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Abstract: Entropy is a powerful tool for the analysis of time series, as it allows describing
the probability distributions of the possible state of a system, and therefore the information
encoded in it. Nevertheless, important information may be codified also in the temporal
dynamics, an aspect which is not usually taken into account. The idea of calculating entropy
based on permutation patterns (that is, permutations defined by the order relations among
values of a time series) has received a lot of attention in the last years, especially for the
understanding of complex and chaotic systems. Permutation entropy directly accounts for
the temporal information contained in the time series; furthermore, it has the quality of
simplicity, robustness and very low computational cost. To celebrate the tenth anniversary
of the original work, here we analyze the theoretical foundations of the permutation entropy,
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as well as the main recent applications to the analysis of economical markets and to the
understanding of biomedical systems.

Keywords: permutation entropy; forbidden patterns; Shannon entropy; econophysics; EEG;
epilepsy

1. Introduction

Given a system, be it natural or man-made, and given an observable of such system whose evolution
can be tracked through time, a natural question arises: how much information is this observable encoding
about the dynamics of the underlying system? The information content of a system is typically evaluated
via a probability distribution function (PDF) P describing the apportionment of some measurable or
observable quantity, generally a time series X (t). Quantifying the information content of a given
observable is therefore largely tantamount to characterizing its probability distribution. This is often
done with the wide family of measures called information entropies [1].

Entropy is a basic quantity with multiple field-specific interpretations: for instance, it has been
associated with disorder, state-space volume, or lack of information [2]. When dealing with information
content, the Shannon entropy is often considered as the foundational and most natural one [3,4]. Given
any arbitrary discrete probability distribution P = {pi : i = 1, . . . ,M}, with M degrees of freedom,
Shannon’s logarithmic information measure reads:

S[P ] = −
M∑
i=1

pi ln(pi) (1)

This can be regarded as a measure of the uncertainty associated to the physical process described by P .
For instance, if S[P ] = Smin = 0, we are in position to predict with complete certainty which of the
possible outcomes i, whose probabilities are given by pi, will actually take place. Our knowledge of the
underlying process described by the probability distribution is maximal in this instance. In contrast, our
knowledge is minimal for a uniform distribution (Pe = {1/M,∀i = 1, . . . ,M}) and the uncertainty is
maximal, i.e., S[Pe] = Smax = lnM .

Since Shannon’s seminal paper [3], his entropy has been used in the characterization of a great variety
of systems. Yet, this traditional method presents a number of drawbacks.

First and most importantly, Shannon’s and other classical measures neglect temporal relationships
between the values of the time series, so that structure and possible temporal patterns present in the
process are not accounted for [5]. In other words, if two time series are defined as X1 = {0, 0, 1, 1}
and X2 = {0, 1, 0, 1}, it holds that S[P (X1)] = S[P (X2)]. More generally, this occurs when one merely
assigns to each time point of the series X , a symbol from a given finite alphabet A, thus creating a
symbolic sequence that can be regarded as a non-causal coarse grained description of the time series
under consideration. As a consequence, order relations and the time scales of the dynamics are lost.
The usual histogram-technique corresponds to this kind of assignment. Causal information may be duly
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incorporated if information about the past dynamics of the system is included in the symbolic sequence,
i.e., symbols of alphabet A are assigned to a (phase-space) trajectory’s portion.

Second, classical entropy measures suppose some prior knowledge about the system; specifically,
in using quantifiers based on Information Theory, a probability distribution associated to the time
series under analysis should be provided beforehand. The determination of the most adequate PDF
is a fundamental problem because the PDF P and the sample space Ω are inextricably linked. Many
methods have been proposed for a proper selection of the probability space (Ω, P ). Among others,
we can mention frequency counting [6], procedures based on amplitude statistics [7], binary symbolic
dynamics [8], Fourier analysis [9], or wavelet transform [10]. Their applicability depends on particular
characteristics of the data, such as stationarity, time series length, variation of the parameters, level of
noise contamination, etc. In all these cases the dynamics’ global aspects can be somehow captured, but
the different approaches are not equivalent in their ability to discern all the relevant physical details.
One must also acknowledge the fact that the above techniques are introduced in a rather “ad-hoc
fashion” and they are not directly derived from the dynamical properties themselves of the system under
study. Therefore, a question naturally arises: is there a way to define a PDF that is more general and
system independent?

Third, classical methods are often best designed to deal with linear systems, and only poorly describe
highly nonlinear chaotic regimes.

Figure 1. Evolution of the number of citations for the Bandt and Pompe seminal
paper [11], from 2002 to 2011. Information extracted from the Scopus bibliographic database
(http://www.scopus.com/home.url accessed on March 12, 2012.)
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Bandt & Pompe seminal paper

Bandt and Pompe [11] addressed these issues by introducing a simple and robust method that takes
into account time causality by comparing neighboring values in a time series. The appropriate symbol
sequence arises naturally from the time series, with no prior knowledge assumed. “Partitions” are

http://www.scopus.com/home.url
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naturally devised by comparing the order of neighboring relative values, rather than by apportioning
amplitudes according to different levels. Based on this symbolic analysis, a permutation entropy is
then built. Bandt and Pompe’s approach for generating PDFs is a simple symbolization technique that
incorporates causality in the evaluation of the PDF associated to a time series. Its use has been shown to
yield a clear improvement on the quality of Information theory-based quantifiers (see, e.g., [12–15] and
references therein). The power and usefulness of this approach has been validated in many subsequent
papers, as shown by the evolution in the number of citations of the cornerstone paper [11] through
time—see Figure 1.

We review the principles behind permutation entropy, present methods derived from Bandt and
Pompe’s original idea, and describe several applications drawn from the fields of econophysics
and biology.

2. The Permutation Entropy

At each time s of a given a time series X = {xt : t = 1, . . . , N}, a vector composed of the D-th
subsequent values is constructed:

s 7→ (xs, xs+1, . . . , xs+(D−2), xs+(D−1)) (2)

D is called the embedding dimension, and determines how much information is contained in each
vector. To this vector, an ordinal pattern is associated, defined as the permutation π = (r0r1 . . . rD−1) of
(01 · · ·D − 1) which fulfills

xs+r0 ≤ xs+r1 ≤ . . . ≤ xs+rD−2
≤ xs+rD−1

(3)

In other words, the values of each vector are sorted in an ascending order, and a permutation pattern π
is created with the offset of the permuted values. A numerical example may help clarifying this concept.
Take, for example, the time series X = {3, 1, 4, 1, 5, 9}. For D = 3, the vector of values corresponding
to s = 1 is (3, 1, 4); the vector is sorted in ascending order, giving (1, 3, 4), and the corresponding
permutation pattern is then π = (102). For s = 2, the vector of values is (1, 4, 1), leading to the
permutation π = (021). Notice that, if two values are equal (here, the first and the third elements), they
are ordered according to the time of their appearance.

Graphically, Figure 2 illustrates the construction principle of the ordinal patterns of length D = 2, 3

and 4 [16,17]. Consider the value sequence {x0, x1, x2, x3}. For D = 2, there are only two possible
directions from x0 to x1, up and down. For D = 3, starting from x1 (up) the third part of the pattern can
be above x1, below x0, or between x0 and x1. A similar situation can be found starting from x1 (down).
For D = 4, for each one of the 6 possible positions for x2, 4 possible localizations exist for x3, giving
D! = 4! = 24 different ordinal patterns. In the diagram of Figure 2, with full circles and continuous line
we represent the sequence values x0 < x2 < x3 < x1, which lead to the pattern π = (0231). A graphical
representation of all possible patterns corresponding to D = 3, 4 and 5 can be found in Figure 2 of [17].

Equation 2 can be further extended by considering an embedding delay τ :

s 7→ (xs, ss+τ , . . . , xs+τ(D−2), xs+τ(D−1)) (4)
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when τ is greater than one, the values composing the permutations are taken non-consecutively, thus
mapping the dynamics of the system at different temporal resolutions.

Figure 2. Illustration of the construction-principle for ordinal patterns of length D [16,17].
If D = 4, full circles and continuous lines represent the sequence values x0 < x2 < x3 < x1

which lead to the pattern π = (0231).
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The idea behind permutation entropy is that patterns may not have the same probability of occurrence,
and thus, that this probability may unveil relevant knowledge about the underlying system. An extreme
situation is represented by the forbidden patterns, that is, patterns that do not appear at all in the analyzed
time series.

There are two reasons behind the presence of forbidden patterns. The first, and most trivial one, is due
to the finite length of any real time series, thus leading to finite-size effects. Going back to the previous
example, the permutation π = (210) does not appears in the sequence {3, 1, 4, 1, 5, 9}, i.e., there is
not triplet of consecutive values ordered in a descending order. The second reason is related to the
dynamical nature of the systems generating the time series. If a time series is constructed using a perfect
random number generator, all possible sequences of numbers should be expected, and no forbidden
pattern should appear. On the contrary, suppose that we are studying the output of the logistic map [18],
defined as:

xt+1 = αxt(1− xt) (5)

for all x included between [0, 1]. Figure 3(left) shows the behavior of such map for α = 4, corresponding
to chaotic dynamics; the black line represents all the possible initial values x0 ∈ [0, 1], the red curve the
corresponding outputs after one iteration (i.e, x1), and the green curve those after the second (x2). The
ordering of these curves graphically represents the corresponding permutation pattern; for instance, for
x0 = 0.1, from bottom to top we find the black, red and green curves: thus, x0 < x1 < x2 (that is,
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0 < 0.36 < 0.9216), resulting in π = (012). The reader may notice that 5 different permutations can be
generated by this map, identified by the 5 regions enclosed by vertical dashed lines, while the number
of possible permutations for an embedding dimension of 3 are 3! = 6: in other words, the permutation
π = (210) is forbidden by the own dynamics of the system.

Figure 3. (Left) Behavior of the logistic map [18] with α = 4. The plot represents the
evolution of x1 (red curve) and x2 (green curve) for all possible value of x0 (black line);
(Right) Number of forbidden patterns, for D = 3, found in different time series (1000

realizations) generated through the logistic map with α = 4, as a function of the length of
the series. Each point corresponds to the mean value of forbidden patterns, and vertical bars
to the corresponding standard deviation.
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In Figure 3(right), the mean number of forbidden patterns found in a time series created with
Equation 5, along with its standard deviation, are represented as a function of the length of the series,
thus representing both factors at the same time.

The relevance of this method is then clear: by assessing the presence, or absence, of some permutation
patterns of the elements of a time series, it is possible to derive information about the dynamics of the
underlying system. Even if all patterns eventually appear, the probability with which each one is present
can unveil relevant information about this dynamics. More generally, to each time series it is possible
to associate a probability distribution Π, whose elements πi are the frequencies associated with the i
possible permutation patterns - therefore, i = 1, · · · , D!. The Permutation Entropy, PE, is then defined
as the Shannon entropy associated to such distribution:

PE = −
D!∑
i=1

πi lnπi (6)

In order to assess the quantity of information encoded by such distribution, the logarithm is usually
in base 2. Furthermore, by noticing that PE ∈ [0, log2D!], a normalized Permutation Entropy can
be defined:

PEnorm = − 1

log2D!

D!∑
i=1

πi log2 πi (7)
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A very related information measure, 1−PEnorm, called normalized Kullback-Leibler entropy (KLE)
was introduced in [19]. It quantifies the distance between the ordinal pattern probability distribution and
the uniform distribution.

Equation 4 indicates that the resulting probability distribution has two main parameters: the dimension
D and the embedding delay τ . The former plays an important role in the evaluation of the appropriate
probability distribution, since D determines the number of accessible states, given by D!. Moreover, to
achieve a reliable statistics and proper discrimination between stochastic and deterministic dynamics, it
is necessary that N � D! [13,20]. For practical purpose, the authors in [11] suggested to work with
3 ≤ D ≤ 7 with a time lag τ = 1. Nevertheless, other values of τ might provide additional information,
related with the intrinsic time scales of the system [21–24].

3. Applying Permutation Entropy

3.1. Distinguishing Noise from Chaos

In order to model a system, it is necessary to identify the underlying dynamics. Stochastic or chaotic
(deterministic) classification is essential to achieve the modeling goal.

This is not always an easy task. Consider, for example, the time series generated by the logistic map of
Equation 5. The time series takes values in the interval [0, 1], and for α = 4 the dynamics is chaotic [18].
In this regime, the logistic map exhibits an almost flat PDF-histogram, with peaks at x = 0 and x = 1.
This histogram-PDF constitutes an invariant measure of the system [18]. Thus, if we use this PDF, we
obtain a value for the Shannon entropy close to its corresponding maximum Smax: the logistic map is
almost indistinguishable from uncorrelated random noise.

This problem can be solved if the time-causality (in the series’ values) is duly taken into account
when extracting the associated PDF from the time series, something that one gets automatically from
the Bandt and Pompe methodology [11]. Specifically, in the case of unconstrained stochastic process
(uncorrelated process) every ordinal pattern has the same probability of appearance [25–28]. That is, if
the data set is long enough, all the ordinal patterns will eventually appear.

Amigó and co-workers [25,26] proposed a test that uses this last property, i.e., the number of missing
ordinal patterns, in order to distinguish determinism (chaos) from pure randomness in finite time series
contaminated with observational white noise (uncorrelated noise). The test is based on two important
practical properties: their finiteness and noise contamination. These two properties are important
because finiteness produces missing patterns in a random sequence without constrains, whereas noise
blurs the difference between deterministic and random time-series. The methodology proposed by
Amigó et al. [26] consists in a graphic comparison between the decay of the missing ordinal patterns
(of length D) of the time series under analysis as a function of the series length N , and the decay
corresponding to white Gaussian noise.

Stochastic process could also present forbidden patterns [14]. However, in the case of either
uncorrelated or some correlated stochastic processes, it can be numerically ascertained that no forbidden
patterns emerge. Moreover, analytical expressions can be derived [29] for some stochastic processes
(i.e., fractional Brownian motion for PDF’s based on ordinal patterns with length 2 ≤ D ≤ 4). The
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methodology of Amigó was recently extended by Carpi et al. [30] for the analysis of such stochastic
processes: specifically, fractional Brownian motion (fBm), fractional Gaussian noise (fGn), and noises
with f−k power spectrum and (k ≥ 0). More precisely, they analyzed the decay rate of missing ordinal
patterns as a function of pattern-length D (embedding dimension) and of time series length N . Results
show that for a fixed pattern length, the decay of missing ordinal patterns in stochastic processes depends
not only on the series length but also on their correlation structures. In other words, missing ordinal
patterns are more persistent in the time series with higher correlation structures. Carpi et al. [30] also
have shown that the standard deviation of the estimated decay rate of missing ordinal patterns decreases
with increasing D. This is due to the fact that longer patterns contain more temporal information and are
therefore more effective in capturing the dynamics of time series with correlation structures.

3.2. The Statistical Complexity and the Complexity-Entropy Plane

It is widely known that an entropic measure does not quantify the degree of structure or patterns
present in a process [5]. Moreover, it was recently shown that measures of statistical or structural
complexity are necessary for a better understanding of chaotic time series because they are able to capture
their organizational properties [31]. This specific kind of information is not revealed by randomness
measures. The opposite extreme perfect order (like a periodic sequence) and maximal randomness
(e.g., fair coin toss) possess no complex structure and exhibit zero statistical complexity. Between these
extremes, a wide range of possible degrees of physical structure exists, which should be quantified by
the statistical complexity measure. An effective statistical complexity measure (SCM) was introduced to
detect essential details of the dynamics and differentiate different degrees of periodicity and chaos [32].
This measure provides additional insight into the details of the system’s probability distribution, which
is not discriminated by randomness measures like the entropy [13,31]. It can also help to uncover
information related to the correlational structure between the components of the physical process under
study [33,34].

This measure is a function of the probability distribution function P associated to a time series, and
is defined as the product of the normalized Shannon entropy and another term called disequilibrium.
The use of the ordinal patterns PDF naturally results in several advantages, viz. the inclusion of
the temporal relationships between the elements of the time series and the invariance with respect to
non-linear monotonous transformation.

More formally, following [35], the MPR-statistical complexity measure is defined as the product

CJS[P ] = QJ [P, Pe] · H[P ] (8)

of (i) the normalized Shannon entropy and (ii) the so-called disequilibrium QJ , which is defined in
terms of the extensive (in the thermodynamical sense) Jensen–Shannon divergence J [P, Pe] that links
two PDFs [36]. The Jensen–Shannon divergence, which quantifies the difference between two (or
more) probability distributions, is especially useful to compare the symbol-composition of different
sequences [37]. Furthermore, the complexity-entropy plane, H × CJS , which represents the evolution
of the complexity of the system as a function of its entropy, has been used to study changes in
the dynamics of a system originated by modifications of some characteristic parameters (see, for
instance, [12,15,38–40] and references therein). The complexity measure constructed in this way
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has the intensive property found in many thermodynamic quantities [32]. We stress the fact that the
statistical complexity defined above is a function of two normalized entropies (the Shannon entropy
and Jensen–Shannon divergence), but such function is not trivial, in that it depends on two different
probability distributions, i.e., the one corresponding to the state of the system, P , and the uniform
distribution, Pe, taken as reference state.

3.3. Identification of Time Scales

Often, when first studying a complex physical or biological system, the first almost mandatory step in
its investigation involves determining its characteristic dimensions.

Classically, this issue has been tackled by means of autocorrelation functions or Delayed Mutual
Information (see, for instance, [41,42]). Recently, the PE has been proposed as an alternative approach.
Specifically, the idea is that the entropy associated with a time series should be minimal, that is, the
underlying dynamics should be more predictable and simple, when the value of the embedding delay τ
(see Equation 4) is equal to the characteristic time delay of the system.

This approach has been checked by Zunino and coworkers [22] with time series generated by a
Mackey–Glass oscillator [43]. Results indicate that the permutation entropy exhibits a minimum in
correspondence with the delay of the system, along with other secondary minima corresponding to
harmonics and subharmonics of such delay. Furthermore, it is also shown that this method is able to
recover the characteristics of the system even when more than one delay is used or when the time series
is contaminated by noise. In [23] this technique is also applied to time series generated by chaotic
semiconductor lasers with optical feedback, enabling the identification of three important features of the
system: feedback time delay, relaxation oscillation period, and pulsing time scale. Similar applications
can be also found in [24,44,45].

3.4. Dependences between Time Series

The identification of the presence of relationships between the dynamics of two or more time series
is a relevant problem in many fields of science, among them in economics and biophysics. Several
techniques have been proposed in the past, but they usually require previous knowledge of the probability
distribution from which the time series have been drawn. The model-independence of PE makes it an
ideal tool to tackle this problem.

A test based on permutation patterns for independence between time series was proposed
by Matilla-Garcı́a and Ruiz Marı́n [46]. Specifically, given a two-dimensional time series
W = (X ,Y) and an embedding dimension D, to each subset ofW a bidimensional permutation pattern
π = ((x0, x1, · · · , xD−1), (y0, y1, · · · , yD−1)) is assigned. Notice that, due to the dimension of the
time series, the number of possible patterns grows from D! to D!2 .The appearance probability of
all πi generates a global probability distribution Π. When the two components of the time series
are independent, it is demonstrated that the Shannon entropy calculated on Π follows asymptotically
a χ2 distribution. Thanks to the use of permutation patterns, this method has the advantages of not
requiring any model assumption (i.e., it is nonparametric) and of being suitable for the analysis of
nonlinear processes.
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Several papers have expanded the work of Matilla-Garcı́a and Ruiz Marı́n [46]. For instance, in [47]
a method for spatial independence test is proposed; in [48] the permutation entropy is used to detect
spatial structures, and specifically of the order of contiguity; also, in [49] the symbolic entropy is used
to assess the presence of lineal and non-linear spatial causality.

Cánovas et al. [50] proposed an alternative approach for the analysis of the dependence of two
time series, based on the construction of contingency tables, i.e., matrices where the frequency of
co-appearance of two patterns in two different time series at the same time is reported. Once a
contingency table has been constructed, the independence of both series can be checked with standard
statistical tests, including Pearson’s chi-square, G-test, or the Fisher–Freeman–Halton test [51].

Finally, it is worth noticing the work of Bahraminasab et al. [52], in which the permutation entropy
is used along with the Conditional Mutual Information for the assessment of causal (or driver-response)
relationships between two time series. The method is tested with van der Pol oscillators, demonstrating
a good tolerance to external noise.

3.5. Some Improvements on the PE Definition

The original definition of PE presents two main drawbacks, for which solutions have been
recently proposed.

First, it is clear that the magnitude of the difference between neighboring values is not taken into
consideration when the time series is symbolized by using the Bandt–Pompe recipe. Consequently,
vectors of very different appearance are mapped to the same symbol. Liu and Wang introduced the fine-
grained PE (FGPE), in which a factor is added in the permutation type for discriminating these different
vectors [53]. It is shown that the FGPE allows for a more sensitive identification of the dynamical
change of time series and approximates more closely to the Lyapunov exponent for chaotic time series.
Obviously, the time needed for estimating the FGPE is slightly larger in comparison with the time needed
for calculating the conventional PE.

Second, by assuming that the time series under study has a continuous distribution, Bandt and
Pompe [11] neglected equal values and consider only inequalities between the data. Moreover, these
authors proposed to rank possible equalities according to their order of emergence or to eliminate
them by adding small random perturbations to the original time series. Bian et al. [54] have recently
proposed the modified permutation entropy (mPE) method for improving the symbolization of equal
values. They have shown that the probability of equal values can be very high when the observed time
series is digitized with lower resolution. In this situation, the original recipe to deal with equalities can
introduce some bias in the results. By mapping equal values to the same symbol, the mPE allows for a
better characterization of the system states. Complexity of heart rate variability related to three different
groups (young, elderly and congestive heart failure) is better characterized with this improved version,
reaching a more clear discrimination between the groups.
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4. Biomedical Applications

Over the last few years, permutation entropy and related metrics have emerged as particularly
appropriate complexity measures in the study of time series from biological systems, such as the brain
or the heart. The reasons for this increasing success are manifold.

First, biological systems are typically characterized by complex dynamics, with rich temporal
structure even at rest [55]. For instance, spontaneous brain activity encompasses a set of dynamically
switching states, which are continuously re-edited across the cortex [56], in a non-random way [57,58].
On the other hand, various pathologies are associated with the appearance of highly stereotyped patterns
of activity [59]. For instance, epileptic seizures are typically characterized by ordered sequences of
symptoms. Permutation entropy seems particularly well equipped to capture this structure in both healthy
systems and in pathological states.

Second, while over the last decades a wealth of linear and more recently nonlinear methods for
quantifying this structure from time series have been devised [60,61], most of them, in addition to making
restrictive hypotheses as to the type of underlying dynamics, are vulnerable to even low levels of noise.
Even when mostly deterministic, biological time series typically contain a certain degree of randomness,
e.g., in the form of dynamical and observational noise. Therefore, analyzing signals from such systems
implies methods that are model-free and robust. Contrary to most nonlinear measures, permutation
entropy and derived metrics can be calculated for arbitrary real-world time series and are rather robust
to noise sources and artifacts [11,62].

Finally, real time applications for clinical purposes require computationally parsimonious algorithms
that can provide reliable results for relatively short and noisy time series. Most existing methods require
long, stationary and noiseless data. Permutation entropy, on the contrary, is extremely fast and robust,
and seems particularly advantageous when there are huge data sets and no time for preprocessing and
fine-tuning of parameters.

In what follows, we give a brief overview of applications of ordinal time series analysis to studies of
brain (electrical) activity, namely in epilepsy research [63–69], in anesthesiology [70–74], and cognitive
neuroscience [75,76]. All the studies reviewed below investigated brain electrical activity, recorded with
electroencephalographic (EEG) techniques. We also review studies of heart rate rhythms using various
methods derived from the original Bandt and Pompe’s method [17,19,52,54,77].

4.1. Epilepsy Studies

Epilepsy is one of the most common neurological disorders, with a prevalence of approximately
1% of the world’s population. Epilepsy presents itself in seizures, which result from abnormal,
hyper-synchronous brain activity. The sudden and often unforeseen occurrence of seizures represents
one of the most disabling aspects of the disease. In many patients suffering from epilepsy, seizures
are well controlled with anti-epileptic drugs. However, approximately 30% of patients do not respond
to available medication. For these patients, neurosurgical resection of epileptogenic brain tissue may
represent a solution. Typically, surgeons strive to identify this tissue by implanting intracranial electrodes
in the patients’ brain. Correctly identifying the presence of epileptic activity, characterizing the
spatio-temporal patterns of the corresponding brain activity, and predicting the occurrence of seizures
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are major challenges the efficient solution of which could significantly improve the quality of life for
epilepsy patients.

4.1.1. Classification

In biomedical studies, it is often very important to be able to classify different conditions, for instance
for diagnostic purposes. In the case of epilepsy, discriminating between normal and pathological
electroencephalographic recording often represents a non-trivial task. Ordinal pattern distributions
have been proving a valuable tool for classifying and discriminating dynamical states of various
biological systems. Veisi et al. [65] illustrated the ability of permutation entropy for classifying normal
and epileptic EEG. The results of classification performed using discriminant analysis indicated that
permutation entropy measures can distinguish normal and epileptic EEG signals with an accuracy of
more than 97% for clean and more than 85% for highly noisy EEG signals.

4.1.2. Determinism Detection

Often, epileptic seizures manifest in a highly stereotypical ordered sequences of symptoms and signs
with limited variability. Schindler et al. [59] conjectured that this stereotype may imply that ictal
neuronal dynamics might have deterministic characteristics, and that this would presumably be enhanced
in the ictogenic regions of the brain. To test this hypothesis, the authors used the time-varying average
number of forbidden patterns of multichannel recordings of periictal EEG activity in 16 patients. Results
for intracranial EEG demonstrated a spatiotemporally limited shift of neuronal dynamics toward a more
deterministic dynamic regime, specifically pronounced during the seizure-onset period. While the mean
number of forbidden patterns did not significantly change during seizures, the maximum number of
forbidden patterns across electrodes typically increased significantly during the first third of the seizure
period and then gradually decreased toward and beyond seizure termination. Interestingly, for patients
who became seizure free following surgery, the maximal number of forbidden patterns during seizure
onset tended to be recorded from within the seizure-onset zones identified by visual inspection.

4.1.3. Detection of Dynamic Change

Detection of dynamical changes is one of the most important problems in physics and biology.
Indeed, in clinical studies, accurate detection of transitions from normal to pathological states may
improve diagnosis and treatment. This is particularly evident in the case of epilepsy, as seizure
detection is a necessary precondition for diagnosis. During the last two decades, a number of numerical
methods have been proposed to detect dynamical changes. However, most of these methods are
computationally expensive, as they involve inspecting the underlying dynamics in the system’s phase
space. Cao et al. [63] used permutation entropy to identify the various phases of epileptic activity
in the intracranial EEG signals recorded from three patients suffering from intractable epilepsy. The
authors found a sharp PE drop after the seizure, followed by a gradual increase, indicating that the
dynamics of the brain first becomes more regular right after the seizure, then its irregularity increases
as it approaches the normal state. Ouyang et al. [68] calculated the distribution of ordinal patterns for
the detection of absence seizures in rats. A dissimilarity measure between two EEG series was then
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used to distinguish between interictal, preictal and ictal states, i.e., respectively far away, close to and
during an epileptic seizure, leading to the successful detection of the preictal state prior to their onset
in 109 out of 168 seizures (64.9%). Nicolaou and Georgiou [78] investigated the use of permutation
entropy as a feature for automated epileptic seizure detection. A support vector machine was used to
classify segments of normal and epileptic EEG, yielding an average sensitivity of 94.38% and average
specificity of 93.23%. Perfect sensitivity and specificity were obtained in single-trial classifications.
Finally, a cautionary note on the scope for the use of permutation entropy in seizure detection comes
from the study of Bruzzo et al. [69], where the scalp EEG data recorded from three epileptic patients
were considered. With a receiver operating characteristics analysis, the authors evaluated the separability
of amplitude distributions of ordinal patterns resulting from preictal and interictal phases. While a good
separability of interictal and preictal phase was found, the changes in permutation entropy values during
the preictal phase and at seizure onset coincided with changes in vigilance state, restricting its possible
use for seizure prediction on scalp EEG. On the other hand, this finding suggested the possible usefulness
for an automated classification of vigilance states.

4.1.4. Prediction

Over and above the very occurrence of epileptic seizures and their frequency, their sudden and
incontrollable character is probably the single most important factor negatively affecting the life of
patients. Thus, methods capable of reliably predicting the occurrence of seizures could significantly
improve the quality of life for these patients and pave the way for new therapeutic strategies. Li et al. [79]
proved, for a population of rats, that permutation entropy can be used not only to track the dynamical
changes of EEG data, but also to successfully detect pre-seizure states. A threshold for detecting pre-ictal
state was determined by calculating the mean value and standard deviation of the permutation entropy
and another commonly used metric, i.e., sample entropy variations, from the respective rat. The method
was successful in detecting 169 out of 314 seizures from 28 rats, with an average anticipation time of
approximately 5 seconds, faring better than sample entropy (3.7 seconds). Ouyang et al. [67] studied the
statistics of forbidden patterns for the EEG series of genetic absence epilepsy rats. The results showed
that the number of forbidden patterns grew significantly from an interictal to an ictal state via a preictal
state. In addition to indicating increases in deterministic dynamics in the transition from interictal to
ictal states, these results suggested that forbidden patterns may represent a predictor of absence seizures.

4.1.5. Spatio-Temporal Dynamics

While the emphasis of most studies in epilepsy has long been on the identification of local
epileptogenic foci, it is now widely recognized that seizure dynamics is an essentially spatially-extended
phenomenon [80]. One fundamental issue is then the assessment of the relationship between dynamics
observed in different parts of the system. Keller et al. [64] proposed a method for visualizing
time-dependent similarities and dissimilarities between the components of a high-dimensional time
series. The method, derived from correspondence analysis, essentially counts pattern type frequencies.
At each time, the method quantifies how inhomogeneous the set of time series components is and
provides a one-dimensional representation of this system. The method was shown to be able to
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quantify long-term qualitative changes and local differences in scalp EEG activity for children with
epileptic disorders. Similarities and dissimilarities between the channels were calculated in terms of a
scaling parameter, allowing discriminating the components with respect to a specific weighting of the
pattern frequencies.

A related issue, when dealing with inherently multivariate data sets, is the evaluation of coupling
direction between subparts of the considered system (see Section 3.4). Staniek et al. [81] combined
transfer and permutation entropy, to analyze electroencephalographic recordings from 15 epilepsy
patients. The results showed that the derived metric could reliably identify the hemisphere containing the
epileptic focus, without observing actual seizure activity. Finally, Li et al. [82] proposed a methodology
based on permutation analysis and conditional mutual information to estimate directionality of coupling
between two neuronal populations. Simulations showed that this method outperformed conditional
mutual information and Granger causality in a neuronal mass model, and in assessing the coupling
direction between neuronal populations in a hippocampal rat model of focal epilepsy. This coupling
direction estimation method also allowed tracing the propagation direction of the seizure events.

In summary, the studies reviewed above point at various ways in which permutation entropy can
fruitfully be employed to tackle various fundamental theoretical and clinical issues associated with
epilepsy. From a theoretical point of view, results using forbidden pattern statistics hint at a deterministic
nature of the dynamics associated with epilepsy. From a clinical point of view, these results indicate that
permutation entropy and particularly forbidden pattern statistics can be used not only to detect seizure
onset but also to predict upcoming seizures before they actually occur. Furthermore, in spite of the
conceptual similarity between forbidden ordinal patterns and standard EEG analysis based on visual
inspection, forbidden ordinal patterns may provide additional information that is difficult to detect by
visual inspection alone. Its clinical relevance, particularly in pre-surgical evaluation, is underscored for
instance by Schindler et al.’s finding that the maximal number of forbidden patterns tended to occur more
rarely in EEG signals recorded from the visually identified seizure-onset zone in patients who were not
rendered seizure free by resection of that zone [59].

4.2. Anesthesia

Anesthetic drugs mainly exert their effects on the central nervous system. Thus, EEG technology
can be used to assess the effects of anesthesia. Electroencephalogram-based monitors represent a
supplement to standard anesthesia monitoring, the main aim of which is that of reducing the risk
of awareness during surgery. Electroencephalogram-based parameters typically aim at reducing the
complex observed electroencephalographic pattern to a single value associated with the anesthetic drug
effect and clinical patient status, e.g., consciousness and unconsciousness. These issues were examined
in various studies [70,72–74,79], which consistently showed that permutation entropy can be used to
efficiently discriminate between different levels of consciousness during anesthesia, providing an index
of the anesthetic drug effect.

Biological systems, such as the brain or the cardio-respiratory system, typically show activity over
multiple time scales. Even at rest, the interplay between different regulatory systems ensures constant
information exchange across these scales. Thus, a correct description should be more accurate when
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accounting for activity not just at one particular scale, but across all or most of the relevant scales at
which the system operates. This intuition received important confirmations in two studies assessing
the depth of anesthesia. Li et al. [83] proposed a multiscale permutation measure, called composite
multi-scale permutation entropy (CMSPE), to quantifying the anesthetic drug effect on EEG recordings
during sevoflurane anesthesia. Three sets of simulated EEG series during awake, light and deep
anesthesia were examined. The results showed that the single-scale permutation entropy was blind to
subtle transitions between light and deep anesthesia, while the CMSPE index tracked these changes
accurately. Around the time of loss of consciousness, CMSPE responded significantly more rapidly
than the single-scale permutation entropy. In addition, the prediction probability was slightly higher for
CMSPE and correlated well with the level of anesthesia. These results were consistent with those of a
recent study [74], where promising results in terms of evaluation of depth of anesthesia were found with
both single-scale permutation and multiscale permutation entropy.

4.3. Cognitive Neuroscience

Understanding brain activity has an interest that goes beyond the clinical domain. For instance,
cognitive neuroscience studies the biological substrates, mainly brain activity, underlying cognition. A
typical cognitive neuroscience study involves averaging the brain (electrical or hemodynamic) response
to given stimuli. Extracting the part of the observed response that is stimulus-specific from the
inherent variability of brain activity is a challenging task. Schinkel and colleagues [75,76] showed
how ordinal pattern methods can be used to achieve better signal-to-noise ratios. This was done
using permutation entropy in conjunction with recurrence quantification analysis (RQA). The authors
showed that this combination of methods can improve the analysis of event related potentials (ERP),
i.e., the trial-averaged EEG signal time-locked to given behavioral events. The resulting technique,
termed order patterns recurrence plots (OPRPs), was applied on EEG data recorded during a language
processing experiment, resulting in a significant reduction of the number of trials required to extract a
task-related ERP.

Ordinal patterns can also be used for classification purposes, between different trial types in cognitive
neuroscience experiments. For instance, permutation entropy was employed to characterize signals from
the electroencephalogram of three subjects performing four different motor imagery tasks, which were
then classified using a support vector machine [84]. Subject-specific single-trial classification accuracy
levels higher than conventional classifiers could be achieved, occasionally achieved perfect classification.

4.4. Heart Rhythms

Cardiac diseases are often associated with changes in heart rate variability and in characteristic
patterns of beat-to-beat intervals (BBI). Discriminating between physiological and pathological BBI
patterns represents a key diagnostic tool. Successful classification of time series of BBIs crucially
depends on the availability of significant features. Permutation entropy has consistently been shown
to greatly improve the ability to distinguish heart rate variability under different physiological and
pathological conditions [54]. Ordinal pattern statistics was proven to be more efficient than established
heart rate variability indicators at distinguishing between patients suffering from congestive heart failure
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from healthy subjects [17]. Ordinal patterns have also proved to be valuable features for the classification
of fetal heart state [19] and could conceivably serve to develop and investigate clustering methods
by considering the ordinal structure of a time series. Berg et al. [77] compared a large number of
signal features, including conventional heart rate variability parameters, and a statistics based on ordinal
patterns; the aim was to assess their ability to form the basis for suitable signal classifiers. The results
for animal and humans suffering from myocardial infarction (MI) suggested that ordinal patterns may
represent meaningful features.

The heart continuously interacts with other physiological regulatory mechanisms, and the failure of
one system can trigger a breakdown of the entire network. Understanding and quantifying the complex
coupling patterns interactions patterns between these systems represents a major theoretical challenge.
Two studies suitably modified information theoretic measures of directionality of coupling with ordinal
pattern statistics. Bahraminasab et al. [52] introduced a permutation entropy-based directionality index,
which could distinguish unidirectional from bidirectional coupling, and reveal and quantify asymmetry
in bidirectional coupling. The method was tested on cardiorespiratory data from 20 healthy subjects.
Consistent with existing physiological literature, the results from this study showed that respiration drives
the heart more than vice versa.

Taken together, these results illustrate the possible use of permutation entropy-based methods to tackle
often non-trivial diagnostic problems in the field of cardiology. Conceptual simplicity and computational
efficiency render this method of data analysis an excellent one for screening and detecting pathological
patterns of physiological activity both in systems considered in isolation, such as the heart, and in
coupled systems.

5. Econophysics Applications

Assessing the efficiency and the potential development of a given market is a fundamental issue
in economics, as this has clear implications in terms of political economy. The main problem is that
such assessment can only be performed by means of the analysis of the time series of market indicators,
which are usually the only available objective output. The Efficient Market Hypothesis (EMH) stipulates
that efficient markets should be perfectly unpredictable, as any deterministic structure can be used to
outperform the market. As previously reviewed, PE can be used effectively to discriminate between
deterministic chaos and random noise.

A natural way of doing that using the Bandt and Pompe methodology involves quantifying the
forbidden patterns in the series, as their presence indicates a deterministic chaotic dynamics (see
Section 3.1). This idea was first examined in [85], where real time series of different financial indicators
(Dow Jones Industrial Average, Nasdaq Composite, IBM and Boeing NYSE stocks, and the ten year
U.S. Bond interest rate) were shown to have a number of forbidden patterns at least two orders
of magnitude higher than that expected if the different time series were random. By employing a
rolling sample approach with a sliding window, it was also found that the evolution of the forbidden
patterns allowed identifying periods of time where noise prevailed over the deterministic behavior of the
financial indicators.
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In addition to helping assessing the presence or absence of determinism, the number of forbidden
patterns can also be used to quantify the amount of market structure, which in turn is an indicator of
the level of stock market development. Therefore, statistics about ordinal patterns can be used as a
model-independent measure of stock market inefficiency. In [86], the number of forbidden patterns and
the normalized PE were estimated for the stock market indices of 32 different countries, including 18
developed and 14 emerging markets. Developed markets had a lower number of forbidden patterns and
higher normalized PE, indicating that they are less predictable.

Expanding on this idea, Zunino and coworkers analyzed the location of stock [38], commodity [39]
and sovereign bond [87] markets in the complexity-entropy causality plane (see Section 3.2). The EMH
stipulates that efficient markets should be associated with large entropy and low complexity values. The
presence of temporal patterns resulted in deviations from the position associated to a totally random
process. Consequently, the distance to this random ideal location is used to quantify the inefficiency of
the market under analysis. The results from [38,87] showed that the complexity-entropy causality plane
could robustly discriminate emergent and developed stock markets.

Another common problem in stock market analysis is that of judging the degree of dependency
between of two or more time series. In [46], authors propose a test based on ordinal patterns, which
was described in Section 3.4. Furthermore, the method was evaluated against the daily financial returns
of Dow Jones Industrial Average, S&P 500 and three exchange rate time series (French franc, German
mark and Canadian dollar all against the U.S. dollar). Results indicate that all five time series are not
independent, and thus substantially deviate from a random process.

Finally, it has very recently been shown [88] that volatility in energy markets can be effectively
quantified by PE and its improved version FGPE, defined in Section 3.5. Through numerical examples
the authors proved that these two approaches based on ordinal patterns are more appropriate for
estimating the uncertainty associated to a time series than conventional measures of dispersion, such as
the standard deviation. Moreover, the analysis of some typical electricity markets (Nord Pool, Ontario,
Omel and four Australian markets) demonstrated the ability of these measures in detecting interesting
features, such as seasonal behavior of the volatilities and relationships between markets.

6. Conclusions

In this work, we have reviewed the technique introduced exactly ten years ago by Bandt and
Pompe [11], which is based on the assessment of the frequency of appearance of permutation patterns in
a time series. The mathematical foundations of the method have been discussed, and some extensions of
the original concept have been described.

The Bandt and Pompe methodology represents an extremely simple technique that only requires in
its basic form two parameters: the pattern length/embedding dimension D and the embedding delay
τ . Its most important merit resides in its ability of extracting useful knowledge about the dynamics of
a system. Often the quantity of forbidden patterns is related to other classical non-linear quantifiers,
as, for instance, the Lyapunov exponent [89], but can be calculated with minimum computational cost.
Furthermore, the ordinal-pattern’s associated PDF is invariant with respect to nonlinear monotonous
transformations. Accordingly, nonlinear drifts or scalings artificially introduced by a measurement



Entropy 2012, 14 1570

device will not modify the quantifiers’ estimation, a nice property if one deals with experimental
data [90]. A further valuable property is its robustness to both observational and dynamical noise [11].
Finally, it is model-free and can be applied to any type of time series, i.e., regular, chaotic, noisy, etc.

While the original goal of the PE was the discrimination of chaotic from random dynamics, it has soon
became clear that this method can be used in an effective way to address a number of important problems
in time series analysis: among others, (a) classifying different dynamics; (b) identifying break points in
time series; (c) predicting future events; (d) determining time scales; (e) quantifying the dissimilarity
between time series; or (f) identifying directionality and causality. Furthermore, while the method
was originally designed to deal with simple scalar time series, it has been successfully extended to
multi-variate and multi-scale systems.

Several applications to economical and biological systems have been discussed. Yet, uncountable
other examples of applications can be found in the literature: they include characterization of correlated
stochastic processes [91–93] and lasers dynamics [94–97], identification of the quantum-classical
transition [20,98–100], analysis of solar winds time series [101] and of climate evolution [90],
songs classification [102], analysis of motor current signals [103], control of machine tool chatter
phenomena [104], characterization of gene expression [105], optimization of grid computing [79],
characterization and improvements of pseudo-random number generators (PSRG) [7,106–109], deter-
mination of the sampling period for chaotic attractors which preserves the chaotic dynamics [110], and
encryption test of messages in lasers signals [111].
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38. Zunino, L.; Zanin, M.; Tabak, B.M.; Pérez, D.G.; Rosso, O.A. Complexity-entropy causality
plane: A useful approach to quantify the stock market inefficiency. Phys. A 2010, 389,
1891–1901.

39. Zunino, L.; Tabak, B.M.; Serinaldi, F.; Zanin, M.; Pérez, D.G.; Rosso, O.A. Commodity
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107. Larrondo, H.A.; Martı́n, M.T.; González, C.M.; Plastino, A.; Rosso, O.A. Random number
generators and causality. Phys. Lett. A 2006, 352, 421–425.

108. De Micco, L.; Larrondo, H.A.; Plastino, A.; Rosso, O. Quantifiers for randomness of chaotic
pseudo-random number generators. Philos. Trans. Roy. Soc. A 2009, 367, 3281–3296.

109. De Micco, L.; Petrocelli, R.A.; Rosso, O.A.; Plastino, A.; Larrondo, H.A. Mixing chaotic maps
and electromagnetic interference reduction. Int. J. Appl. Math. Stat. 2012, 26, 106–120.

110. De Micco, L.; Fernández, J.G.; Larrondo, H.A.; Plastino, A.; Rosso, O.A. Sampling period,
statistical complexity, and chaotic attractors. Phys. A 2012, 391, 2564–2575.



Entropy 2012, 14 1577

111. Rosso, O.A.; Vicente, R.; Mirasso, C.R. Encryption test of pseudo-aleatory messages embedded
on chaotic laser signals: An Information Theory approach. Phys. Lett. A 2008, 372, 1018–1023.

c© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	The Permutation Entropy
	Applying Permutation Entropy
	Distinguishing Noise from Chaos
	The Statistical Complexity and the Complexity-Entropy Plane
	Identification of Time Scales
	Dependences between Time Series
	Some Improvements on the PE Definition

	Biomedical Applications
	Epilepsy Studies
	. Classification
	. Determinism Detection
	. Detection of Dynamic Change
	. Prediction
	. Spatio-Temporal Dynamics 

	Anesthesia
	Cognitive Neuroscience
	Heart Rhythms

	Econophysics Applications
	Conclusions
	Acknowledgments

