of obtained QSAR/QSPR model using total and local (atom 
and atom-type) linear indices as molecular descriptors. 

 
Statistical Analysis 

 
In describing Bp, log k, and log P the multiple linear regression analysis was used as statistical 

method. This experiment was performed with STATISTICA software package [44]. The tolerance 
parameter (proportion of variance that is unique to the respective variable) used was the default value 
for minimum acceptable tolerance, which is 0.01. Forward stepwise was fixed as the strategy for 
variable selection. The principle of parsimony (Occam's razor) was taken into account as strategy for 
model selection. In this connection, we select the model with higher statistical signification but having 
as few parameters (ak) as possible. The quality of the models was determined examining the 
regression’s statistic parameters and of the cross-validation procedures [45,46]. In this sense, the 
quality of models was determined by examining the regression coefficients (R), determination 
coefficients or squared regression coefficient (R2), Fisher-ratio’s p-level [p(F)], standard deviations of 
the regression (s) and the leave-one-out (LOO) press statistics (q2, scv). 

On the other hand, linear discriminant analysis (LDA) was used to the classification of 34 2-
furylethylene derivatives as antibacterial. This statistical analysis was performed using also 
STATISTICA software [44]. In order to test the quality of the discriminant function derived, we used 
the Wilks´ λ (U-statistic) and the Mahalanobis distance (D2). The Wilks´ λ statistical helpful to value 
the total discrimination and can take values between 0 (perfect discrimination) and 1 (no 
discrimination). The D2 indicates the separation of the respective groups. The statistical robustness and 
predictive power of the obtained model was assessed using an external prediction (test) set. In 
developing classification models the values of 1 and -1 were assigned to active and inactive 
compounds, respectively. To make the classification of compounds in both groups we preferred the use 
of the a posteriori probabilities instead of cutoff values. This is the probability that the respective case 
belongs to a particular group (active or inactive) and it is proportional to the Mahalanobis distance 
from that group centroid. In closing, the posterior probability is the probability, based on our 
knowledge of the values of others variables, that the respective case belongs to a particular group. An 
external test set of nine new compounds was used in order to assess the predictive ability of the 
obtained LDA model. 
 
Results and Discussion  
 
Describing boiling points of 28 alkyl alcohols  

 
The first data set that will be studied here is composed by 28 alkyl alcohols (14 are primary, 6 

secondary and 8 tertiary) for which the boiling point (Bp) has been reported previously [11]. The best 
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linear regression model obtained to describe the Bp of these compounds using total linear indices is 
given below: 

Bp (°C) = -145.135 (±10.853) +10.19656(±0.5680)fH
2(x) -3.63852(±0.21036)fH

3(x)    (12) 
N = 28    R = 0.992    R² = 0.984    s = 3.78     q2 = 0.981     scv = 3.91     F (2,25) = 748.57   

where, fH
2(x) and fH

3(x) are the total linear indices (2nd and 3rd order, respectively) calculated 
considering H-atoms in molecular pseudograph, and N is the number of compounds.  

When a local (heteroatom) linear indices (fH
L4(xO)) were included in the statistical analysis an 

improvement in the description of Bp was obtained: 

Bp (°C) = 104.06(±9.9088) +0.2464(±0.009)fH
3(x) -0.413(±0.044)f4(x)  

                 -0.024(±0.003) f7(x) -0.9526(±0.118) f H
L4(xO)                                             (13) 

N = 28    R = 0.997    R²= 0.9934    s = 2.48     q2 = 0.990     scv = 2.79     F (4,23) = 871.96  

The values of experimental and calculated values of the Bp for the data set (both models) are given 
in Table 2 and the linear relationships between them are illustrated in Figures 1 and 2.  
 

Table 2. Experimental and Predicted Values of the Boiling Point of 
Alcohols R-OH Used in This Study. 

 

Alcohol-R Bp (°C)a Predicted b 

Bp (°C) 

Predicted c 

Bp (°C) 

Predictedd 

Bp (°C) 

Predictede 

Bp (°C) 

(CH3)2CH- 82.3 85.4 88,2 82.9 91.1 

CH3CH2CH2- 97.2 97.5 99,0 96.0 97.4 

CH3(CH2)3- 117.7 117.1 116,8 115.2 113.6 

CH3CH(CH3)CH2- 107.8 107.7 106,0 108.0 109.0 

CH3CH2C(CH3)2- 102.4 103.0 101,0 105.4 112.4 

CH3CH2CH2CH(CH3)- 119.3 124.6 119,9 114.4 120.3 

CH3CH(CH3)CH2CH2- 131.1 127.3 129,5 134.5 127.4 

CH3CH2CH(CH3)CH2- 128.0 127.3 125,6 127.3 125.2 

CH3(CH2)4- 137.9 136.7 136,3 134.3 131.8 

CH3C(CH3)2CH(CH3)- 120.4 116.0 125,2 129.3 123.0 

CH3(CH2)2C(CH3)2- 121.1 122.6 119,6 124.9 128.9 

(CH3CH2)2C(CH3)- 122.4 122.6 120,2 121.9 126.3 

CH3CH2C(CH3)2CH2- 136.5 128.1 134,2 142.5 138.4 

CH3CH(CH3)CH2CH(CH3)- 131.6 134.8 133,3 133.9 133.4 

CH3CH(CH3)CH(CH3CH2)- 126.5 134.8 128,0 121.9 128.7 

CH3CH(CH3)CH(CH3)CH2- 144.5 137.5 143,1 146.7 138.3 

CH3CH2CH2CH(CH3)CH2- 149.0 146.9 145,3 146.4 143.4 

CH3(CH2)5- 157.6 156.3 155,9 153.4 169.8 

(CH3CH(CH3))2CH- 138.7 145.0 141,2 136.4 139.0 

CH3CH(CH3)CH2CH(CH3)CH2- 159.0 157.1 160,7 165.5 157.7 

(CH3CH2)3C- 142.0 142.2 140,0 138.6 138.5 
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Table 2. Cont. 
 

Alcohol-R Bp (°C)a Predicted b 

Bp (°C) 

Predicted c 

Bp (°C) 

Predictedd 

Bp (°C) 

Predictede 

Bp (°C) 

CH3(CH2)6- 176.4 175.9 175,7 172.5 172.2 

(CH3CH2CH2)2(CH3)C- 161.0 161.8 160,1 160.9 161.3 

(CH3(CH2)3)(CH3CH2)(CH3)C- 163.0 161.8 162,6 160.5 162.7 

CH3CH(CH3)CH2(CH2)4- 188.0 186.1 190,6 191.6 188.3 

CH3(CH2)7- 195.1 195.5 195,5 191.6 193.0 

CH3(CH2)5C(CH3)2- 178.0 183.3 180,5 182.2 188.4 

(CH3CH2CH2)2(CH3CH2)C- 182.0 181.4 182,5 177.6 177.0 
aExperimental values of Bp. bPredicted values using total linear indices (Eq. 12). 
cPredicted values using total and local linear indices (Eq. 13). dPredicted values 
using spectral moments (Eq. 14). ePredicted values using E-state (Eq. 15). 

 
These models (Eqs. 12 and 13) explain more than 98% and 99% of the variance of the 

experimental Bp values, respectively. Similar equations were reported by Estrada and Molina [11] and 
Kier and Hall [13] using spectral moment and E-state/ biomolecular encounter parameters as 
molecular descriptors, respectively. These equations are given bellow with their statistical parameters: 

Bp (°C) = 96.555 +19.093n –42.428µ2(C–O) +29.451µ3(C–O) –7.755µ4(C–O)  
                +0.0018µ8(C–O)                                                                                           (14) 
N = 28       R2 = 0.982        s = 4.2      F = 23.8 

Bp (°C) = 198.02(±25.29) +0.08(±0.031) (H_H2) +4.602(±0.49) (H_O)  
                 -22.413(±3.85) S(-OH)                                                                                (15) 
N = 28       R2 = 0.926         s = 5.8      F = 204 

where, n is a number of carbon atoms in the molecule, µk(C–O) are the kth spectral moment  for C-O 
bond [11] and H_H2, H_O, S(-OH) are values of biomolecular encounter parameters and E-state, 
respectively [13]. 

These models (Eqs. 14 and 15) explain more than 98% and 92% of the variance of the 
experimental Bp values, respectively.  

Predictability and stability of the obtained models using linear indices (Eqs. 12 and 13) to data 
variation is carried out here by means of LOO cross-validation. These models showed a cross-
validation regression coefficient of 0.981 and 0.990 respectively.  

Unfortunately, the authors (Estrada and Molina [11], and Kier and Hall [13]) do not report the 
result of the cross-validation. It is remarkable that one of our models (Eq 12) uses three variables less 
than the model obtained by Estrada and Molina [11] (Eq 14) and one variable less than the model 
obtained by Kier and Hall [13] (Eq 15). However, Eq. 12 explains a greater percent of the variance of 
the experimental Bp values than that the previously developed models do [11, 13]. 
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Figure 1.  Correlation between experimental and calculated (by Eq. 12) Boiling point of 
28 alcohols of the data set. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Correlation between experimental and calculated (by Eq. 13) Boiling point of 
28 alcohols of the data set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modeling specific rate constants (log k) of 34 2-furylethylenes derivatives 
 

Many topological descriptors are not useful to describe chemical reactions [11]. In order to prove 
the applicability of this new approach in the QSR(Reactivity)R studies, we select a data set of 34 
derivatives of 2-furylethylene. The molecular structures of such compounds are depicted in Table 3. 
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Table 3. Chemical structures and numbering of atoms in the 2-furylethylene compounds 
used in this study. 

 

O

2

3
4

5
6

7 R3

R2

R1
1

 
no. R1 R2 R3 no. R1 R2 R3 

1 H NO2 COOCH3 18 NO2 H CONHCH(CH3)C2H5 

2 CH3 NO2 COOCH3 19 NO2 H CONHC(CH3)3 

3 Br NO2 COOCH3 20 NO2 H CONHCH2C(CH3)3 

4 I NO2 COOCH3 21 NO2 H COOCH3 

5 COOCH3 NO2 COOCH3 22 NO2 H COOC2H5 

6 NO2 NO2 COOCH3 23 NO2 H COO(CH2)2CH3 

7 NO2 COOC2H5 COOC2H5 24 NO2 H COOCH(CH3)2 

8 NO2 H NO2 25 NO2 H COO(CH2)3CH3 

9 H H NO2 26 NO2 H COOCH2CH(CH3)2 

10 NO2 H CONH2 27 NO2 H COOCH(CH3)C2H5 

11 NO2 H CONHCH3 28 NO2 H COOC(CH3)3 

12 NO2 H CON(CH3)2 29 NO2 H COO(CH2)4CH3 

13 NO2 H CONHC2H5 30 NO2 H Br 

14 NO2 H CONH(CH2)2CH3 31 NO2 H CN 

15 NO2 H CONHCH(CH3)2 32 NO2 H OCH3 

16 NO2 H CONH(CH2)3CH3 33 NO2 H H 

17 NO2 H CONHCH2CH(CH3)2 34 NO2 CN COOCH3 

Novel R1,R2-Substituted 2-Furylethylenes (R3 = NO2) used as external test set to assess the predictive 

power of the classification model for antibacterial activity 

1 Br Br NO2 6 H I NO2 

2 I I NO2 7 H CH3 NO2 

3 Br H NO2 8 Br CH3 NO2 

4 H Br NO2 9 I CH3 NO2 

5 I H NO2     
 

These compounds were studied by Estrada y Molina [11] to describe the specific rate constant k of 
nucleophilic addition of the mercaptoacetic acid using their total and local spectral moments, 
connectivity indices and quantum chemical local descriptors. All developed models had seven 
variables.  
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Table 4. Experimental and calculated values of the specific rate constant for the reaction 
of nucleophilic addition of thiols (log k) to the exocyclic double bond of the 
studied 2-furylethylenes 

 
Number Experimental TIs Total 

moments 
QC Local 

moments 
Linear 
indices 

1 6.591 7.532 6.281 6.780 6.679 6.441 
2 6.518 6.983 5.583 6.646 6.563 6.540 
3 6.914 6.352 6.893 7.021 6.979 7.075 
4 6.982 6.997 6.554 6.935 7.069 7.015 
5 7.176 6.750 7.390 7.137 7.291 7.188 
6 7.602 6.685 7.410 7.466 7.572 7.589 
7 5.255 5.533 5.002 5.212 4.934 5.063 
8 6.763 4.965 5.962 6.737 6.662 6.353 
9 5.623 4.997 4.839 5.454 5.599 5.292 

10 3.813 4.831 4.455 3.695 4.318 4.468 
11 3.840 3.636 4.876 3.616 4.034 4.005 
12 3.874 4.162 2.911 3.537 3.448 3.610 
13 3.825 3.916 4.255 3.562 3.875 3.722 
14 3.623 3.798 4.032 3.550 3.841 3.698 
15 3.751 3.528 3.255 3.522 3.721 3.461 
16 3.784 3.114 3.437 3.566 3.842 3.693 
17 3.697 4.175 3.468 3.570 3.826 3.684 
18 3.705 3.934 3.157 3.541 3.711 3.443 
19 3.697 3.264 3.686 3.482 3.798 3.227 
20 3.650 3.526 4.269 3.581 3.851 3.683 
21 4.000 3.693 5.184 3.985 3.735 4.259 
22 3.920 3.974 4.202 3.920 3.617 3.993 
23 3.790 3.856 4.409 3.926 3.596 3.970 
24 3.763 3.869 3.438 3.849 3.552 3.749 
25 3.623 3.172 3.893 3.921 3.600 3.965 
26 3.650 4.233 4.178 3.917 3.610 3.957 
27 3.592 4.193 3.613 3.873 3.566 3.732 
28 3.584 4.059 3.596 3.819 3.881 3.532 
29 3.590 3.478 3.204 3.918 3.600 3.968 
30 2.987 3.463 3.534 3.281 2.785 2.997 
31 3.273 3.070 3.779 4.089 3.651 3.370 
32 2.140 3.070 2.794 2.287 2.751 1.941 
33 3.553 3.780 2.716 3.338 3.485 3.558 
34 5.557 5.114 5.474 4.969 5.524 5.465 

 
The model obtained by these authors using the connectivity indices describes an 82% of the 

experimental values of log k, with a standard deviation of 0.681. In addition, these researchers 
obtained similar results using the global spectral moments as molecular descriptors in QSRR equation 
(R2 = 84% and s = 0.655) [11]. The use of local molecular descriptors such as quantum chemical or 
graph-theoretical (local spectral moments) produces a significant improvement in the statistical quality 
of the obtained models. In this sense, both models (quantum chemical and local spectral moments) 
explain more than 96% (96.8% and 96.4%) of the variance of the log k, with a standard deviation of 
0.288 and 0.320, respectively.  
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The molecular descriptors included in these equations clearly pointed to the identification of the 
reaction centers involved in the studied chemical interaction. That is to say, the molecular indices 
calculated for the atoms 2, 6 and 7 or for the bonds defined by these atoms (C2-C6 and C6-C7) were 
included in the obtained models. These atoms are those involved in the exocyclic double bond of the 2-
furylethylene and these are the “target” of the nucleophilic attack by thiol (mercapto) group.  

Taking into account this logical result, we calculated the kth local linear indices for the atoms C2, 
C6 and C7 (bonds C2-C6 and C6-C7).  The best obtained model, using these local linear indices as 
molecular descriptors, together with its statistical parameters is given below: 

log k = 231.464(±14.586) -0.00183(±0.0008)f6(xC2-C6) -4.6054(±0.3103)fH
2(xC2-C6) 

            -0.00107(±8.92x10-5)fH
8(xC2-C6) +0.225923(±0.02621)fH

4(xC2-C6)  
            +3.85x10-6(±4.53x10-7)f12(xC2-C6) +0.05(±0.0076)fH

2(xC6-C7)                            (16) 
N = 34     R = 0.986     R² = 0.973      s = 0.26      q2 = 0.948      scv = 0.33     F(6,27) = 161.22      

     Note, that our model (Eq. 16) included only six variables (one less than the models object of 
comparison) and explained more than 97% of the variance (s = 0.26). These statistics are slightly better 
than those obtained previously.  
 

Figure 3.  Observed versus predicted log k of the specific rate constant for the reaction 
of nucleophilic addition of thiols to the exocyclic double bond of the 2-
furylethylene derivatives. 
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Table 4 depicts the experimental and calculated values of reactivity index (log k) from connectivity 

indices, total and local spectral moments, quantum chemical indices and local linear indices. Plots of 
observed versus calculated log k for data set of compounds are illustrated in Figure 3. 

 



Molecules 2004, 9 
 

 

1115

Modeling partition coefficients (log P) of 34 2-furylethylenes derivatives 
 

It has been clear from structure-activity relationship studies that the lipophilicity of 2-
furylethylenes derivatives is critical for the development of their antibacterial activity [38]. The 
partition coefficient n-octanol/water (log P) has an important role in the understanding of the 
biological behavior of these 2-furylethylene derivatives [38]. Consequently, we will study this 
parameter to compare the possibilities of molecular linear indices in QSPR and to compare this result 
to those obtained by Estrada and Molina [39] using 2D and 3D (topographic) connectivity indices 
(vertex and edge ones), and quantum chemical descriptors.  

The best obtained model, using total and local linear indices as molecular descriptors, together with 
its statistical parameters is given below: 

log P = -3.184(±0.488) +0.067(±0.002) fH
0(x) +0.77659(±0.058) fH

L0(xE)  
             -0.1576(±0.012)fH

L2(xE) +0.00915(±0.0022) fH
L3(xE) -0.069(±0.007)fH

L2(xE-H) 
            +0.0026(±0.0007)fH

L3(xC6-C7) +3.511x10-6(±6.23x10-6)fH
L3(xC6-C7)                   (17) 

N = 34   R = 0.984   R² = 0.968   s = 0.143   q2 = 0.938   scv = 0.176   F(7,26) = 113.38 

This equation explained 96.8% of the variance of both log P. This statistic is lightly better than 
those obtained previously [39]. The experimental and calculated values of log P obtained with 2D and 
3D connectivity indices, quantum chemical descriptors, total and local spectral moments as well as 
molecular linear indices are show in Table 5. Plots of observed versus calculated log P according to 
the Eq. 17 are illustrated in Figure 4. 

Finally, LOO cross-validation procedure was used in order to assess the predictive ability of 
developed model (17). Using this approach, the model 17 had a LOO q2 of 0.938. This value of q2 (q2 
> 0.5) can be considered as a proof of the high predictive ability of the models [44-47]. In this sense, 
the equations obtained with the vertex and edge connectivity indices, with the topographic descriptors, 
and with the quantum chemical descriptors (Eqs. 10, 11, and 13 in Ref. 39) showed a smaller 
predictive abilities (scv of 0.247, 0.176, and 0.370, respectively) that the equation 17 (scv = 0.176), 
achieved with the total and local linear indices.  
 
Classification of 34 2-furylethylene derivatives as antibacterial 

 
Linear discriminant analysis (LDA) will be used here to obtain a classification model of 2-furyl-

ethylene compounds according to their antibacterial activity. The classification model obtained is 
given below together with the statistical parameters of LDA: 

Class = -107.731 +0.5155 fH
L3(xC2-C6) -0.120 fH

1(x) + 0.4099 fH
L2(xE-H)                       (18) 

N = 34      λ = 0.304     D2 = 9.44     F(3,30) = 22.862       p<0.0000   

where,  λ is Wilk’s statistic, D2  is the squares of Mahalanobis distances, and F is the Fisher ratio. The 
statistical analysis showed that exist appropriate discriminatory power for differentiating between the 
two respective groups. The calculation of percentages of good classification in the data set and external 
prediction set permitted us to carry out the assessment of the models.  
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Table 5. Experimental and calculated values of the partition coefficient n-octanol/water 
(log P) for the furylethylenes studied. 

 
no. Obsd.a Pred.b Res.c Res-CVd topol.e topog.f QCg 

1 1.879 1.86 0.02 0.02 1.894 1.955 1.836 
2 2.439 2.49 -0.05 -0.07 2.482 2.398 2.239 
3 2.739 2.86 -0.13 -0.20 2.753 2.748 2.405 
4 2.999 2.75 0.25 0.39 2.905 2.898 2.510 
5 1.869 1.78 0.09 0.13 1.763 1.930 1.976 
6 1.599 1.60 0.00 -0.01 1.619 1.550 1.679 
7 2.504 2.71 -0.20 -0.27 2.703 2.640 2.706 
8 1.303 1.41 -0.11 -0.19 1.191 1.338 1.456 
9 1.583 1.67 -0.09 -0.12 1.453 1.783 1.583 
10 0.649 0.80 -0.15 -0.32 0.433 0.300 0.180 
11 0.984 0.82 0.16 0.20 0.999 1.091 1.076 
12 0.819 0.91 -0.09 -0.17 1.160 0.870 2.149 
13 1.386 1.31 0.08 0.09 1.583 1.423 1.482 
14 1.860 1.79 0.07 0.08 2.311 1.941 1.858 
15 1.803 1.79 0.01 0.01 1.966 2.084 1.906 
16 2.356 2.26 0.09 0.10 2.168 2.332 2.240 
17 2.225 2.27 -0.05 -0.05 2.493 2.526 2.241 
18 2.284 2.27 0.01 0.01 2.384 2.383 2.277 
19 2.333 2.28 0.06 0.07 2.316 2.316 2.346 
20 2.605 2.75 -0.15 -0.18 2.382 2.575 2.618 
21 1.652 1.56 0.09 0.10 1.347 1.585 1.830 
22 2.098 2.05 0.05 0.06 1.984 1.947 2.126 
23 2.673 2.53 0.15 0.16 2.733 2.459 2.504 
24 2.641 2.53 0.11 0.12 2.484 2.666 2.592 
25 2.827 3.00 -0.18 -0.19 2.726 2.837 2.902 
26 3.135 3.01 0.13 0.14 3.052 3.034 2.902 
27 3.091 3.01 0.08 0.09 3.018 2.952 2.943 
28 3.060 3.01 0.05 0.05 2.994 3.002 3.029 
29 3.404 3.48 -0.07 -0.09 3.227 3.252 3.266 
30 2.447 2.28 0.17 0.24 2.510 2.469 2.132 
31 1.050 0.95 0.10 0.24 1.365 1.258 1.344 
32 1.591 1.95 -0.36 -0.41 1.510 1.500 1.711 
33 1.611 1.65 -0.04 -0.07 1.738 1.515 1.590 
34 1.488 1.59 -0.10 -0.27 1.309 1.424 1.504 

aExperimental values taken of the Ref. [39]; bPredicted values using total and local 
(atom and atom-type linear indices (Eq. 17); cResidual values: log P(Obsd)-log 
P(Pred); dResidual values of the LOO cross-validation experiment (Deleted 
Residual); ePredicted values using topological indices (vertex and edge 
connectivity indices) [39]. fPredicted values using topographic descriptors [39]. 
gPredicted values using quantum chemical molecular descriptors [39]. 
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Figure 4.  Linear correlations of observed versus calculated log P according to the model 
obtained from molecular linear indices. 
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Model 18 classified correctly 94.12% of the compounds in the training data set (92.85% and 95.0% 

of good classification in active and inactive training data set, respectively), misclassifying only 2 
compounds of a total of 34. The percentage of false actives as well as of the false inactive in this data 
set was only 2.94%.   

The statistical analysis of three models obtained previously using 2D and 3D connectivity and 
quantum chemical descriptors showed quite similar results. In this case, the overall accuracy of the 
three models was 91.2%, 94.1%, and 88.2%, respectively [39]. 

The classification of all compounds in the complete training data set provides some assessment of 
the goodness of fit of the model, but it does not provide a thorough criterion of how the model can 
predict the biological properties of new compounds. To assess such predictive power, the use of an 
external test set is essential [45-47]. In this sense, the activity of the compounds in such set was 
predicted with the obtained discrimination function.  

The overall accuracy for this group was 100.0%. Using this same external test set of nine new 2-
furylethylenes, the QSAR models obtained with 2D and 3D connectivity and quantum chemical 
descriptors have also 100.0% of global good classification, including one NC (not-classified) 
compound [39]. The results of global classification of compounds in both, training and external 
prediction sets archived with all these approaches are shown in Table 6 (see also Table 7).  
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Table 6.  Classification of 2-furylethylene derivatives as antibacterial according to the 
four models obtained with molecular linear indices, 2D and 3D connectivity 
as well as quantum chemical descriptors. 

 
Linear Indices 2D Conn. [39] 3D Conn. [39] Quantum [39] Compd. Obsd.[39] 

Class. Prob. Class. Prob. Class. Prob. Class. Prob. 
1 + + 99.99 + 95.43 + 99.49 + 99.72 
2 + + 99.97 + 91.67 + 95.83 + 99.86 
3 + + 100.00 + 84.95 + 96.22 + 98.31 
4 + + 100.00 + 79.65 + 95.78 + 97.67 
5 + + 99.58 + 99.72 + 99.63 + 99.66 
6 + + 99.96 + 99.85 + 99.98 + 98.91 
7 + + 88.62 + 94.29 + 91.77 + 98.57 
8 + + 90.32 + 74.81 + 57.81 + 92.50 
9 + + 98.47 - 9.86 - 8.11 + 77.08 
10 + + 99.82 + 99.13 + 99.28 - 32.29 
11 + + 85.96 + 88.24 + 57.28 - 9.46 
12 + - 4.58 + 66.00 + 86.94 - 4.26 
13 + + 50.52 + 57.89 + 71.56 - 12.79 
14 - - 14.55 - 6.25 - 46.43 - 12.96 
15 - - 14.55 - 28.14 - 36.15 - 8.72 
16 - - 2.76 - 0.92 - 1.10 - 11.78 
17 - - 2.76 - 2.35 - 6.19 - 11.05 
18 - - 2.76 - 37.62 - 4.56 - 9.96 
19 - - 2.76 - 8.96 - 2.97 - 9.96 
20 - - 0.47 - 1.14 - 0.08 - 9.75 
21 - - 49.07 + 55.73 + 88.95 - 8.59 
22 - - 13.84 - 22.77 - 18.96 - 7.60 
23 - - 2.61 - 1.36 - 8.23 - 7.66 
24 - - 2.61 - 7.01 - 4.83 - 6.44 
25 - - 0.44 - 0.19 - 0.09 - 8.56 
26 - - 0.44 - 0.33 - 0.58 - 8.49 
27 - - 0.44 - 7.59 - 0.43 - 7.94 
28 - - 0.44 - 1.41 - 0.27 - 7.02 
29 - - 0.07 - 0.02 - 0.04 - 7.21 
30 - - 0.55 - 4.65 - 7.56 - 0.32 
31 - + 52.57 - 29.58 - 37.61 - 3.04 
32 - - 1.05 - 23.67 - 14.96 - 5.30 
33 - - 0.33 + 58.87 - 14.08 - 0.42 
34 + + 99.69 + 97.13 + 97.50 + 62.36 

Test set 
1 + + 99.26 + 88.53 + 95.81 + 87.18 
2 + + 99.04 + 86.87 + 94.59 + 85.53 
3 + + 98.77 + 59.01 + 65.00 + 54.95 
4 + + 99.07 + 96.35 + 99.59 + 96.12 
5 + + 98.67 NC 50.07 + 53.00 NC 50.01 
6 + + 98.89 + 96.72 + 99.51 + 97.68 
7 + + 99.99 + 95.92 + 99.62 + 94.76 
8 + + 99.99 + 86.38 + 96.06 + 84.27 
9 + + 99.99 + 81.75 + 95.74 + 79.29 
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Table 7.  Statistical parameters of the QSPR/QSAR models obtained using different 
molecular descriptors. 

 
index n R2 s q2 sCV F 

Boiling Point of  28 Alkyl-Alcohols 
Linear indices 
(Eq. 12) 

2 0.984 3.78 0.981 3.91 748.57 

Linear indices 
(Eq. 13) 

4 0.993 2.48 0.99 2.79 871.96 

Local spectral 
moments [11] 

5 0.982 4.2 * * 23.8 

E-State/encounter 
parameters [13] 

3 0.926 5.8 * * 204 

Reactivity (log k) of 34 2-Furylethylenes  
Linear indices 6 0.973 0.260 0.948 0.33 161.2 
Conn. Indices [11]  7 0.821 0.681 * * 17.1 
Global spectral 
moments [11] 

7 0.843 0.655 * * 18.8 

Local spectral 
moments [11] 

7 0.964 0.320 * * 70.4 

Quantum chemical 
descriptors [11] 

7 0.968 0.288 * * 112.2 

Partition Coefficient n-Octanol/Water (log P) of 34 2-Furylethylenes 
Linear indices 7 0.968 0.143 0.938 0.176 113.38 
Vertex and edge 
conn. Indices [39] 

7 0.939 0.199 * 0.247 56.9 

Topographic 
descriptors [39] 

7 0.964 0.155 * 0.176 84.6 

quantum chemical 
descriptors [39] 

used the 
Rogers and 
Cammarata 
approach  

0.875 0.319 * 0.370 45.5 

index n λ D2 Accuracy 
(Training) 

Accuracy 
(Test) 

F 

Classification of 34 2-Furylethylene Derivatives as Antibacterial 
Linear indices 3 0.30 9.44 94.12% 100% 22.9 
Vertex and edge 
conn. Indices [39] 

5 0.43 5.7 91.2% 100% 7.7 

Topographic 
descriptors [39] 

5 0.38 6.7 94.1% 100% 9.1 

quantum chemical 
descriptors [39] 

5 0.44 5.2 88.2% 100% 7.1 

*Values are not reported in the literature 
 
Finally, the improvement in the statistical parameters of our model (Eq. 18) compared to that using 2D 
and 3D connectivity indices as well as quantum chemical descriptors is easily detected by the decrease 
in the Wilk’s λ parameter and an increase in the Mahalanobis square distance (see Table 7). 
 
Concluding Remarks    
    

Although there have been many discoveries in the last years in the field of theoretical drug-design 
it is necessary to continue developing new molecular descriptors that can explain, by means of QSAR 
studies, different pharmacological properties of these substances. In this sense, the definition of 
molecular descriptors based on graph-theoretical invariants that contain important information on 
atoms (or bonds) in an explicit way is not only possible but also necessary [11]. In this context, total 
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and local (atom and atom-type) linear indices of the molecular pseudograph’s atom adjacency matrix 
are promising total and local-level molecular descriptors.  

We have shown here that total and local linear indices are useful molecular descriptors for 
modeling physicochemical and biological properties of organic compounds. The obtained models were 
statistically significant and better than other obtained previously using recognized methods (see Table 
7). Taking into consideration those total and local spectral moments, connectivity indices, quantum 
chemical descriptors and E-state, which have been successfully applied in the QSAR/QSPR studies 
and drug design, the satisfactory comparative result showed that linear indices used here will be a 
novel chem-bioinformatic tool for the computer aided “rational” drug design (TOMOCOMD-
CARDD). 
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