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The aim of this paper was to investigate the contribution of the arbuscular mycorrhizal fungus Glomus claroideum to
drought stress tolerance in wheat plants grown under controlled conditions in a growth chamber, and subjected to
moderate or severe water stress and rewatering. Water stress tolerance was determined through total dry weight, leaf
relative water content, leakage of solutes and leaf chlorophyll and protein concentrations in mycorrhizal and non-
mycorrhizal wheat plants. Total dry weight and leaf chlorophyll concentrations were significantly higher in mycorrhizal
plants after moderate or severe water stress treatments compared with non-mycorrhizal ones. Electrolyte leakage was
significantly lower in water-stressed inoculated plants. Compared to non-inoculated plants, leaf relative water content
and total protein concentration of inoculated individuals increased only under severe water stress. When irrigation was
re-established, mycorrhizal plants increased their total dry weight and leaf chlorophyll concentration, and recovered cell
membrane permeability in leaves compared with non-mycorrhizal plants. In conclusion, root colonization by G.
claroideum could be an adequate strategy to alleviate the deleterious effects of drought stress and retard the
senescence syndrome in wheat.
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A melhoria da tolerância do trigo (Triticum aestivum L.) ao estresse hídrico e à reidratação pelo fungo micorrízico
arbuscular (Glomus claroideum): Efeito sobre o crescimento e estabilidade das membranas celulares: O objetivo do
trabalho foi pesquisar a contribuição do fungo micorrízico arbuscular Glomus claroideum à tolerância ao déficit hídrico
em plantas de trigo cultivadas sob condições controladas em uma câmara de crescimento, submetidas ao estresse
hídrico moderado ou severo e reidratação. A tolerância das plantas ao estresse hídrico foi determinada mediante o peso
seco total, conteúdo relativo de água foliar, extravasamento de solutos e concentrações foliares de clorofilas e proteínas
totais nas plantas de trigo micorrizadas e não-micorrizadas. O peso seco total e a concentração de clorofila foram
significativamente maiores nas plantas micorrizadas sob estresse hídrico moderado ou severo, quando comparadas com
as não-micorrizadas. O extravasamento de solutos foi significativamente menor nas plantas inoculadas estressadas. O
conteúdo relativo de água foliar e a concentração de proteínas totais nas plantas inoculadas aumentaram apenas em
condições de estresse hídrico severo. Após a re-irrigação, nas plantas micorrizadas, houve aumento do peso seco total
e da concentração de clorofilas, além da recuperação da integridade das membranas celulares, quando comparadas com
as plantas não-micorrizadas. Em suma, a colonização das raízes por G. claroideum poderia ser uma estratégia adequada
para reduzir os efeitos deletérios do estresse hídrico e retardar a síndrome da senescência em trigo.
Palavras-chave: conteúdo relativo de água, déficit hídrico, extravasamento de solutos, micorrizas, reidratação
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INTRODUCTION
Wheat (Triticum aestivum L.) is an important crop in

the Argentinean southeastern Pampa, where high
temperatures and water stress often reduce plant growth
and crop yields (Beltrano et al., 2006). Drought is a
complex phenomenon, and is considered one of the most
important factors limiting crop yields around the world.
During water stress, soil water is more strongly retained
and solute transfer to plants is less efficient and may not
meet nutrient demands of the plants. The response of
plants to water stress depends on several factors such as
developmental stage, severity and duration of stress and
cultivar genetics. Common plant symptoms after water
deficit are stunted growth, limited CO2 diffusion to
chloroplasts by stomatal closure,  reduced
photosynthesis rate, and accelerated leaf senescence.
Moreover, in wheat, a severe water stress during the late
growth stages (anthesis-post anthesis) cause
chlorophyll loss, cell solute leakage, flag leaf yellowing
and accelerated ear and grain maturation (Beltrano et al.,
1994, 1999). Water stress also causes severe alterations in
cell membrane properties including selective permeability
(leakage of cell solutes), fluidity and microviscosity
(Navarri-Izzo et al., 1993; Beltrano et al., 1994, 1999).

Arbuscular mycorrhizal fungi (AMF) can establish
beneficial symbiotic association with many plant species,
enhancing nutrient transfer and offering bioprotection
activity against pathogens and drought stress (Jeffries et
al., 2003). Arbuscular mycorrhizal fungi symbiosis
contributes to enhance growth and vigor of plants, and
can alter plant water relations, particularly during water
stress periods (Ruiz-Lozano et al., 1995; Augé, 2001). Leaf
water potential and leaf relative water content are
important parameters to estimate cell turgor pressure and
osmotic potential ,  and thereby quantitate t issue
hydration or water status. Although AMF symbiosis
cannot affect leaf water potential in non-stressed plants
(Goicoechea et al., 2005), mycorrhizal plants may enhance
water-use efficiency; in addition plants recover faster
after water stress than non-mycorrhizal plants (Al-Karaki
et al., 2004). Porcel and Ruiz-Lozano (2004) found that leaf
water potential was higher in stressed mycorrhizal plants
(-1.9 MPa) than in non-mycorrhizal stressed ones (-2.8
MPa). The mechanisms involved in water uptake by the
AMF symbiosis include regulation of stomatal

conductance, an increase in stomatal sensitivity to leaf-
air vapor pressure deficit, and lowering leaf osmotic
potential for turgor maintenance (Sánchez-Blanco et al.,
2004). Arbuscular mycorrhizal fungi colonization has
been shown to increase wheat drought resistance (Al-
Karaki et al., 2004). Cellular membrane stability, measured
as the conductivity of electrolytes leaking from leaf disks
at high temperature, has been suggested as a screening
technique to determine heat tolerance in plants (Sullivan,
1972). Several studies have suggested the effectiveness
of this technique in detecting genetic variability in heat
tolerance in crops such as soybean (Martineau et al.,
1979), sorghum (Sullivan, 1972), wheat (Saadalla et al.,
1990), Kentucky bluegrass, salt-stressed maize (Feng et
al., 2002), and drought-stressed wheat (Beltrano et al.,
2006).

The range of responses of wheat to AMF and drought
resistance of inoculated plants have been investigated
by Hetrick et al. (1996), who reported significant
differences in responses to AMF among wheat cultivars.
However, no information has been reported regarding the
effects of AMF during moderate or severe water stress
and after rewatering. The experimental hypothesis of this
study was that the mycorrhization maintains the cell
membrane stability, delays senescence and retards the
water stress syndrome, and that mycorrhizal plants
recover faster from moderate and severe water stress than
non-mycorrhizal plants. The purpose of this experiment
was to investigate the contribution of AMF (Glomus
claroideum) to plant tolerance to different water stress
treatments and rewatering by monitoring changes in
some physiological parameters.

MATERIAL  AND METHODS

Plant material and inoculation: Wheat plants (Triticum
aestivum L. cv. ‘Buck Pronto’) were raised from seeds and
individually grown in 2 L plastic pots filled with 2 kg of
inoculated or not inoculated autoclaved soil. The soil
used was an argiudol vertic (pH 5.5, 12 mg kg-1  total P,
3.5% organic matter, 2.0% total C, 0.24% total N), which
was sterilized by steaming at 100°C for 1 h on three
alternate days.

Glomus claroideum Schenck and Smith isolate (BEG
29) was bulked-up through culture with Trifolium repens
L. for four months in a semi-controlled grown chamber.
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The inoculum was a mix of soil, spores (50 spores g-1

inoculum), mycelium and colonized root fragments. Ten
grams of inoculum were added below the seed to
inoculated pots at sowing time. Ten grams of sterilized
inoculum plus 10 mL mycorrhizal fungal-free filtrate from
the inoculum suspension were added to non-inoculated
pots in order to provide the same soil conditions. The
experiment was conducted in a semi-controlled growth
chamber adjusted to 25/20°C day/night temperatures, and
a 16 h photoperiod at 350 µmol m-2 s-1 of photosynthetic
photon flux density (PPFD). Tap water was supplied daily
to maintain soil water potential (Ψs) close to field capacity
(Ψs ~ –0.03 MPa) until water stress treatments were
started. Symptoms of pest attacks and mineral
deficiencies were not observed.

Estimation of AMF colonization: Fungal colonization
was evaluated according to Trouvelot et al. (1986) and
expressed as percentage of mycorrhization (M%) and
arbuscules development (A%). The roots were cleared
with 10% KOH and stained with trypan blue in lacto-
phenol (Phillips and Hayman, 1970). Thirty randomly
chosen root fragments of 1 cm in length were mounted on
slides and examined microscopically. Percentage of
mycorrhization was calculated as the proportion of
infected roots over total root fragments, and A% was
calculated as the abundance of arbuscules per colonized
roots.

Treatments: When root colonization was approximately 50%,
inoculated and non-inoculated plants were subjected to the
following water stress treatments: (i) control – Plants were
watered daily to maintain Ψs no lower than –0.03 MPa; (ii)
moderate water stress – plants were stressed by withholding
water until a Ψs of ca. –0.9 MPa was reached, which took
approximately 6 d (Figure 1); (iii) severe water stress –
plants were stressed by withholding water until a Ψs of
ca. -1.8 MPa was reached, which took about 9 d; and (iv)
rewatering – half of the plants that were exposed to
moderate (Ψs ~ –0.9 MPa) or severe (Ψs ~-1.8 MPa) water
stress for 6 d were then watered to field capacity, which
was normally reached within 7 h (Beltrano et al., 1997).
These water potentials were maintained until plant
harvest (Figure 1). To control the water levels, Ψs was
measured daily during the entire experiment with a HR-
33T dew-point psychrometer (Wescor Inc., Logan, UT,

USA) with PST-55 probes, placed 15 cm deep in the soil at
the beginning of the experiment. Every day the amount of
water lost was added to each pot in order to maintain the
desired Ψs. The availability of the soil water was
previously determined and a curve of water retention was
made.

Variables measured: Ten plants (n = 10) of each treatment
were harvested at midday as shown in Figure 1.

Biomass production: At harvest, the total plant weight
(shoot plus root systems) (DW) was measured after
drying in a forced hot-air oven at 80°C for 2 d.

Electrolyte leakage: This technique is based on the
increase of cellular membrane permeabili ty and
concomitantly greater electrolyte diffusion out of cells
when leaf tissue is injured by a stress situation. After
harvest, the uppermost fully expanded leaves of 10 plants
per treatment were immediately cut into discs of 0.8 cm
diameter. The discs were washed briefly three times in
deionized water to remove solutes released during
cutting of the discs. Five discs of each leaf were then
placed in a vial filled with 10 mL deionized water and

Figure 1. Soil water potential after water stress and
rewatering. (*) Water stress initiated; (**) Rewatering
initiated. Arrows 1, 2, 3 and 4 indicate, respectively, the
harvests at moderate water stress, severe water stress,
moderate water stress rewatering, and severe water stress
rewatering. The dotted line shows the water potential at
field capacity, the solid line shows soil drying and the
dashed line shows rewatering.
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maintained at 20°C for 4 h. Electrolyte leakage was
determined by measuring the electrical conductivity of
the vial solution, using a conductivity meter and data
were expressed as µS cm-1.

Leaf relative water content (RWC): The RWC was
measured in five 0.8 cm diameter discs of each leaf. The
leaf discs, obtained in a similar manner as those used for
electrolyte leakage, were weighed, floated on distilled
water at 4°C in the dark for 4 h, blotted, weighed again and
finally dried at 80°C for 48 h for dry weight determination.

Leaf chlorophyll  concentration:  Chlorophyll
degradation was used as an index of leaf senescence and
was determined in one leaf disc (0.8 cm diameter) per
plant, of each treatment, using the uppermost fully
expanded leaf according to Morn and Porath (1980). The
results were expressed as µg chlorophyll cm-2.

Total leaf protein concentration: Total leaf protein
concentration was determined according to Bradford
(1976) in two leaf discs (0.8 cm diameter) per plant of each
treatment. The results were expressed as µg protein cm-2.

Experimental design and statistical analysis: Pots were
arranged in a completely randomized block design, with
10 replicates for each treatment. Data were statistically
analyzed using ANOVA with the software SIGMASTAT
3.1. Comparisons between means were carried out using
the Tukey test at P < 0.05. For percentage values an
arcsine transformation was made before statistical
analysis.

RESULTS

Mycorrhizal development: None of the non-inoculated
plants was colonized by G. claroideum. Under well-
watered conditions roots showed a significantly higher
percentage of mycorrhization compared to water-
stressed plants (Table 1). The severe water stress
condition decreased the M% more than the moderate
water stress treatment. The M% of rewatered plants was
similar to that of well-watered individuals. The A%
decreased with water stress, but it did not recover with
the rewatering treatment (Table 1).

Plant growth and physiological parameters: Under well-
watered, moderate and severe water stress conditions,

mycorrhizal inoculation significantly increased total
plant dry weight by 15%, 17% and 20%, respectively,
compared to non-mycorrhizal plants. Under moderate and
severe rewatered conditions total  dry weight of
mycorrhizal plants was 18% and 27% higher than that of
non-mycorrhizal plants, respectively (Figure 2).

The leaf RWC of well-watered inoculated plants did
not differ from that of the well-watered non-inoculated
ones. Moderate water stress reduced RWC by 20% in
both mycorrhizal and non-mycorrhizal plants, and
rewatering, on the other hand, increased the RWC by
10%. The inoculation affected RWC when plants were
subjected to severe water stress and rewatering, and it
was significantly higher in mycorrhizal compared to non-
mycorrhizal plants (Figure 3).

The solute leakage of leaves under well-watered
conditions did not differ between inoculated and non-
inoculated plants. Non-mycorrhizal plants, subjected to
moderate stress or to severe stress, had significantly
higher electrolyte leakage compared with mycorrhizal
plants. Rewatering reversed the water stress effects, and
in mycorrhizal plants, foliar solute leakage decreased
significantly compared with non-mycorrhizal ones
(Figure 4).

When plants were subjected to well-watered
conditions, leaf chlorophyll concentration was not
modified by inoculation. Moderate and severe water
stress affected chlorophyll concentration, although
values of mycorrhizal plants were significantly higher
than those of non-mycorrhizal ones.  Rewatered
mycorrhizal plants recovered leaf chlorophyll
concentration to near the levels in well-watered plants
(Figure 5).

Table 1.  Percentage of mycorrhization (M%) and
arbuscular frequency (A%) in wheat roots inoculated with
Glomus claroideum under well-watered conditions
(control) or subjected to moderate or severe water stress
and followed by rewatering. Means (n = 10) followed by
different letters are significantly different (P < 0.001).

Treatment M% A%
Control 66 a 59 a
Moderate water stress 43 b 17 b
Moderate water stress plus Rewatering 54 a 19 b
Severe water stress 28 c 20 b
Severe water stress plus Rewatering 56 a 27 b
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There were no significant differences in total leaf
protein concentration between inoculated and non-
inoculated plants, either under well-watered, moderate
stress or rewatering conditions. Under severe water
stress, mycorrhizal plants showed greater protein
concentration than non-mycorrhizal plants (Figure 6).

DISCUSSION
Drought severely limits yield of wheat. Sánchez-

Blanco et al. (2004) found that under drought conditions
leaf water potential decreased in both non-mycorrhizal
and mycorrhizal plants, although this decrease was lower
in water-stressed mycorrhizal plants. Symbiosis (AMF)
has been shown to increase water deficit tolerance,
although the mechanisms involved are contentious
(Augé, 2001; Ruiz-Lozano, 2003).

Our results show that G. claroideum colonized
effectively wheat plants under well-watered conditions.
Mycorrhizal colonization (M% and A%) was more
adversely affected by severe stress than moderate stress.
Rewatering reversed the effect of stress and increased
root colonization, and rewatered plants eventually
reached control values. However, arbuscles formation did
not recover in rewatered plants, probably because
arbuscles are assimilated by root cells and their contents
are absorbed by the host more rapidly under stress
conditions (Kaspari, 1973). While some authors found
that water stress affects mycorrhizal symbiotic
establishment (Davies et al., 2002; Goicoechea et al.,
2005), others such as Bryla and Duniway (1997) reported
that drought stress (Ψs  = -1.5 to -2 MPa) does not affect
mycorrhizal colonization rates in wheat. Braunberger et
al. (1994) determined that the hyphae network of AMF
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Figure 2. Dry weight per plant in non-mycorrhizal (NM)
and mycorrhizal (M) wheat plants inoculated with Glomus
claroideum under well-watered conditions (C), moderate
water stress (MoSt), severe water stress (SeSt), moderate
water  stress followed by rewatering (MoRw) or severe
water stress followed by rewatering (SeRw). Vertical bars
represent SE (n = 10).
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Figure 3. Leaf relative water content in non-mycorrhizal
(NM) and mycorrhizal (M) wheat plants inoculated with
Glomus claroideum under well-watered conditions (C),
moderate water stress (MoSt), severe water stress (SeSt),
moderate water stress followed by rewatering (MoRw) or
severe water stress followed by rewatering (SeRw). Vertical
bars represent SE (n = 10).
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Figure 4. Electrolyte leakage in non-mycorrhizal (NM) and
mycorrhizal (M) wheat plants inoculated with Glomus
claroideum under well-watered conditions (C), moderate
water stress (MoSt), severe water stress (SeSt), moderate
water stress followed by rewatering (MoRw) or severe
water stress followed by rewatering (SeRw). Vertical bars
represent SE (n = 10).
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was capable of surviving and retaining the ability to
colonize susceptible roots, even following adverse
conditions for plant growth such as water stress.

In this study, inoculation with G. claroideum brought
about an important increase in biomass production,
which might be attributable to increased dependence of
wheat on AMF for water uptake (Al-Karaki et al., 2004).

The AMF symbiosis may improve nutrient uptake by
improving exploration of the soil pore space. O’Keefe and
Sylvia (1993) observed that external hyphae adhere to
soil particles, which would improve contact with the soil
solution. Furthermore, they demonstrated that hyphae
can access smaller pore spaces than plant roots and root
hairs. As soil water content decreases, the relative
importance of these factors would increase. Our results
show that mycorrhizal symbiosis did not affect the leaf
water status of well-watered plants, confirming other
results obtained by Sánchez-Blanco et al. (2004) and
Goicoechea et al. (2005).

Although water stress treatments reduced leaf RWC,
inoculation by G. claroideum allowed wheat plants to
maintain higher RWC compared with non-mycorrhizal
plants, these results are similar to findings by Amerian et
al. (2001) in maize plants, inoculated with G. mosseae or G.
intraradices, and by Panwar (1993), who reported that
mycorrhizal symbiosis postpones the relative water
content decrease in stressed wheat plants. However,
some authors have shown that under drought situations
mycorrhizal inoculation did not change leaf RWC (Diallo
et al., 2001; Davies et al., 2002; Goicoechea et al., 2005),
although in our study similar results were found only
under moderate water stress conditions. Moreover, AMF
symbiosis can affect the structure, chemistry, and
biology of soils (Miller and Jastrow, 2000). Bethlenfalvay
and Linderman (1992) have suggested that AMF
modification of soil properties may be more important
than direct AMF modification of plants, in terms of the
mechanisms responsible for AMF effects on plant
behavior. In particular, it appears likely that AMF
symbiosis may influence soil  moisture retention
properties (Augè et al., 2001), with consequent effects on
plants water relations. In addition, hyphae may increase
soil-to-root contact in drying soils (Davies et al., 1992).
Better growth of AMF plants in drying soils may be
related to improved exploitation of bound water,
providing access to soil water below permanent wilting
potential (Franson et al., 1991). In our study, during the
recovery period leaf RWC of mycorrhizal plants was
higher than that of non-mycorrhizal ones, but this is at
least partially due to the fact that these plants have
higher RWC at the time of rewatering. We observed that
mycorrhizal plants were able to postpone the onset of
wilting by 2 or 3 d on moderate or on severe stress
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Figure 5. Foliar chlorophyll concentration in non-
mycorrhizal (NM) and mycorrhizal (M) wheat plants
inoculated with Glomus claroideum under well-watered
conditions (C), moderate water stress (MoSt), severe water
stress (SeSt), moderate water stress followed by
rewatering (MoRw) or severe water stress followed by
rewatering (SeRw). Vertical bars represent SE (n = 10).
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Figure 6. Foliar total protein concentration in non-
mycorrhizal (NM) and mycorrhizal (M) wheat plants
inoculated with G. claroideum under well-watered
conditions (C), moderate water stress (MoSt), severe water
stress (SeSt), moderate water stress followed by
rewatering (MoRw) or severe water stress followed by
rewatering (SeRw). Vertical bars represent SE (n = 10).
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respectively, in agreement with the results of Panwar
(1993) and Amerian et al. (2001). The present results show
that inoculation by G. claroideum did not have any effect
on total leaf protein concentration either under well-
watered, moderate water stress or rewatering conditions.
Under severe water stress inoculated plants increased
total protein concentration; a similar trend was found by
Ruiz Lozano et al. (1995), who reported that total protein
concentrations during drought stress were higher in
mycorrhizal than in non- mycorrhizal plants. However,
protein accumulation due to this beneficial plant-fungus
association has to be further elucidated.

The loss of leaf chlorophyll concentration in wheat
plants under water deficit has been reported previously
(Beltrano et al., 1999). Our results show that either
moderately or severely stressed mycorrhizal plants had
significantly higher chlorophyll concentration compared
to non-mycorrhizal plants. This is possibly due to the fact
that at low soil water potential mycorrhizal plants can
absorb more water than non-mycorrhizal ones, as
mentioned by Porcel and Ruiz-Lozano (2004). These
results are in agreement with those previously found by
Sánchez-Blanco et al. (2004) and Morte et al. (2001) who
detected higher chlorophyll  concentrations in
mycorrhizal plants subjected to drought stress. In
addition, Mathur and Vyas (2000) concluded that
arbuscular mycorrhizal root colonization increased
chlorophyll synthesis, which could be associated with
higher photosynthesis rates and plant growth.
Furthermore, our data demonstrate that rewatered
inoculated plants maintained the leaf chlorophyll
concentration.

Adverse environmental factors cause cell membranes
to lose selective permeability, cellular integrity and
capacity for retention of intracellular substances
(Lukatkin, 2003). The cellular membrane dysfunction due
to water stress causes an increase in the permeability and
ion leakage (Beltrano et al., 1999). Our data show that
under water stress AMF symbiosis improved membrane
integrity, as also noted by Feng et al. (2002) in maize
under salinity stress conditions. Mycorrhizal plants also
showed significantly diminished cell solute leakage after
rewatering, to the extent that inoculated rewatered plant
values were close to those of well-watered ones. Our data
demonstrate that the normal status of cell membranes is
restored more efficiently in mycorrhizal than in non-

mycorrhizal plants. i.e. Glomus claroideum could help
recover cell membrane permeability in wheat plant leaves.

The increase in cell  membranes leakiness is
interpreted as an injury and loss of membrane integrity
associated with a decreasing RWC, and this might
accelerate senescence processes (Thompson, 1988). The
higher chlorophyll concentration and the decrease of the
solute leakage in inoculated plants, variables used as
senescence markers in green tissues, indicated that
mycorrhizal activity could protect the plant against
drought and postpone the senescence syndrome.

Overall, our data show that mycorrhizal colonization
in wheat under water stress conditions has a beneficial
effect on water status, enhancing plant water uptake,
minimizing the decrease of leaf water content and
photosynthetic pigments, and increasing total dry
weight. When irrigation was re-established, mycorrhizal
plants showed an increase in total dry weight and
chlorophyll concentrations, and recovered cell membrane
permeability in leaves compared with non-mycorrhizal
plants. In conclusion, root colonization by G. claroideum
could be an adequate strategy to alleviate the deleterious
effects of drought stress and retard the senescence
syndrome in wheat.
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