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Abstract. The mass and energy transfer during osmotic microwave drying (OD-MWD) pro-

cess was studied theoretically by modeling and numerical simulation. With the aim to describe

the transport phenomena that occurs during the combined dehydration process, the mass and

energy microscopic balances were solved. An osmotic-diffusional model was used for osmotic

dehydration (OD). On the other hand, the microwave drying (MWD) was modeled solving the

mass and heat balances, using properties as function of temperature, moisture and soluble solids

content. The obtained balances form highly coupled non-linear differential equations that were

solved applying numerical methods. For osmotic dehydration, the mass balances formed coupled

ordinary differential equations that were solved using the Fourth-order Runge Kutta method. In

the case of microwave drying, the balances constituted partial differential equations, which were

solved through Crank-Nicolson implicit finite differences method. The numerical methods were

coded in Matlab 7.2 (Mathworks, Natick, MA). The developed mathematical model allows predict

the temperature and moisture evolution through the combined dehydration process.
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1 Introduction

Osmotic dehydration (OD) has the ability to protect the food for further drying
treatments, as it generates a defense from losses in volatile compounds and
lowers the risks of chemical and physical changes. It consists in food immersion
in a hypertonic solution that produces a partial water removal. To complete the
drying process and reach a stable product it is necessary another procedure like
microwave drying (MWD). Microwaves have the ability to penetrate and heat
within products, due to the interaction of the electric field with water molecules.
When using microwave as a final drying stage, the removing of inner water is
enhanced because foods heat uniformly increasing water vapor pressure which
forces vapor toward the surface [1].

There exist mathematical models to describe the mass transfer process during
osmotic dehydration that cover a wide range of approaches and forms. According
to Spiazzi and Mascheroni [2] the OD models could be divided into two main
groups: the phenomenological and microscopic-structural ones. In the present
work osmotic diffusional model developed by Spiazzi and Mascheroni [3], based
on the research works of Toupin et al. [4] and Marcotte et al. [5], was used to
model osmotic dehydration process, which is based on the mass transfer through
cellular membranes and multicomponent diffusion between intercellular spaces.

Besides, the electromagnetic-food interaction has to be considered in the model
formulation. The behavior of the electromagnetic field inside the microwave
oven is very complex; then it can be used an approximation that considers an
exponential decay inside the food, the Lambert’s law [6, 7].

To model the combined process of osmotic dehydration followed by microwave
drying it is necessary to solve the microscopic mass and energy balances. The
obtained balances constitute a system of nonlinear differential equations highly
coupled. For osmotic dehydration process, the mass balances constitute ordinary
coupled differential equations; in the case of microwave drying the balances
constitute partial differential equations. For the characteristics of the equation
system, it should be solved applying numerical methods.

According of the previous considerations the objectives of this work were:

– To obtain an adequate numerical model that predicts process variables dur-
ing osmotic-microwave dehydration (OD-MWD), solving the microscopic
mass and energy balances.
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– To solve the non-linear mathematical model considering that the thermal,
electromagnetic and transport properties are temperature and composition
dependent.

– To apply the developed model to simulate the mass and temperature profiles
under different operating conditions.

2 Mathematical Modeling

In the development of the mathematical model two fundamentals steps have been
considered: osmotic dehydration process and the application of microwave as a
final drying step.

2.1 Osmotic dehydration (Step 1)

In this step Spiazzi and Mascheroni [3] model was used, that considers the mass
transfer through cellular membranes and the multicomponent diffusion between
intercellular spaces. In order to obtain the concentration profiles, the whole vol-
ume was divided into N concentric and equal volume shells. In each element two
phases may be distinguished: the plasmatic content and the intercellular spaces.
Each volume of intercellular space is subjected to a diffusive-convective flux
between adjacent volumes and a transmembrane diffusive flux from the cellular
plasma [3]. The mass balances for each volume Vξ (ξ = 1, N ) are presented as
follows:

(
d M j,c

dt

)
= −n j,c.Ac (1)

(
n j,c

)
= kwc1(c j,c)c−o (2)

(
d M j,o

dt

)
= 1(n j,o.Ao) + n j,c.Ac (3)

(
n j,o

)
= D j .∇(c j,o) + c j,o.u (4)

where M , n and c are the mass, flux and concentration of the j specie, respec-
tively. The subscripts c and o indicate cellular and extracellular space; D and
kw are the apparent diffusion coefficient of the j species and the mass transfer
coefficient, respectively; Ac and Ao are the cellular and extracellular transfer
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areas and z represents the distance between each volume element Vξ . 1(c j,c)

indicates the concentration difference between intra and extra cellular spaces
of the component j and ∇(c j,o) is the concentration gradient between adjacent
volume elements.

The model considers the shrinkage rate u, which can be calculated from the
following relation:

u =
dz

dt
(5)

The cellular and extracellular transfer areas can be calculated as follows:

Ac = Ncell .V
2/3

c (6)

Ac = Cg.V
2/3

o .e (7)

where Ncell and Cg are constants which depend on the cell shape, the number
of cells per unit volume and the shape of the product piece; Vc and Vo are the
cellular and extracellular volume; e represents the fraction of the geometric area
which belongs to the extracellular spaces.

The concentration values in the hypertonic solution are deduced from the
total mass balances:

N∑

ξ=1

(Mξ

j,o)

dt
= −

(Mosm
j,sol)

dt
(8)

where Mξ

j,o corresponds to the mass of component j inside the osmotic solution
and subscript sol indicates osmotic solution.

2.2 Microwave dehydration (Step 2)

In the final drying step two stages must be considered: stage 2.1 – Heating
with weak evaporation and stage 2.2 – Intensive evaporation. Besides, the fol-
lowing assumptions were made when developing the microwave mathematical
model [8]:

– Uniform initial temperature and water content within the product,

– Temperature – and moisture content-dependent dielectric properties,

– Volume changes are not considered,

– Convective boundary conditions,
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– Regular one-dimensional geometry (1D),

– Uniform electric field distribution around the sample, and a dominant
polarization of the electric field normal to the surface.

2.2.1 Microwave heating

The stage 2.1 involves the heating of the food up to the moment when the whole
product reaches the equilibrium temperature Teq. To describe heat transfer, an
energy balance must be developed that considers a source term of internal heat
generation due to the energy supplied by MW [9]. The resulting microscopic
energy balance can be expressed in terms of power as [10]:

VρC p
∂T

∂t
= V (∇k∇T ) + P (9)

where V is product volume, ρ is density, Cp specific heat capacity, T tem-
perature, t time, k thermal conductivity and P is the power generated by
the absorption of microwaves. Fresh food physical properties are used in
equation 9.

To complete the model, the following initial and boundary conditions are
considered:

T = 0 T = Tini 0 ≤ x ≤ 2L (10)

x = 0, 2L − k
∂T

∂x
= h(T − Ta) + Lvap km(Cw − Ceq) t > 0 (11)

where L is the half thickness, Tini is initial temperature, h is the heat transfer
coefficient, Ta is the environment temperature, Lvap is the water heat vapor-
ization, km is the mass transfer coefficients, Cw and Ceq are the moisture and
equilibrium concentrations. Equation 11 includes vaporization at the food sur-
face. This assumption is valid only for the heating step because the exposure
time is short and the product temperature over this period is below Teq. In
this step, it could be assumed that weak evaporation occurs and equation 11
can be applied. Other authors also used this boundary condition in microwave
heating processes, when modeling the initial heating step [6, 11, 12]. A value
of 5 (W m−2 C−1) was employed for natural convection around the product
slab [13]. The model considers the analogy between heat and mass transfer to
evaluate km. The Chilton and Colburn’s J factors for heat and mass transfer
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JH = JD allowed to estimate km from h values [13]. The power absorbed during
microwave irradiation on both sides is represented by the term P . Heat genera-
tion is a function of the temperature in each point of the material. In this work,
Lambert’s Law is deemed as valid.

P = PRi+Le = P ′(e−2α(L−x)+e−2α(x))
o (12)

α =
2π

λ

√
ε[(1 + tan2 δ)2 − 1]

2
(13)

δ = tan−1(ε ′′/ε ′)) (14)

where P ′
o is the incident power at the surface (W), Ri and Le indicate right and

left sides, λ is the wavelength of radiation and α is the attenuation factor, which
is a function of the dielectric constant ε′ and of the loss factor ε′′.

To predict the humidity profile during the heating stage, a microscopic balance
of mass is needed that considers the water diffusion in the inner part of the food.
This balance is:

∂Cw

∂t
= ∇(Dw∇Cw) (15)

The following initial and boundary conditions are considered:

t = 0 Cw = Cw,ini 0 ≤ x ≤ 2L (16)

x = 0, 2L − Dw

∂Cw

∂x
= kw(Cw − Ceq) t > 0 (17)

2.2.2 Microwave intensive vaporization

The stage 2.2 of microwave drying takes place when the whole product reaches
Teq and intensive evaporation begins. Teq is the temperature achieved when the
power absorbed is equilibrated with the energy used in water vaporization [8].
This step finishes at the end of the constant temperature period, unless there is a
requirement to heat the material after it is dried. In the energy transfer step, the
temperature is supposed to be at the equilibrium value in whole the food Teq .

0 ≤ x ≤ 2L T = Teq (18)
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Then Lambert’s law was applied to evaluate the distribution of electromagnetic
energy inside the food. The following equation was applied:

P = PRi+Le = P ′(e−2αd (L−x)+e−2αd (x))
o (19)

where αd is the attenuation factor calculated using dielectric properties of the
dehydrated material.

The model takes into account the continuous or intermittent application of
MW power considering null the incident microwave power when the magnetron
is turned off in the cycling operation mode.

During this final stage, water vaporization is considered to take place vol-
umetrically within the product. The generation of water vapor is calculated
supposing that all the power generated by MW is used for removal of water:

mv Lvap =
∫ V

0
QdV (20)

where mv is the rate of water vaporization (kg s−1).

3 Results

3.1 Numerical solution

3.1.1 Osmotic dehydration model (step 1)

In this step the model solves 2N equations for water ( j = w) and N equations
for soluble solids content ( j = s), in order to calculate water and soluble solids
content inside the food. The obtained ordinary differential equation system
can be solved through Fourth Order Runge-Kutta method coded in Matlab 7.2
(Mathworks, Natick, MA). The domain was divided into 10 volume elements
and the equations 21-39 were solved for each volume and time increment (1t):

Cell volume
d(Mξ

j,c)

dt
=

d(cξ

j,cV ξ
c )

dt
= f (t, c j,c) (21)

f (t, c j,c) = −kwc.1(cξ

j,c)c,o.A
ξ
c (22)

1(cξ

j,c)c,o = (cξ

j,c − cξ

j,o) (23)
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kξ

RK 1 = f (t, cξ

j,c) (24)

kξ

RK 2 = f (t + 1t/2, cξ

j,c + kξ

RK 11t/2) (25)

kξ

RK 3 = f (t + 1t/2, cξ

j,c + kξ

RK 21t/2) (26)

kξ

RK 4 = f (t + 1t, cξ

j,c + kξ

RK 31t) (27)

kξ

RK T = 1/6(kξ

RK 1 + 2kξ

RK 2 + 2kξ

RK 3 + kξ

RK 4) (28)

Mξ

j,c; t+1t = Mξ

j,c; t + kξ

RK T 1t (29)

Intercellular volume

d(Mξ

j,o)

dt
=

d(cξ

j,oV ξ
o )

dt
= g(t, c j,o) (30)

g(t, c j,o) = 1[(D j .∇(cξ

j,o)c,o + cξ

j,o.u
ξ ).Aξ

o]
ξ ,ξ +1 + (kwc.1(cξ

j,c)c,o).A
ξ
c (31)

∇(cξ

j,o)c,o =
(cξ+1

j,o − cξ

j,o)

1zξ
(32)

uξ =
zξ+1 − zξ

dt
(33)

mξ

RK 1 = g(t, cξ

j,o) (34)

mξ

RK 2 = g(t + 1t/2, cξ

j,o + mξ

RK 11t/2) (35)

mξ

RK 3 = g(t + 1t/2, cξ

j,o + mξ

RK 21t/2) (36)

mξ

RK 4 = g(t + 1t, cξ

j,o + mξ

RK 31t) (37)

mξ

RK T = 1/6(mξ

RK 1 + 2mξ

RK 2 + 2mξ

RK 3 + mξ

RK 4) (38)

Mξ

j,o; t+1t = Mξ

j,o; t + mξ

RK T 1t (39)

where 1t is the time increment (0.1s for all the runs), f (t, c j,c) and g(t, c j,o)

correspond to mass variation of the j component with respect to time, inside
the cell (subscript c) and between adjacent intercellular spaces (subscript o);
Mξ

j,c; t+1t and Mξ

j,o; t+1t are the new values of mass of water or solids at time
t + 1t , in the cellular and extracellular volume, respectively; kRK and m RK are
the coefficients of Runge Kutta method [14, 15].
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3.1.2 Microwave drying model (steps 2)

The mass and energy balances in the stage 2.1 with their boundary conditions
are coupled and form a system of nonlinear partial differential equations. There-
fore, Crank-Nicolson finite difference method, characterized by being uncondi-
tionally stable and convergent, was used for solving the final equation system.
A finite difference algorithm, previously developed by Campañone et al. [16],
was implemented to solve the unidirectional energy transfer. A time increment
of 0.1s was used and the domain was divided into 15 space increments. The
following equations were obtained for the inner points to calculate the tempera-
ture profiles.

T n+1
i+1

(
−

Vi kn
i

21x2
−

Vi (kn
i+1 − kn

i−1)

81x2

)
+ T n+1

i

(
Viρ

n
i Cpn

i

1t
+

Vi kn
i

1x2

)

+ T n+1
i−1

(
−

Vi kn
i

21x2
+

Vi (kn
i+1 − kn

i−1)

81x2

)

= T n
i+1

(
Vi kn

i

21x2
+

Vi (kn
i+1 − kn

i−1)

81x2

)
+ T n

i

(
Viρ

n
i Cpn

i

1t
−

Vi kn
i

1x2

)

+ T n
i−1

(
Vi kn

i

21x2
−

Vi (kn
i+1 − kn

i−1)

81x2

)
+ Pi

(40)

This equation is valid for 0 < i < b being b the number of nodes in the
discretized domain. V i is the volume of an element located between the nodes
(i + 1/2) and (i − 1/2), and Pi is the power calculated in the same nodes:

Pi = Po
Ainc

At

[
e−2α(L−(i+1/2)1x) − e−2α(L−(i−1/2)1x)

]
(41)

At the food surface (i = b), equation 40 presents two fictitious points (i +1, n)

and (i+1, n+1). Using boundary condition equation 11, the following equations
were obtained:

T n, f
i+1 = T n

i−1 −
21x

kn
i

hT n
i +

21x

kn
i

hTa (42)

T n+1, f
i+1 = T n+1

i−1 −
21x

kn
i

hT n+1
i +

21x

kn
i

hTa (43)
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By replacing equation 42 and 43 in the general expression equation 40, the
temperature prediction equation was:

T n+1
b

(
Vbρ

n
b Cpn

b

1t
+

Vbkn
b

1x2
+

2Vbh1x

kn
b

(
kn

b

21x2
+

kn
b+1 − kn

b−1

81x2

))

+T n+1
b−1

(
−Vbkn

b

1x2

)

= T n
b

(
Vbρ

n
b Cpn

b

1t
−

Vbkn
b

1x2
+

2Vbh1x

kn
b

(
−

kn
b

21x2
−

kn
b+1 − kn

b−1

81x2

))

+ T n
b−1

(
Vbkn

b

1x2

)
+

2Vbh1xTa

kn
b

(
kn

b

21x2
+

kn
b+1 − kn

b−1

81x2

)
+ Pb

(44)

Equations 40 and 44 for both boundaries, form a system of linear equations.
The solution allows calculate the inner and surface temperatures. The same
procedure was implemented to solve the microscopic mass balance equations
15-17. In stage 2.2, moisture content for each time step was calculated using
equation 20.

The equation system solution to obtain temperatures and moisture profiles were
coded in Matlab 7.2 (Mathworks, Natick, MA).

3.2 Process simulation

The mathematical model can be used for a wide variety of food materials. Firstly,
the model was employed to predict the water loss and solid gain during OD
process (Step 1) applied to pumpkin in sucrose solution.

Table 1 summarizes the physical properties and adjustment parameters needed
to run the simulation.

In this Table the subscript 60 indicates the concentration of osmotic solution
(Brix units). In Figures 1a and b it can be seen the experimental and simulated
values of water loss and solid gain. The model follows the experimental behavior;
a rapid increase in the first 300 minutes, and from then a trend to equilibrium.

Then, the model was run with several process conditions as parameters, in
particular the effective mass diffusion coefficient. Table 2 shows the properties
and the parameters used in the simulation of the OD process of pears in sucrose
solutions.
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Property Value Note

Food pumpkin Experimental data from Arballo et al. [17]
shape slice −

kw(m s−1) 220 10−9 Mass transfer coefficient (water)
DW 60(m2s−1) 2.12 10−9 Diffusion coefficient at 60Bx (water)
DS 60(m2s−1) 0.25 10−9 Diffusion coefficient at 60Bx (sucrose)

Sample thickness (m) 0.010 −
Sample diameter (m) 0.031 −

Table 1 – Parameters, transport and diffusional properties of pumpkin for OD-model simulation.

Figure 1 – Simulated (lines) and experimental (symbols) water loss (a) and solid gain

(b) during osmotic dehydration process applied to pumpkin slices.
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Property Value Note

Food pear Experimental data from Arballo et al. [17]

shape half slice −

kw(m s−1) 200 10−9 [18] Mass transfer coefficient

DW 60(m2s−1) 1.36 10−9 Diffusion coefficient at 60Bx (water)

DS 60(m2s−1) 0.17 10−9 Diffusion coefficient at 60Bx (sucrose)

DW 40(m2s−1) 1.07 10−9 Diffusion coefficient at 40Bx (water)

DS 40(m2s−1) 0.23 10−9 Diffusion coefficient at 40Bx (sucrose)

DW 20(m2s−1) 4.08 10−9 Diffusion coefficient at 20Bx (water)

DS 20(m2s−1) 1.02 10−9 Diffusion coefficient at 20Bx (sucrose)

Sample thickness (m) 0.010 −

Sample diameter (m) 0.052 −

Table 2 – Parameters, transport and diffusional properties of pear for OD-model simulation.

Figure 2 – Simulated (lines) and experimental (symbols) water loss during osmotic de-

hydration process applied for three different solution concentrations to pear half slices.

Figures 2 and 3 show the predicted water loss and solid gain as function of
time during the osmotic dehydration process; it can be seen that the model pre-
dicts the rapid water mass loss in the beginning of the process; then, an asymptotic
trend is developed due to the descent in driving force (chemical potential differ-
ence for water between the food and the solution). The dehydration behavior
of pears presents a behavior similar to that of pumpkin, but pumpkin underwent
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Figure 3 – Simulated (lines) and experimental (symbol) solid gain during osmotic de-

hydration process applied for three different solution concentrations for pear half slice.

more water content reduction and gained more solids than pears; it corresponds
to the different values of the Dw and Ds parameters for the two foods, and is
based mainly in differences in structure.

Besides, the mathematical model also considered the variation of OD solution
concentration, shape and size of the product.

With respect to OD solution concentration, the experimental values for pear
fruit ranged between 20 to 60 Brix. The model is sensible to the change of
solution composition as can be seen in Figures 2 and 3, showing a good accuracy
in the predicted curves as compared to experimental data.

For Step 2 (MWD), Table 3 shows the thermal, transport and electromagnetic
properties used as inputs in the runs of the numerical model.

The model allows predict the evolution of temperature and moisture content
during step 2 (Figs. 4 and 5). OD process applied to pears in sucrose solution
during two hours was considered as initial condition for this stage. Different OD
pre treatments affect the initial water and solute content. The model takes into
account this fact varying moisture and solid content of the food (Fig. 4).

The mathematical model shows a good sensibility to the changes of physi-
cal properties, due to OD pretreatment. The uptake of solids during OD step,
provokes a change of composition of the food material affecting its dielectric
properties (ε′, ε′′), and its ability to interact with radiation (Fig. 5).
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Property Fresh food Osmodehydrated food

Ceq 0.800320Bx 0.15320Bx

0.694540Bx 0.28440Bx

0.565760Bx 0.41060Bx

Y0/Bri x 0.844/12.8 0.83/1420Bx

0.80/1840Bx

0.77/2160Bx

ρ 1000 [18] 1056.720Bx [18]

1065.540Bx [18]

1065.560Bx [18]

k 0.595 [19] 0.51420Bx [18]

0.50640Bx [18]

0.50060Bx [18]

Cp 3600 [20] 3125 [21]

ε 71.06 − 0.052T − 3 10−4T 2 [22] 67.3 [23]

ε′′ 20.95 − 0.25T + 1.4 10−3T 2 [22] 13.2820Bx [23]

3040Bx [23]

2360Bx [23]

xI 0.015

Table 3 – Thermal, transport and electromagnetic properties of food for model simulation.

The microwave oven operates in continuous or intermittent modes, according
to power used. The dehydration process of fruits and vegetables can be enhanced
applying on-off cycles (Campañone et al. [24]). The model was able to follow
the intermittency of microwave power application (on-off operation), being sta-
ble and showing no perturbations in the predicted temperature and moisture
profiles (Fig. 5).

In addition, the numerical simulation permits to evaluate the effect of the
microwave power on the profiles. It was ranged between 300 to 500 W and the
predicted temperature (surface and centre of the slice) and moisture profiles are
shown in Figures 6, 7 and 8. The mathematical model can differentiate the effect
of diverse power levels. The use of high power values provokes a rapid increase
on temperature (Figs. 6 and 7), as is expected, and a maximum water loss at the
same time (Fig. 8).
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Figure 4 – Predicted moisture content as a function of time for different osmotic pre-

treatments (20, 40 and 60 Brix) when applying microwave power of 500W.

Figure 5 – Predicted temperatures as a function of time for different osmotic pretreat-

ments (20, 40 and 60 Brix) when applying microwave power of 500W.

Finally, the effect of the sample thickness was evaluated in the present work
(Figs. 9a and b). The power absorption depends on water content, and then large
samples with high water content absorb more microwave power, increasing their
dehydration rate. This functionality was incorporated in the simulation codes as
a Matlab function.
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Figure 6 – Simulated thermal histories (surface) applying different microwave power

levels.

Figure 7 – Simulated thermal histories (centre) applying different microwave power

levels.
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Figure 8 – Simulated moisture contents applying different microwave power levels.

4 Conclusions

A complete and relatively simple and easy to use mathematical model has been
developed for simultaneous prediction of temperature and moisture profiles dur-
ing the combined process of osmotic-microwave dehydration. Its main original-
ity is that it can consider the initial process of osmotic dehydration and couple
the predicted water and solute concentration profiles to the simultaneous mass
and energy transfer in the microwave heating step including, also, the inner heat
generation, the on-off control effect of the microwave oven and different power
levels. The model considers two numerical techniques to solve differential equa-
tions: Runge Kutta (fourth order) for Step 1 and Finite Differences for Step 2.
The numerical solution of the balances was implemented in Matlab environment
and it permits to interpret and simulate a technological and industrial process.

From the experimental data and numerical simulations, the effect of the va-
riety of food materials, concentration of osmotic solutions, shape and size of
the product was analyzed during OD process. These food characteristics and
operating conditions affect directly to microwave dehydration during the second
step, mainly changing the physical properties of the food. Besides microwave
power level and the size of the product was included in the analysis for this step.
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Figure 9 – Simulated temperature (a) and moisture contents (b) during MWD for dif-

ferent sample thicknesses.

Finally, we obtained an integrated model that can be used for the prediction of
weight loss in a wide range of operating conditions.
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