
A Runnable Functional Formal Memetic

Algorithm Framework

Natalio Krasnogor Pablo A� Mocciola� David Pelta German E� Ruiz

Wanda M� Russoy

LIFIA� Departamento de Inform�atica� Universidad Nacional de La Plata�
C�C���� Correo Central� ����� La Plata� Buenos Aires� Rep�ublica Argentina�

E�mail	 fnatk�pablom�davp�gruiz�wandag�info�unlp�edu�ar
URL	 http���www�lifia�info�unlp�edu�ar�

Abstract

Historically� �Functional Programming� �FP for short� ��	 has been associated with
a small scope of applications� mainly academic
 The computer science community
did not pay enough attention to its potential� perhaps due to the lack of e�ciency of
functional languages
 Now� new theoretical developments in the �eld of FP ���	 are
emerging� and better languages �e
g
 Haskell �
�	� Concurrent and Parallel Haskell �

�
��	� have been de�ned and implemented

Genetic algorithms �GA� are search and optimization techniques which work on a
nature inspired principle� the Darwinian evolution
 The corner idea of Darwin theory
is that of natural selection
 The concept of natural selection is captured by GA

Speci�cally� solutions to a given problem are codi�ed in the so called chromosomes

The evolution of chromosomes due to the action of crossover� mutation and natural
selection is simulated through computer code
 GA have been broadly applied and
recognized as a robust search and optimization technique
 GA combined with a local
search stage were called �Memetic Algorithms� after ���	

In this paper a functional framework for formal memetic algorithms �
�	 is intro�
duced
 It can be easily extended� by subclassi�cation of the class hierarchy� to provide
genetic algorithm specialization �memetic algorithm� genetic algorithm with islands of
possible solutions� etc� and additional genetic operators� behavior
 To run the frame�
work over a particular problem� a proper encoding of chromosomes should be provided
with an instantiation of the genetic operators
 We claim that functional programming
languages� at least the one in which our framework has been developed �Haskell�� have
reached the necessary maturity to deal with combinatorial optimization problems

Keywords� Functional Programming� Memetic Algorithm�
Combinatorial Optimization

�Pablo Mocciola is partially supported by
Fundaci�on Antorchas�
yAuthors appear alphabetically

A Runnable Functional Formal Memetic

Algorithm Framework

� Introduction

Historically� �Functional Programming� �FP for short� ��	 has been associated with a small
scope of applications� mainly academic
 The computer science community did not pay
enough attention to its potential� perhaps due to the lack of e�ciency of functional lan�
guages
 Now� new theoretical developments in the
eld of FP ���	 are emerging� and
better languages �e
g
 Haskell ���	� Concurrent Haskell ���	� have been de
ned and imple�
mented
 Also� the gap between theory and practice is smaller in this paradigm than that
of other paradigms� making FP a good choice for developing simulation and optimization
programs ���	
 Traditionally� all programs for optimization problems have been written in
C� C�� or Ada� this builds a
rewall between developers and end�users

Genetic Algorithms are suitable to be modeled with a lazy concurrent functional lan�

guage for many reasons�

� non�computer�science people can think in a very high abstraction level and map
their ideas� almost directly� to functional pseudo�code�

� the learning curve of a FP language is smoother than that of an imperative one�
bridging the gap between developers and users�

� functional code is concise�

� many optimization processes are intrinsically parallel and FP is specially adequate
for managing parallelism�

� the use of lazy languages avoids the construction of many feasible solutions until
they are needed �if ever��

The paper is organized as follows
 Section � recalls a short review of genetic and
memetic search
 Section � is devoted to some related approaches which have greatly in�u�
enced our work
 In section � we show the framework�s system de
nition and architecture
and show how to implement it and instantiate a problem encoding
 Two NP optimization
problems are showed as tests bed for our framework in section �
 Finally� section � is
devoted to conclusions and future works

� Genetic and Memetic Search� a Short Review

Genetic algorithms �GA� are search and optimization techniques which work on a nature
inspired principle� Darwinian evolution
 In ����� the
rst edition of �On the origin of
species by means of natural selection� or the preservation of favoured races in the struggle
of life� appeared
 Shortly known as �The origin of species�� Darwin�s work became one of
the most read book of the century
 The corner idea of Darwin�s theory is that of natural
selection
 As species give rise to many more individuals than could survive� any being
that shows a variation that is favorable to its survival will be �naturally selected� and
because of inheritance every selected being will spread its new and modi
ed shape ��	

The concept of natural selection is captured into GA
 Speci
cally� solutions to a given
problem are codi
ed in the so called chromosomes
 The evolution of chromosomes due to
the action of crossover� mutation and natural selection are simulated through computer
code
 GA have been broadly applied and recognized as a robust search and optimization

technique
 For a survey of GA� Memetic Algorithms�MA� and a comprehensive list of
referred papers browse at ���	

In ��	� J
 Holland� introduced to the scienti
c community the genetic algorithms as are

known today
 Basically� it consists of a population that is a set of chromosomes
 Each
chromosome is formed by a sequence of genes
 Originally genes� and hence chromosomes�
were sequences of bits� where each sequence of bits represented a solution to a �part�
of a given problem or the speci
cation of some feature of the individual codi
ed by the
chromosome
 Let us clarify this with an example
 Suppose we are dealing with the
following NP optimization problem��

De�nition � Maximum Constrained Partition�MCP�

� INSTANCE� Finite set A and a size s�a� � Z� for each a � A� element a� � A�

and a subset S � A�

� SOLUTION� A partition of A� i�e�� a subset A� � A such that
P

a�A� S�a� �P
a�A�A� S�a��

� MEASURE � Number of elements from S on the same side of the partition as a��

and we wish to use genetic algorithms to
nd near optimal solutions
 First� an encoding
must be found� that is� we need to specify how a solution will be represented within a
chromosome
 For example we may want to associate a bit array to a partition� where
position i in the array is zero if the ith element of A is in the
rst partition or a non�zero
value otherwise

If we have the following instance of MCP�

� A � f��� �� �� ��� �� �� �� �g

� s�x� � id�x��x � A

� a� � �

� S � f�� �� �� ��g

In this case a chromosome can be represented as a sequence of eight bits� i
e
� Cr� �
��� �� �� �� �� �� �� �� means that the two partitions are A � f��� �� �g and A� � f�� �� �� ��� �g
where

P
a�A s�a� �

P
a�A id�a� �

P
a�A a� �� and

P
a�A� s�a� �

P
a�A� id�a� �

P
a�A� a �

��
 The quality of the solution Cr� or its �
tness� value� as one can suspect� is given by
the measure as stated in the problem de
nition� f�Cr�� � �
 We should mention that
part of the success applying GA to real life applications is due to the fact that no one
needs to know how to construct a solution� furthermore� a way to describe how a solu�
tion looks like is needed
 GA are blind symbolic optimizers that operate over �building
blocks�
 If we are interested in
nding near optimal con
gurations we only need to pro�
vide a way in which solutions� if found� could be easily evaluated and recombined� that
is� we are assuming that problems are decomposable
 Now� imagine that we do not only
have this feasible solution� Cr�� but also a set of chromosomes� a population of size n�
P � fCr�� � � � � Crng
 To generate better solutions from this original set we will need
to provide mechanisms to �search� the conformational space of the problem
 In essence
there are three alternatives
 The
rst one is to randomly change some or all genes of a
chromosome� and this is what mutation is about
 The second choice is recombination

Given t chromosomes recombine them in some way producing r new chromosomes
 This
process is called crossing over
 The last one is local search
 We can allow each chromosome

�We are following �
� format for problem presentation

to enhance itself with a stage of local search�
 Standard GAs make use of mutation and
crossover� while more sophisticated applications use local search stages also
 GA com�
bined with local search were named �Memetic Algorithms� after ���	
 In our example�
P � fCr� � ��� �� �� �� �� �� �� ���

 � Crk � ��� �� �� �� �� �� �� ��� � � �g
 In this way� chro�
mosome Cr� induces partitions A� � f��� �� �g� A� � � f�� �� �� ��� �g and Crk partitions
Ak � f��� ��g� Ak � � f�� �� �� �� �� �g where f�Cr�� � � � f�Cr�� � �
 From Cr� and Crk
it is possible to produce Cr���k� � ��� �� �� �� �� �� �� �� as an o�spring taking genes �� �� �� �
and � from the
rst parent and the others from the second one
 When Cr���k� is evaluated�
f�Cr���k�� � �� its
tness happens to be worse than its ancestors�
 Because probabilities
of survival and mating are proportional to
tness� it is unlikely that this new chromosome
will spread into the population
 The mutation process can be viewed as complementing a
given number of bits in a chromosome� that is� mutation puts zero where there was a one
and a one where a zero was found
 Arti
cial selection operates over the entire population
once mutation and crossover� eventually local search� were already applied
 There are a
number of di�erent ways to implement it� but it can be viewed as a process that operates
over a set composed by the original population� whose size was n� and the set of o�springs
of size k
 From this set of n� k chromosomes� the best n are selected� rejecting the other
ones

Now that we have already introduced the main concepts of GA� we are in position to

give a sketch of the �canonical genetic algorithm�

��� Start with a randomly generated population

of chromosomes � e�g�� candidate solutions

to a given problem ��

��� Repeat until finalization	criteria is met

����� Apply genetic operators �crossover and

mutation� to the population�

����� Calculate the fitness of each chromosome in

the population�

���
� �� if MA� run local search with each

chromosome ��

����� Apply selection and get a new population�

�
� Output best chromosome�

The above pseudocode also belongs to a Memetic Algorithms when the line with the
���� is instantiated

GA and MA were applied in a number of di�erent areas� i
e
� optimization� automatic

programming� machine and robot learning� economic models� immune system models�
ecological models� populations genetic models� interaction between evolution and learning
and models of social systems
 For a survey refer to ���	

� Some Related Work

In this section we comment on three di�erent approaches� with their own �pros cons��
which have greatly in�uenced our work
 Nevertheless� space precludes describing every
proposal in detail
 These works were chosen because� in some sense� they are representa�
tives of the sort of work that have been done within the GA community to provide GA
tools

��� Genesis

In ��	 the Genetic Search Implementation System �GENESIS Version �
�� was described

This system was written to promote the study of genetic algorithms for solving generic

�In this case we departure from Darwinian evolution and we enter Lamarck�s Kingdom

problems that involve function minimization
 Grefenstette�s work considers genetic al�
gorithms as task independent optimizers
 Under this design� users should only provide
an �evaluation� function �
tness�
 Chromosomes are represented by bit strings where an
alternative individuals� representation using vectors of real numbers �user�level represen�
tation� might be provided
 We have found that using GENESIS with nontrivial problems
becomes very di�cult mainly due to the constraint in the representation of solutions

Also�the system is quite di�cult to extend and modify

��� Genetic algorithms in Haskell with polytypic programming

Vestin�s master thesis ���	 presents a genetic algorithm in Haskell ���	 that uses poly�
typic programming ���	 and Haskell�s class system ���	
 Due to the use of polytypism�
the program is easily extended to solve new problems using the same algorithm
 A pow�
erful representation�free GA is implemented
 In this work crossover and mutation are
programmed via polytypic functions
 Polytypic functions are de
ned by induction on the
structure of data types
 There is only one function de
nition� but instances for every
data type on which it is applied
 In this way� Vestin�s GA can be applied to a plethora
of chromosomes representations without changing anything in the original GA
 We will
discuss later some limitations to Vestin�s work

��� Formal Memetic Algorithms

The purpose of the work presented in ���	 is to formalize memetic algorithms and to provide
a uni
ed algebraic framework for considering both memetic and genetic algorithms
 The
authors de
ne a set of representation�independent operators and� as test bed� they optimize
over TSP instances
 Radcli�e�s work is a bridge between imperative implementation of
GA and functional ones
 The referenced work de
nes a representation function � � S �� C�
where S is the space of solutions to a given problem and C the set of chromosomes
 The

tness is de
ned as a function f � C �� ��
 A hill�climber operator H is de
ned in
terms of the representation space C� a move operator Q and the subspace of CQ of local
optimal under the move operator Q� that is� H � C 	 KH �� CQ� where KH is a control
set
 Crossover is characterized as a function that takes two chromosomes� a control set
and returns a chromosome� X � C 	 C 	 KX �� C
 The mutation is a function of the type
M � C 	 KM �� C
 A genetic algorithm is then de
ned as a reproductive function of

type Rg � C 	 C 	 KM 	 KX �� C where Rg�x� y� kM� kX �
def
� M�X �x� y�kX �� kM�
 If a

hill�climber is de
ned and used the memetic reproductive plan becomes Rm � CG 	 CG 	

KH 	 KM 	 KX �� CG being Rm�x� y� kH� kM� kX �
def
� H�M�X �x� y�kX �� kM�� kH�
 With

this de
nitions we can try to develop a �runnable� formal memetic algorithm� and this
goal will be reached using a functional language

� System De�nition and Architecture

Our research is focused in developing a runnable functional GA framework for
nding
approximate solutions to combinatorial problems� the framework should provide�

� A tool for developing combinatorial optimization applications in which the optimiza�
tion core can be built as an instance of a genetic algorithm

� The instantiation of various kind of crossovers� mutations� selection procedures� local
search heuristics� etc
 These features provide a solid ground for experimentation on
the GA
eld per se

� The ability to test a given problem under di�erent kind of individuals� encoding and
alternative genetic operator

� The possibility to choose between an isolated population structure and population
islands with migration operators� being synchronous or asynchronous

The architecture of the application consists of three main modules� genetic algorithm
class hierarchy� population module� and problem module
 The
rst one determines a
hierarchy of speci
c genetic algorithms
 Each particular class of genetic algorithms is
speci
ed with two sets of operations
 One set is user�dependent and de
ned according to
the particular problem to be solved
 The other set contains default functions which can
be rede
ned to specify alternative behavior
 The population module is an abstract data
type that encapsulates representation and functions about the population management

A population is a collection of genomes or individuals
 When the GA is to be used
a problem must be speci
ed in terms of its own parameters� GA parameters and an
appropiate encoding
 In
gure � an object�like chart of the system is presented

��� Implementation Issues

The framework is under development in Haskell ���	� a pure functional programming lan�
guage that supports high order functions� lazy evaluation� class system and modules
 It
is worth to mention that the
rst prototype of our system was built using the Hugs inter�
preter ���	
 In what follow we will brie�y describe the main aspects of our implementation

����� Population Module

Because genetic algorithms are continously working with the population it should be care�
fully implemented
 It is codi
ed by an abstract data type with the following representation
and operations respectively��

data Population a
 Pop �Array Integer a�

newPopulation �� �a� �� Population a

addPopulation �� Population a �� �a� �� Population a

individual �� Population a �� Integer �� a

totalFitness �� Population a �� b

best �� Population a �� b

average �� Population a �� Double

size �� Population a �� Integer

forAll �� �a �� IO a� �� Population a �� IO �Population a�

����� Genetic Algorithms Class Hierarchy

A genetic Object �knows� how to�

� Compute
tness

� Set up the matting pool

� Generate o�springs

� Produce mutations

�contexts were omited

which are user�dependent operations

The hierarchy of possible genetic algorithms is structured under Haskell�s class system

where the main class is GenObject� it speci
es the basic genetic algorithm�s behaviour
and problem templates
 Nevertheles the above functions are ment to be provided by
the user� the main operations of the genetic algorithm skeleton are given by the default
implementation
 A sketch of the code is presented below

class GenObject a where

��given by the user

fitness �� Num b
� a �� b

newGenObj �� IO a

matingPool �� Population a �� IO ��a��

cross �� �a� �� IO a

mutate �� a �� IO a

��default

initialization �� Int �� IO �Population a�

crossover �� Double �� Population a �� IO �Population a�

mutation �� Double �� Population a �� IO �Population a�

selection �� Int �� Population a �� IO �Population a�

geneticAlg �� Params �� IO�Population a�

Each kind of genetic algorithm specialization �memetic algorithm� genetic algorithm
with islands of possible solutions� etc� is implemented by specialization of the hierarchy
class

The genetic algorithm body follows basically the steps presented above as �canonical

genetic algorithm��

geneticAlg �� Params �� IO �Population a�

geneticAlg params

do let i
 iterations params

sizePop
 sizePopulation params

pop �� initialization sizePop

doit i pop

where doit n pop

if n

� then return pop

else

let xPro
 xProbability params

mPro
 mProbability params

sizePop
 sizePopulation params

in

crossover xPro pop ��

mutation mPro ��

selection sizePop ��

doit �n���

����� Problem Module

To run the framework over a particular problem� a proper encoding of chromosomes should
be provided with an instantiation of genetic operators
 As an example� consider the
specialization shown in
gure � where opPRi is a particular implementation of the genetic
operator opi
 In that way� two di�erent GA instances were derived� one for each problem
and operation de
nitions
 The next few lines of code are just a template example

data ProblemRepresentation � ����

instance GenObject ProblemRepresentation where

fitness � fitnessPR

newGenObj � newGenObjPR

cross � crossPR

matingPool � matingPoolPR

mutate � mutatePR

����� Random Module

A critical subsystem is the random module
 For the
rst version of the framework� imple�
mented in Hugs� we have used Hugs� random library which is the same as the one in the
standard Haskell�s libraries
 The functions were not as e�cient as we needed� because ge�
netic algorithms make extensive use of random functions
 As a consequence we are doing
research in e�cient functional random libraries� and in order to implement them� we are
using foreign�language interfaces such as Green Card ���	

� Two NP Optimization Problems as Tests Bed

In this section we will de
ne two NP optimization problems that will be used as test
beds for our framework
 Both of them have important applications both in theory and
practice
 Also� we will report some data on the use of the functional genetic framework in
these problems
 We should mention that in this paper our goal is to test the reliability of
the framework and its usability �features� on di�erent problems
 We are not looking for
�better�than� nor �faster�than� results by means of a comparison with other approaches
to these NP optimization problems

��� Problem De�nitions

De�nition � Minimum Number Partitioning�MNP�

� INSTANCE� Sequence A � �a�� a�� � � � � an�� ai � Q
��

� SOLUTION� A sequence S � �s�� s�� � � � � sn� of signs si � f
����g�

� MEASURE � u �j
Pi�n

i�� si � ai j�

Intuitively� the problem consists in
nding a partition of the sequence A into two
subsets such that the sum of elements in each one is more or less the same
 The problem
Partition is a special case when u � �
 It was shown NP� complete by R
Karp in ����

The importance of MNP as a test bed is based in the fact that many decision problems
are reducible to MNP decision version� for example� Bin Packing� Knapsack� Open�Shop
Scheduling and others
 This problem has been approached using simulated annealing�
genetic algorithms� neural nets and approximation algorithms
 For an interesting comment
on MNP see ��	

De�nition � Maximum Betweenness�MB�

� INSTANCE� Finite set A� collection C of ordered triples �a� b� c� of distinct ele�

ments from A

� SOLUTION� a one�to�one function f � A �� �� � � � j A j	�

� MEASURE � Number of triples where either

f�a� � f�b� � f�c� or f�c� � f�b� � f�a��

One of the main goals of the Genome Project is to sequence and map the whole human
genome
 To accomplish that work� DNA is cut into pieces named clones
 Each clone
is studied and replicated
 The aim of the mapping stage is to reconstruct the original
placement of each clone within the complete DNA strand
 In ��	 it is shown that two
simple models of physical mapping are NP� Complete reducing one of them to MB� which
in turns was shown to belong to this class by Opatrny ���	

��� Results

We have instantiated the genetic framework to solve the problems described above
 We
have run two sets of experiments� the
rst one using Hugs interpreter for Windows ��
operating system in a PC pentium processor
 The second set of experiments were done on a
Sun Solaris operating system within a Sun Sparc Station ��
 In the sequel we will comment
about these two experimental settings
 It is worth noting that the implementation done
on the PC was a prototype

	���� Hugs Prototype

Figure � shows results for MNP over the following instance ������������������������������
�����	� whereas
gure � and
gure � display data for MB
 The instances for MB were�
instance � � ���a���b���c��� ��f���a���d��� ��c���j���l�����a���c���h��� ��c���a���j��� ��g���h���i��	 and in�
stance � � ���f���e���a��� ��b���g���m��� ��c���f���d��� ��e���a���d��� ��h���m���l��� ��b���c���h��� ��e���b��
�j��� ��g���h���i��	

Crossover and mutation probabilities were
xed in �
�� and �
� respectively
 Simu�

lations were run using various population sizes until a
xed number of generations was
reached

For the intance of MNP problem the optimal solution is �
 The table shows that the

optimal values could be reached with a small population size and few generations
 It has to
be noted that� in one case� the optimal solution appeared in the random initial population
�generation ��

In the second problem� the optimal values are not known for these instances but a

naive upper bound is the number of triples� � in the
rst case and � in the second
 As
it is expected� best solutions �for equal populations sizes� could be reached with higher
number of generations

As a preliminary performance test we include the table presented a column with the

number of reductions made by the Hugs interpreter
 Note that the reductions� number
scales linearly with population size
 In order to show the ease of use� it must be considered
that only a few changes in the
rst problem GA code were needed to deal with the second
problem

	���� Haskell Implementation

In this section a time analysis is done by comparing our application with two implemen�
tations �in Haskell and C language� of exhaustive search algorithms

The simulations were run over intances of the MNP problem with sequences of ��� ���

��� �� and �� random elements with values in the range � � � � ��
 In this case� the crossover
and mutation probabilities of the GA were
xed in �
�� and �
�� respectively� whereas the
population size and generation number were set up �� and �� respectively

A time comparison among the three programs is showed in
gure �
 It has to be noted

that in the
gure� the time�s scale is measured in seconds and using a logarithm scale
 As
we expect� both exhaustive algorithms rise exponentialy with the instance size� whereas
the time of GA remains stable below � seconds and depends only on the population size

We conclude that the C version of the exhaustive algorithm is worthwile for intances with
�� or less elements� while our Haskell framework should be used for bigger instances

� Conclusions

We have used Haskell�s class system to develop a framework of functions that implements
the basic functionality of a GA
 In contrast with other approaches� we allow the user
to choose chromosomes encoding and the way crossover� mutation and selection operates
�provided that the default behavior is not enough�
 In that way� a standard GA can be
easily extended using the system class hierarchy

The framework provides a base to experiment with evolutive algorithms that have

arbitrary representation of population and operators
 Moreover� it decreases the amount
of work and coding needed for each new application by means of code reuse

Goldberg in ��	 states that GA are robust optimization methods because they reach the

balance between e�ciency and e�cacy necessary for �survival� in many di�erent contexts

Our framework introduces another dimension to GA tools� the ease of use� and a tight
relation between formal memetic algorithms and practitioners

	 Future Work

Many lines of research and future work remains to be done
 Due to the fact that genetic
algorithm operations could be thought of as concurrent processes that share resources �i
e

the genome population� we will work in a concurrent!parallel version of the framework

Moreover� we will use Vestin�s idea to generalize genetic operators by polytyping
 Vestin�s
work has the limitation that di�erent kind of genetic operators are left aside� while our
work is limited by not using the ideas of Vestin
 We think that a powerful tool for GA
experiencing could be made if we incorporate in our framework not only delegations �as
it is already programmed� but also polytyping

From this work we have learned that the functional formal memetic algorithm is a

powerful tool to express and solve NP optimization problems in an easy way
 Exhaustive
pro
ling remains to be done having in mind� size of the intances� non�toy problems�
memory used� speed up times� etc

Also� the genetic algorithm framework is being tested in BioCom group	 under di�erent

problems raised from combinatorial optimization and computational biology� in particu�
lar� the Traveling Salesman Problem and the Protein Folding Problem
 Futhermore� an
instance of the GA framework is being used in a genetic programming setting where rules
of cellular automata are evolved to solve a certain task ��	

References

��� Richard S� Bird and Philip Wadler� Introduction to Functional Programming� Prentice Hall� �����

�
� P� Crescenzi and V� Kann� A compendium of np optimization problems�
URL http���www�nada�kth�se�theory�problemlist�html�

��� C� Darwin� El Origen de las Especies� Ediciones Sarpe� �����

��� E� De la Canal� N� Krasnogor� D� Marcos� D� Pelta� and W� Rissi� Encoding and crossover mistmatch
in a molecular design problem� Accepted to present at The workshop of Arti�cial Intelligence in Design
Conference� July ����� Lisboa� Portugal�

�http���www�lifia�info�unlp�edu�ar��natk��biocom

��� F� D��az� A�and Glover� Hassan M� Ghaziri� M� Gonz�ales� J�L�and Laguna� Moscato P�� and Fan T�
Tseng� Optimizaci�on Heur��stica y Redes Neuronales � en Direcci�on de Operaciones e Ingenier��a�

��� David� E� Goldberg� Genetic Algorithms in Search� Optimization� and Machine Learning� Addison�
Wesley Publishing Company� Inc�� January �����

��� M�C� Golumbic� H� Kaplan� and R� Shamir� On the complexity of dna physical mapping� Advances
in Applied Mathematics� ����	
���
��� �����

��� J�J� Grefenstette� A user�s guide to genesis	 Version ���� October �����
URL ftp���ftp�aic�nrl�navy�mil�pub�galist�src�genesis�tar�Z �

��� J�H� Holland� Adaptation in Natural and Arti�cial Systems� MIT press� Cambridge� MA� second
edition� ���
�

���� J� Jeuring and P� Jansson� Polytypic programming� pages ������� Number ��
� in LNCS� Springer�
Verlag� �����

���� Johan Jeuring and Erik Meijer� editors� Advanced Functional Programming� LNCS ��	� Springer�
Verlag� May �����

��
� Mark P� Jones� Hugs ��� � the Haskell user�s Gofer system� User manual� Technical report� Department
of Computer Science� University of Nottingham� August �����

���� M�P� Jones� Functional programming with overloading and higher�order polymorphism� Advanced
Functional Programming�� LNCS �
�� May �����

���� H�W� Loidl� Granularity in Large�Scale Parallel Functional Programming� PhD thesis� Department
of Computing Science� University of Glasgow� March �����

���� M� Mitchell and S� Forrest� Genetic algorithms and arti�cial life� Technical report� Santa Fe Institute�
Working Paper ��������
� to appear in Arti�cial Life�

���� P� Moscato� Memetic algorithms� home page�
URL http���www�densis�fee�unicamp�br��moscato�memetic home�html�

���� P� Moscato� On evolution� search� optimization� genetic algorithms and martial arts	towards memetic
algorithms� Technical report� CalTech Concurrent Computation Program Report �
�� CalTech�
Pasadena CA� �����

���� T� Nordin and SL Peyton Jones� Green card	 a foreign�language interface for haskell� In In the
Proceedings of the Haskell Workshop� Amsterdam� June �����

���� J� Opatrny� Total ordering problems� SIAM J
 Computing� ����	�������� �����

�
�� John Peterson� Kevin Hammond� et al� Report on the programming language Haskell� a non�strict�
purely functional language� Version ���� Technical report� Yale University� May �����

�
�� John Peterson� Kevin Hammond� et al� Report on the programming language Haskell� a non�strict�
purely functional language� Version ���� Technical report� Yale University� April �����

�

� Simon L Peyton Jones� Andrew Gordon� and Sigbjorn Finne� Concurrent Haskell� InACM Symposium
on the Principles of Programming Languages �PoPL��
�� St�Petersburg Beach� Florida� January
�����
URL ftp���ftp�dcs�glasgow�ac�uk�pub�haskell�glasgow�

�
�� N�J� Radcli�e and P�D� Surry� Formal memetic algorithms� Technical Report EH� �JZ� Edinburgh
Parallel Computing Centre� King�s Buildings� University of Edinburgh� Scotland�

�
�� M� Vestin� Genetic algorithms in haskell with polytypic programming� Master�s thesis� Gteborg
university� �����
URL http���www�cs�chalmers�se��johanj�polytypism�genetic�ps �

�
�� Philip Wadler� editor� Journal of Functional Programming
 Special Issue on State�of�the�art Appli�

cations of Pure Functional Programming Languages� volume � ���� Cambridge University Press� July

�����

Problem 1
solved using
specialized

genetic algorithm.

parameters
representation

Problem

is instance of

Problem 1
solved using

particular
operators.

opPRi

Genetic algorithm class hierarchy Problem to be solved

-- operators given by the user
op i
-- default operations
default j

GeneticAlgorithm

-- operators given by the user
op

i
-- default operations
default

j

Specialization 1

-- operators given by the user
op

i
-- default operations
default

j

Specialization 2

Figure �� System Architecture

Population size Generations Best found Reductions Avg. Fitness
10 0 6 46029 18,2
10 10 4 970766 7
10 50 2 4610193 11
50 0 0 225241 2,12
50 10 0 5030185 5,04
50 50 0 24287463 6,12
100 10 0 10528990 8,42

Figure �� MNP � Instance �

Population size Iterations Best found Reductions Average Fitness
10 0 3 83450 1,8
10 10 4 892139 4
50 0 4 413909 1,7
50 10 5 4655925 3,82
100 10 5 9804400 3,89
25 50 5 9921521 4,36

Figure �� MB � Instance �

Population size Iterations Best found Reductions Average Fitness
10 0 4 109923 3,2
10 10 6 990434 5,6
10 50 5 4599718 4,6
50 0 6 526777 2,66
50 10 7 5273301 4,5
50 50 7 24074330 6,7
100 10 6 10920553 4,92

Figure �� MB � Instance �

0,10

1,00

10,00

100,00

1000,00

10000,00

100000,00

15 20 25 27 30

Size instances

T
im

e
(i

n
 s

ec
.) Optimo C

Optimo Haskell

Framework

Figure �� Time comparison

