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Abstract: In this communication we show that Fisher’s information measure emerges
as a direct consequence of the scale-invariance of Schröedinger’s equation. Interesting,
well-known additional results are re-obtained as well, for whose derivation only (and this
is the novelty) the scale invariance property is needed, without further ado.
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1. Introduction

Information is carried, stored, retrieved and processed by physical devices of various kinds (or by
living organisms). The substratum for any means of handling information is then, of course, physical.
Thus, physics and information possess a rich interface and, indeed, the goal of the physical endeavor can
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be described as that of modelling and predicting natural phenomena by recourse to relevant information
(concerning systems of interest). Accordingly, it is reasonable to expect that

• the laws of physics should be a reflection of the methods for manipulating information (the
Wheeler paradigm, see [1] and references therein) and/or
• the laws of physics could be used to manipulate information (see [2] and references therein).

In this communication we will present an example of the second instance that starts with the scaling
properties of Schrödinger’s equation and ends up with most celebrated local measure of information.
Details of our travelling route are given in Subsection 2.4.

2. Background Notions

2.1. The Hellmann-Feynman Rheorem

We start our considerations by reminding the reader of a celebrated quantum theorem, the
Hellmann-Feynman one, that relates (i) the derivative of the total energyE with respect to a Hamiltonian
(H) parameter b to (ii) the expectation value of the derivative of the Hamiltonian with respect to that same
parameter.

dE

db
=
d〈H〉
db

(1)

Its most common application is in the calculation of forces in molecules (with the parameters being
the positions of the nuclei) where it states that once the spatial distribution of the electrons has been
determined by solving the Schrödinger equation, all the forces in the system can be calculated using
concepts of classical electrostatics. The theorem has been proven independently by many authors,
including Guettinger (1932), Pauli (1933), Hellmann (1937), and Feynman (1939) [3–5].

2.2. Scaling

Scale invariance (SI) refers to objects or laws that remain invariant if scales of length, energy, etc., are
multiplied by a common factor, a process called dilatation. Probability distributions of random processes
may display SI. In classical field theory SI most commonly applies to the invariance of a whole theory
under dilatations while in quantum field theory SI is usually interpreted in terms of particle physics. In
a SI-invariant theory the strength of particle interactions does not depend on the energy of the particles
involved. In statistical mechanics SI is a feature of phase transitions. Near a phase transition or critical
point fluctuations appear at all length scales, forcing one to look for an explicitly SI theory to describe
things. These theories are SI statistical field theories, being formally very similar to scale-invariant
quantum field ones [6].

2.3. The Hamiltonian H

Consider a time-independent Hamiltonian of the form

H = − h̄2

2m

∂2

∂x2
+ U(x) (2)
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and its associated Schröedinger wave equation (SWE),[
− h̄2

2m

∂2

∂x2
+ U(x)

]
ψ(x) = Eψ(x) (3)

The potential function U(x) belongs to L2 and thus admit of a series expansion in x, x2 x3, etc. [7–9].
This enables us to base our future considerations on the assumption that the potential can be written as

U(x) =
M∑
k=1

ak x
k (4)

and we will assume that the first M terms of the above series yield a satisfactory representation of U(x).
The concomitant “coupling constants”

{a1, . . . , aM} (5)

will play a dominant role in our considerations.

2.4. Our Program

The scheme below illustrates the path to be followed in this paper.

(1) Derive the scaling rule (SR) forSchroedinger′s equation

under length− changes ξ
(2) Manipulate the SR and get

a partial differential equation (PDE) for 〈H〉
in terms of ∂〈H〉

∂ak
; k = 1, . . . ,M

(3) This establishes that 〈H〉 is a function only of the coupling constants (CC)

(4) Construct the Legendre transform (LT )

of 〈H〉 so as to change independent variables
from the M CC to 〈xk〉; k = 1, . . . ,M

(5)Discover that the concomitant LT is −K = −〈 h̄2
2m

∂2

∂x2
〉

(6) K = Average kinetic energy LT : 〈H〉 LT↔ −K
(7) Study associated reciprocity relations

(8)Encounter significant information theory results.

3. The Schrödinger-Scaling Rule

3.1. Preliminaries

Set the scaling parameter ξ ≡ a. It is known that, under the scaling transformation x → ax (a > 0),
H goes over to a unitarily equivalent Hamiltonian H̄ (see Appendix A for details)

H(x, a1, · · · , aM)
x→ax−→ a−2H̄(x, ā1, · · · , āM) , āk = ak+2ak (6)



Entropy 2011, 13 2052

so that the H−eigenvalues E satisfy the scaling relation

a2E(a1, · · · , aM) = Ē(ā1, · · · , āM), āk = ak+2ak (7)

3.2. Manipulating the Scaling Rule

At this stage we begin presenting our results. Differentiating Relation (7) with respect to the
a−parameter one obtains

∂

∂a

[
a2E(a1, · · · , aM)

]
=
∂

∂a

[
Ē(ā1, · · · , āM)

]
(8)

i.e.,

2aE =
M∑
k=1

∂Ē

∂āk

∂āk
∂a

(9)

Note that

∂āk
∂a

=
∂

∂a

(
ak+2ak

)
= (k + 2) ak+1ak = (k + 2) a−1 āk (10)

so that

2aE = a−1
M∑
k=1

(k + 2) āk
∂Ē

∂āk
(11)

or,

a2 E =
M∑
k=1

(
k

2
+ 1

)
āk

∂Ē

∂λ̄k
(12)

Now, Equation (7) states that

a2 E = Ē , āk ≡ ak+2ak

implying that the following linear partial differential equation (PDE) is obeyed:

E =
M∑
k=1

(
k

2
+ 1

)
ak

∂E

∂ak
(13)

an important relation that was reported in [10], that deals with the WKB approach to the SWE.
Equation (13) is in that reference depicted as a relationship that rules the scaling behavior of
SWE-energy-eigenvalues with respect to the parameters ak of the Hamiltonian.

3.3. Interpreting Equation (13)

In [11] the present authors went way beyond the above interpretation of such PDE, provided an
entirely different demonstration for Equation (13), and took it as a “prescription”, a linear PDE that
energy eigenvalues must necessarily comply with. A careful mathematical study of this PDE was
undertaken in [11]. Its complete solution was given in the form

E(a1, ..., aM) =
M∑
k=1

Dk |ak|2/(2+k) (14)
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where the Dks are positive real constants (integration constants). It was also shown that the E-domain
is DE = {(a1, · · · , aM)/ak ∈ <} = <M . One sees that Equation (14) states that for ak > 0, E is a
monotonically increasing function of the ak, and for all ak ∈ DE , E is a concave function. The authors
were able to demonstrate in [11] that the general solution for the E−PDE does exist and its uniqueness
was ascertained via an analysis of the associated Cauchy problem.

Appeal to the Hellmann-Feynman theorem is now needed here with reference to Cauchy-uniqueness.
For our present case, the Lipschitz condition can be seen to be verified always since the
Hellmann-Feynman theorem [3–5] guarantees that

∂E

∂ak
=

〈
xk
〉
< ∞ (15)

4. A Question of Independent Variables. The Legendre Transform

According to our viewpoint, Equation (13) expresses a relation between (i) the independent variables
or control variables (the U(x)−expansion coefficients ak) and (ii) a dependent energy-value E. Such
information is encoded into the functional form of E = E(a1, ..., aM). For later convenience, we will
also denote such a relation or encoding as {E, ak}. Now, from the SWE (3), in which U(x) is given
by (4), one has 〈

− h̄2

2m

∂2

∂x2
+

M∑
k=1

ak x
k

〉
= 〈H〉 −→ K +

M∑
k=1

ak 〈xk〉 = 〈H〉 (16)

where the K−function stands for the expectation value of the kinetic energy,

K =

〈
− h̄2

2m

∂2

∂x2

〉
(17)

We arrive here to the crucial stage of our current developments: a change of independent variables from
the ak to the 〈xk〉, which can always be provided by a suitable Legendre transform [12]. We thus envisage
an M−terms Legendre transform [12,13] of L = −K, and write

L(〈x1〉, · · · , 〈xM〉) =
∑M
k=1 ak〈xk〉 − 〈H〉 =

= 〈U〉 − 〈H〉 = −K −→ K = 〈H〉 −∑M
k=1 ak〈xk〉 (18)

where the associated reciprocity relation, essential for this kind of transform, reads [13]

〈xk〉 ≡ ∂〈H〉
∂ak

(19)

We realize here that the Legendre transform of L = −K is the expectation value of the
Hamiltonian 〈H〉

〈H〉(a1, · · · , aM) =
M∑
k=1

ak 〈xk〉 − L −→ 〈H〉 = K +
M∑
k=1

ak 〈xk〉 (20)

with a reciprocity relation given by,

ak ≡
∂L

∂〈xk〉
= − ∂K

∂〈xk〉
(21)
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We see that the Legendre transform displays the information encoded in 〈H〉, via M

〈xk〉−parameters, in L = −K(〈x1〉, ...〈xM〉)

{〈H〉, ak}
LT←→ {K, 〈xk〉}

where the relations between the two sets of associated, independent variables are given by the relations
(19) and (21).

5. Virial Theorem Derived from 〈H〉 and K

Although the relationship virial-scaling is well known (see the excellent monograph of Fernandez
and Castro [14]), the novel ingredient here is Equation (13). Let us now return to it

E =
M∑
k=1

(
k

2
+ 1

)
ak

∂E

∂ak
(22)

and recast it, for E = 〈H〉ψ, in the fashion

〈H〉ψ =
M∑
k=1

(
k

2
+ 1

)
ak

∂〈H〉ψ
∂ak

(23)

The Relations (23) and (19) together lead us to regard the later in the fashion

∂〈H〉ψ
∂ak

= 〈xk〉ψ −→ 〈H〉ψ =
M∑
k=1

k + 2

2
ak 〈xk〉ψ (24)

Substituting now (24) into (18), the K−function can be written as

K =
M∑
k=1

k

2
ak 〈xk〉ψ (25)

which can be written as

K =

〈
M∑
k=1

k

2
ak x

k

〉
ψ

=
1

2

〈
x
∂

∂x
U(x)

〉
ψ

(26)

where U(x) is given by (4). Comparing (17) and (26) we can assert that〈
− h̄2

m

∂2

∂x2

〉
ψ

=

〈
x
∂

∂x
U(x)

〉
ψ

which is the celebrated Virial theorem [7–9]. For a different information-theory derivation, in which the
Legendre structure is itself derived starting from the HF and Virial theorems, see [15].

6. Legendre Transform Leads to a PDE for K

The Legendre transform we have just considered allows for interesting consequences. From (25),
taking into account (21), we can obtain the partial differential equation that governs the K−function,

ak = − ∂K

∂〈xk〉ψ
−→ K = −

M∑
k=1

k

2
〈xk〉ψ

∂K

∂〈xk〉ψ
(27)
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A complete solution for K-DPE (27) is given by [11],

K =
M∑
k=1

Ck |〈xk〉ψ|− 2/k (28)

where the Cks are positive real constants (integration constants). The K-domain is DK ={
(〈x1〉ψ, · · · , 〈xM〉ψ)/〈xk〉ψ ∈ <o

}
. Also, Equation (28) states that for 〈xk〉ψ > 0,K is a monotonically

decreasing function of the 〈xk〉ψ, and as one expect from the Legendre transform of 〈H〉, we end
up with a convex function (L = −K result a concave function). The general solution for K-PDE
exists. Uniqueness is, again, proved from an analysis of the associated Cauchy problem [11]. Thus,
Equation (27) can be interpreted as a “universal” prescription, a linear PDE that K−function must
necessarily comply with. For notational simplicity we drop here from the subscript (ψ).

7. A New Form for the Uncertainty Principle

The precise statement of the position-momentum uncertainty principe (UP) reads [9]

(∆x)(∆p) ≥ h̄

2
or (∆x)2(∆p)2 ≥ h̄2

4
(29)

where

(∆x)2 =
〈
(x− 〈x〉)2

〉
= 〈x2〉 − 〈x〉2 (30)

(∆p)2 =
〈
(p− 〈p〉)2

〉
= 〈p2〉 − 〈p〉2 (31)

In a one-dimensional configuration-space, where ψ is always a real wave function [7],

〈p〉 = 〈−ih̄ ∂
∂x
〉 = −ih̄

∫
ψ
∂

∂x
ψ dx = −ih̄

2

∫ ∂

∂x
ψ2 dx = 0 (32)

Substituting (32) in (31) and using (17) we have,

(∆p)2 = 〈p2〉 =

〈
− h̄2 ∂2

∂x2

〉
= 2mK (33)

If this relation is substituted into (29) we arrive to,

K (∆x)2 ≥ h̄2

8m
(34)

possibly providing new garments to the UP.

8. From Quantum Mechanics to a Fisher Measure

8.1. Preliminaries on Fisher’s Information Measure (FIM)

The bridge linking between Information Theory and Thermodynamics—Statistical Mechanics—was
erected by Jaynes half a century ago [16]. It is supported by a variational approach that entails
extremization of Shannon’s information measure subject to the constraints posed by the a priori
knowledge one may possess concerning the system of interest. The entire edifice of statistical mechanics
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can be constructed if one chooses Boltzmann’s constant as the informational unit and identifies
Shannon’s information measure S with the thermodynamic entropy. The concomitant methodology
is referred to as the Maximum Entropy Principle (MaxEnt) [16]. In the 1990s a similar program was
successfully developed that replaces Shannon’s information measure S by Fisher’s one (FIM) I [17]

I =
∫
dx f

(
∂ ln f

∂x

)2

; f being a normalized probability density (35)

not the most general FIM-form, but the one most employed in physical applications [17,18]. Since
f−derivatives enter I’s definition, FIM is a local measure. Shannon’s instead, is global [19].

A new viewpoint was in this way provided within the so-called Wheeler’s program of establishing an
information theoretical foundation for the basic theories of physics [1,20]. Much effort has consequently
been expended upon FIM-applications. See for instance [18,21], and references therein.

8.2. FIM Results from Quantum Mechanics’ Scaling Rules

At this stage, we may realize that K-function is intimately linked to Fisher’s information measure
(FIM). From (17) we have

K =

〈
− h̄2

2m

∂2

∂x2

〉
= − h̄2

2m

∫
dx ψ

∂2

∂x2
ψ =

h̄2

2m

∫
dx

(
∂ψ

∂x

)2

(36)

Defining f = ψ2, we can write,

K =
h̄2

8m

∫
dx f

(
∂ ln f

∂x

)2

(37)

Recalling from Equation (35) the FIM-definition of I

I =
∫
dx f

(
∂ ln f

∂x

)2

(38)

we reach the conclusion that

K =
h̄2

8m
I (39)

a fact we can read about in [17]. The uncertainty principle (34) expresses the Fisher-inequality
I(∆x)2 ≥ 1, that expresses the well-known Cramer-Rao bound [18,22]. We appreciate the fact that
f is taken to be of the form ψ2, I emerges dressed as K. Also, the accompanying Cramer-Rao bound
emerges in natural form from the UP.

9. Conclusions

In this communication we have considered the scaling transformation of the Schröedinger equation
(SWE). From the partial differential equation that governs the behavior of the energy eigenvalues (8) one
finds for the expectation value of 〈H〉 an explicit function that depends on the potential-series-expansion
parameters. The study of this 〈H〉-function, via its Legendre transform, allows one to re-derive in new
fashion several interesting and well-known quantal results.
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The SWE allows us to identify the scaling, Legendre-transformed of 〈H〉 as the expectation value of
the kinetic energy K. Finally, the Legendre structure leads one to find partial differential equation that
governs the K-structure.

Finally, if the square of the H−eigenfunctions is interpreted as a probability density, both the Fisher
measure I as well as the Cramer-Rao bound emerge in natural manner.
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Appendix A: The Hamiltonian Scaling Transform

We describe here the theory-changes under a scaling transformation. We start with[
− h̄2

2m

∂2

∂x2
+

∑
k

ak x
k

]
ψ = E ψ (40)

Under the scaling transform x→ ax we get[
− h̄2

2ma2

∂2

∂x2
+
∑
k

ak a
kxk

]
ψ̄(x) = E ψ̄(x) (41)

where ψ̄ is ψ’s scaling transformed function. Multiplying now both terms of (41) by a2 we obtain[
− h̄2

2m

∂2

∂x2
+
∑
k

ak a
k+2xk

]
ψ̄(x) = a2 E ψ̄(x) (42)

that we can cast as [
− h̄2

2m

∂2

∂x2
+
∑
k

āk x
k

]
ψ̄(x) = Ē ψ̄(x) (43)

where
āk = ak+2ak , Ē = a2E (44)

The relation between the two eigenfunction is given by ψ̄(x) = Nψ(ax), with N obtained by
requesting that both the original and the transformed wave functions be normalized to unity

1 =
∫
ψ̄(x)2 dx =

∫
N2 ψ(ax)2 dx =

N2

a

∫
ψ(x)2 dx =

N2

a
−→ N =

√
a (45)
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