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ABSTRACT

Feaures such as fast resporee, storage dficiency, fault tolerance and gracdul degradationin face
of scarce or spurious inpus make neural networks appropriate tods for Intelligent Computer
Systems.

A neura network is, by itself, an inherently parallel system where many, extremely simple,
processng units work simultaneously in the same problem building up a cwmputational device
which possess adaptation (learning) and generali sation (recognition) abiliti es. Implementation
of neural networks roughly involve a least three stages; design, training and testing. The
semnd, keing CPU intensive, is the one requiring most of the processng resources and
depending on size and structure cmplexity the leaning process can be extremely long. Thus,
gred eff ort has been dore to develop paral el implementationsintended for areduction d learning
time.

Pattern partitioning is an approach to paralelise neural networks where the whoe net is
replicated in dfferent processors and the weight changes owing to dverse training patterns are
parall elised. This approad is the most suitable for a distributed architecure such as the one
considered here.

Incoming task alocation, as a previous gep, is a fundamental service aming for improving
distributed system performancefadlit ating further dynamic load balancing.

A Neura Network Device inserted into the kernel of a distributed system as an intelli gent todl,
alows to achieve attomatic dlocaion d exeaution requests under some predefined performance
criteriabased onresource avail abilit y and incoming processrequirements.

This paper being, a twofold propacsa, shows firstly, some design and implementation insights to
build a system where dedsion suppat for load dstribution is based ona neural network device
and seondy adistributed implementation to provide parall €l learning of neural networks using
apattern partitioning approad.

In the latter case, some performance results of the paraldised approach for leaning of
badkpropagation reurad networks, are shown. This include a o©mparison d recdl and
generdli sation abiliti es and speed-up when using a socket interfaceor PV M.

KEYWORDS: Distributed systems workload, paralelised neural networks, badkpropagation,
partitioning schemes, pattern partiti oning, system architecure.
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1. INTRODUCTION

Implementation d neural networks roughly involves at least three stages; design, training and
testing. Training, being CPU intensive, is the one requiring most of the processng resources
and depending on size and structure wmplexity the leaning process can be extremely long.
Thus, grea eff ort has been dore to develop parall el implementations intended for areduction o
learning time.

The badkpropagation (BP) leaning algorithm, due to its efficiency and wide range of
applicaions, is one of the most popuar leaning algorithm.

BP can be parallelised through two partitioning schemes; either the network or the training
pattern spaceis partitioned [9][ 14][ 15].

In network partitioning, the nodes and weights of the neural network are distributed among
diverse processors and thus the computations for node adivation, no@& erors and weight
changes are parall eli sed.

In pattern partitioning the whole neural net is replicaed in dfferent processors and the weight
changes owing to diverse training patterns are parall eli sed.

Thislast schemeis slitable for problems with alarge set of training patterns and fit properly to
run onlocd memory architedures.

In this work we only concentrate on a pattern partitioning approach with a rew variant of the
per-epoch-training regime, to parall €li se the leaning processfor transparent task allocation in
a omputer network. The variant cdled variable-epoch training regime nsists in randamly
assgning the number of epochs (epochs interval) locdly performed before any exchange takes
place Higher speed-up was the motivation d this new approach previously envisioned for a
socket-based interface[5]. In the foll owing sedions alternative parallel approadhes, suppating
architedures, the gplicaion and results concerning speedup, recdl and generalisation
cgpabiliti es when contrasted against the conventional sequential approach will be discussed.

2. PARALLELISING BACK PROPAGATION

One significant point to think abou when designing a parallel system is the paralelism
granularity of the gplications.
For parall €lising the BP leaning algorithm, we mentioned two schemes:

In network partitioning ead processor processes its correspondng task and therefore, duing
the propagation and adaptation phases the processors need to establish communicaion with
ead aher. Sincethisinteradion and exchange of datais frequently done, this £heme demands
afine granularity of parallelism. This type of paralelism is advantageous on a Multi processor
or Shared Memory Architecure[20].

On the other side, in pattern patitioning[1][10][12] a single program is replicaed among
processors and ead computer will exeaute its personal copy of this program on dfferent data
elements (patterns). As shown in figure 1, pettern partiti oning repli cates the neural net structure
(units, edges and associated weights) at ead processor and then the partitioned training set is
distributed among processors. Each processor performs the propagation and adaptation plases
for the locd set of patterns. Also, ead processor acamulates the weight changes produced by
the locd patterns, which afterward are broadcast to ather processors for updeting weight
values. Thisis dore by using TSP patterns where Ts is the size of the training set and P is the
number of processors committed to the leaning process Weight changes are performed in
parall el and then the mrrespondng acawmulated weight change vedors are exchanged between
processors. This sheme is giitable for problems with a large set of training patterns, by



permitting a more marse paralelism than the network partitioning scheme. This scheme fit
properly to run onMessage Passng Multiprocessors or Multicomputers[20].
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Fig, 1. A Pattern Partiti oning Scheme

Here we propose adistributed architedure suppating pattern partitioning for parallel training
of neural networks. In the crrespondng implementation the neural net is replicaed in eath
system node where an individual leaning processis runrning for the asciated partition d the
pattern space Hence, weight changes are computed concurrently, exported, imported and
adjusted acordingly urtil the whole parall el leaning processis completed.

3. A NEURAL NETWORK DEVICE FOR ALLOCATION OF INCOMING TASKS

As an applicaion d neura networks we used an intelli gent fadlity to automaticdly alocate, in a
computer network, a user incoming process to the most appropriate noce in acordance to its
computing requirements2].
The model assumes that:
» Therelevant performancefedaure to improve isthe resporse time for user processes.
» Processes coming to be served in this network have different demands on system resources
(CPU, Memory and I/O devices).
* The network isformed by a set of N nodes, such that ead of them can contribute with dff erent
performanceto auser processdepending onits demands.
 Every user incoming processcomes to the network through an entry node, before passng to the
exeaution nock (seeFig. 2). Processbehavior and resource requirements can be determined by a
program prafil e fil e or explicitly dedared by the incoming process
* An ewaluator modue within the Operating System kernel evauates process attributes,
requirements and system state & the processarrival time.
» Using the output of the evaluator, as inpu, a dedsor modue deddes which nock in the
network can acomplish more dficiently the process exeaution and then process migration
takesplace

Kernel towards
) ) alocaed
incoming
» Evaluator » Decisor —>
Process exeaution
node

Fig. 2 Thekernd portion d an entry node

Asasimple example, let us asaume the foll owing scenario:



We have asystem where N avail able nodes differ essentialy in Current Memory Capadty (CMC)
and MIPS provided. Due to system dynamics they also dffer in Current Available Processng
Power (CAPP). User processes are CPU intensive tasks and their main requirements are Memory
Required (MR) and Desired Resporse Time (DRT).

CMC, CAPP, MR and DRT, are eab dvided into a number of levels (high, medium and low, or
more levels). Other processes requirements on system resources, such as access to seaondary
storage, can be equally satisfied by any of the available nodes and there will nat be network
transfers (except for initia processmigration, which we assumeis equally costly for every noce).
Then the following simple dl ocaion criterion can be gplied:

» Having MR best fit satisfied, satisfy DRT by all ocating the processto the best fitted noce
(the one with minimum CAPP fulfilling process requirement). In case of equa CAPP
values for more than ore nocke then nock seledionisrandam.

» If the strategy aso considers the situation where idle nodes exists, then; if for two o more
nodes CAPP is equal, and some of these nodes is in idl€® state (1S then the processis
alocaed to that idle node. This seoond dedsion attempts to balance the workload.

For this allocation criterion, with N system nodes, 4+5N binary inpus will suffice to depict
process requirements (4 hits) and system state (5 hits per system node), while the size of total
pattern spaceis given by:

T= [ 32(N+1)2N] _ [ 3N+1(22N + 2N )]

Becaise only legd inpus conform atraining set for the neural net, the seandterm of T excludes
the caesinwhich MRis greaer than CMC avail able.

4. PARALLEL LEARNING IMPLEMENTATION
4.1 THE ALGORITHM

The basic steps of a parall el bakpropagation learning algorithm using variable-epoch regimeis
depicted below. We recdl that, under these gproadies, duing a number (one ore more) of
epochs, the submisson d al patterns in the partition, the crrespondng computations and the
acamulation d weight changes must be performed before weights update takes place then the
next epoch interval begin.

The Parall el Training Algorithm

Repeda
1. For ead pattern
1.1 Compute the output of unitsin the hidden layer.
1.2 Compute the output of unitsin the output layer
1.3 Compute aror terms for the unitsin the output layer.
1.4 Compute aror terms for the unitsin the hidden layer.
1.5 Compute weight changes in the output layer.
1.6 Compute weight changes in the hidden layer.
2. Exchange of acaumulated weight vedors
2.1If epoch interval was readied then
send locd hidden weight vedors and ouput weight vedors.
2.2Receave remote hidden weight vedors and ouput weight vedors.

A nockis defined as being in an idle state when no tser processis runring.



3. Update weights changesin the output layer.

4. Update weights changes in the hidden layer.
Until (current error < max. accept. err.) or (number of iterations = maximum number
of iterations)

Here aparent process pawns sveral BP processes with the mrrespondng parameters.

Eadh process during the propagation plese, if epoch interval was readed, the acamulated
weight change vedor is broadcast to ahers processes and remote acamulated weight change
vedors are recaved from other processes. The reception is nat blocking, since if nothing has
arrived, the cildren go ahea. Finally, ead BP process performs the alaptation plase and
completes one goch.

Eadh children finish when the aurrent error of the neural network is lessthan the maximum
accepted error or the number of iterationsis greaer than the almissble number of iterations.

4.2 ALTERNATIVE SUPPORTS
In previous workg[5][ 6] ared implementation was built onthe processors distributed in aLAN

of workstations (multicomputers). Each process ran in a workstation. The routines used a
socket interface & an abstradion d IPC (Interprocess Communicaion) mechanism

[3I[4][16][17].
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Fig. 3. A nodein a System Architedure
for real processors.

A UDP protocol was chosen because we were working in areliable LAN and even, if a padkage
missng happens the leaning processis not be sensitively aff eded (ead processwill update the
weights with the padkages receved). Figure 3 depicts the underlying system architedure and
procedures suppating the paral el leaning processfor this approach.

The aurrrent work with PVM isdiscussed now. PVM is creaed to link computing resources and
provide to the user with a paralel platform for running their computer applicaions,
independent of the number of processorg[18][19]. PVM suppats a very efficient message-
passng model.
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Figure 4 shows an alternative suppat to implement our particular application onParall el
Virtual Madine.

5. EXPERIMENTSDESCRIPTION

Experiments covered here refer solely to the variable-epoch training regime. The variable
number of epochs locdly performed before any exchange took placewas chosen as a randam
number r between 1 and 15. Better results were observed for greaer r values, bu reported
results corresponds to average values.

Let be S thetotal pattern space The procesors training sets (ts) were subsetsof S.

For sequential training, the training set Ts was built by uniform seledion d X% of the pattern
spaces.

For parallel training the pattern spacewas divided into n subsets and ead subset was assgned
to ore procesor (virtual or nat) in parallel exeaution. The training subsets ts were built by
uniform seledion d (X/n)% of the pattern spaces.

Values for X was chosen as 30 and 60.

In what foll ows the experiment identifiersindicae:
<Training type>-<size(%) of Training Set>/<number of subsets for parall el exeaution>

To compare results, the neural net was trained sequentially (i), in perallel using socket (ii) and
in paralel using PVM (iii):

e (i) Experiments SBP-X/1: SBP-30/1 and SBP-60/1. Sze(Ts) = 30% and 606 of S
respedively.

o (ii) Experiments PBP-X/n: PBP-30/3 and PBP-60/3. Threedisjoint subsets of (X/n)% of S
were seleded and ead subset was assgned to ore processor in dfferent workstations.
Size(ts) = 10% and 2®% of Srespedively.

o (iii) Experiments PVM-X/n: PVM-30/3, PVYM-30/6, PYM-60/3 and PVM-60/6. The
software dlows any numbers of procesrs to be aeded withou any relationship to the
number of red processors. In this gate three and six digoint subsets of (X/n)% of S were
seleded respedively, and ead subset was asdgned to ore process The number n of
parallel processeswas %t to 3and 6.Sze(ts) = 10%, 5%, 20% and 106 of Srespedively.

As we were working in two stages (leaning and testing), the following parameters were used
in eat cese:



» For Sequential Procesdng, Ts (the training set of the unique neural network) was used on
the leaning stage.

» For Paral e Procesdng, onthe learning stages, ts was the locd training subset submitted to
the BP, with the acamulated weight changes vedors receved from other BP, networks
(with training subset ts, j #Z1i). For that resson, Ts= ts, [J ts, [J tss 0 ... [ .ts, was the
training set for all BP, networks at the learning stages.

In bah cases Ts and S (the whole sample space were used in the testing stage (for Recdl and

Generali sation respedively).

Figure 5 shows an example of parald partitioning scheme for experiments SBP-X/1, PBP-

X/3and PVYM-X/3:

X%of Patams

o
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During these processes, the foll owing relevant performance \ariables were examined:

Training process

Testing process

L+: Leaning time, isthe running time of the leaning algorithm.
Niter: Number of iterations needed to read an acceptable eror value while
training.

R =rcg/Size(Ts). Istherecdl ability of the neural net. Where rcg is the total
number of patterns reagnized when ony patterns belonging to the Training
Set (Ts) are presented, after leaning, to the network. The objedive is to
analyse if eat net can assmil ate (can aqquire) the learning of other networks
that were running in paral el with it.

G = gnl/Size(S). Is the combined recdl and generdlization ability. Where
Sze(S) isthe size of the Total Pattern Space ad gnl is the total number of
patterns recognized when all possgble patterns are presented, after leaning, to
the network.

SP =Lrapgoacni/ Lrapgoacnz IS the ratio between the leaning times uncer different
approaches (sequential or pardl€l).

Recsc = SP(Req - Roar) iSthe benefit-cost ratio for recdl . It indicates the benefit
of spedaling up the leaning process which is paid by the wmst of (possbly)
loasing recdl ahility.

Gengc = SP(Gsq - Gpa) IS the benefit-cost ratio for generalisation. It indicates
the benefit of speeding up the learning process which is paid by the cost of
(posshly) loosing generali sation abilit y.



6. RESULTS

As we previously said, the neura net was trained sequentialy (SBP), in parallel using socket
(PBP) and in parallel using PYM (PVM). The correspondng mean values of the performance
variables are shown in the foll owing figures and tables.
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Fig. 6 - Number of iteration reeded under sequentia and parall €l processing (best case)

As we ca observe in figure 6 a reduction, greaer than ore third in the number of iteration
nealed to achieve permissble eror values, was achieved. Results for the partitioning scheme
of 30% are shown but using either parall el partitioning approach attains smil ar results.

Table 1, isasummary of the experiments performed and their results:

Experiment | Leaning Time Recdl Generalisation
% %
SBP-30/1 1989 100 98
PBP-30/3 426.91 9785 96.84
PVM-30/3 123.33 97.84 95.71
PVM-30/6 53.05 92.8 92
SBP-60/1 5996 100 99.5
PBP-60/3 1137.66 99.33 98.83
PVM-60/3 275.66 99.91 99.73
PVM-60/6 87.22 98.97 .97.64

Table 1 —Summary of Lt Ry G results. L expressesin semndswhile Ry G are expressd in percentile
values.

Figures 7 and 8 show the aswciated lossin recdl and generalisation d the neural network for
different sizes of the training set.
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In general, the detriment of recdl and generali sation cgpabiliti es deaeases as the training set
size is incremented. Their values range from 0.09% (PVM-60/3) to 7.26 (PVM-30/6) for
recdl. In the cae of generalisation the values range from -0.23%6 (PVM-60/3) to 6% (PVM-
30/6). Oppasite to the expeded, in this case, an improvement was also deteded: PVM-60/3
adhieved a generali sation cgpabilit y better than the sequential BP.

Table 2 indicaes the speed-up in leaning time &tained through perallel processng when
different sizes of the portions of the total pattern spaceS are seleded for training the neural
network. Table 2(a) shows the ratio between the sequential learning and the parall el leaning
tlmeS( S =LT(S)/ LT(p) )

SBP-30/1 SBP-60/1
VS. VS.
PBP-30/3 | PVM-30/3 | PVYM-30/6 | PBP-60/3 | PVM-60/3 | PVM-60/6
4.65 16.12 37.49 5.27 21.75 68.74

Table 2(a) - Spead-up values achieved through parall el
processng vs. sequential processng

In general, asthe size of Tsincreases (from 30% to 60%) then an increment of the speed-up can
be observed uncer variable-epoch training.




This effed shows a substantial improvement over the per-epoch approach used in ealier
implementations. Moreover, increment of the speed-up can be observed among different
paralel implementations. Table 2(b) shows the ratio between bah peralel leaning times
(Sevm = Lresp ! Lrpvmy ).

PBP-30/3 PBP-60/3
VS. VS,
PVM-30/3 | PVM-30/6 | PVM-60/3 | PVM-60/6
3.46 8.04 412 13.04

Table 2(b) - Speed-up values achieved throughparall el processng
with PVM vs. parallel processngwith Socket

Both paralel implementations $owed comparable caability, bu PVM-X adiieved a
substantial increment in speed-up with values ranging from 3.46to 13.04times faster than
PBP-X.

It is interesting to observe in table 3 the Benefit-Cost Ratio, which gives an indicaion o a
spead-up Spoktained at the st of a detriment in recdl or generalisation. Table 3(a) shows for
PVM-X, the benefit-cost ratio for recdl ability

Recs/c = SP(Req - Roarpvi)
andtable 3(b) shows the benefit-cost ratio for generali sation abilit y

Gengc = SP(Geeq - Gparwa )-

SBP-30/)1 | SBP-30/1 | SBP-60/1 | SBP-60/1
VS. VS. VS. VS.
PVM-30/3 | PVM-30/6 | PVM-60/3 | PVM-60/6

13.96 30.29 21.66 67.71

Table 3(a) - Benefit-Cost Ratio for Recdl.

SBP-30/1 | SBP-30/1 | SBP-60/1 | SBP-60/1
VS. VS. VS. VS.
PVM-30/3 | PVM-30/6 | PVM-60/3 | PVM-60/6
7.03 6.24 - 37.35

Table 3(b) - Benefit-Cost Ratio for Generali sation

In all cases, it can be observed good ratios between benefits and costs. In the particular case of
PVM-60/3 an increment of speed-up was smultaneously deteded with an increment in
generalisation caability, hence the benefit cost ratio is not registered. This performance
variable is of greda help to insped the goodressof a paral el design for training neural nets.

7. CONCLUSIONS
A preliminary set of experiments in ou investigation o parallél training of neural networks,

using a pattern-partitioning approad, reveded that the beneficial effeds of parallel processng
can be atieved with minor capability loss



Using this technique, in this work we presented feasible dternative achitedures for a system
suppating parale leaning of badpropagation reural networks implementing a neural
network devicefor automatic task all ocaionin computer systems.

We discussed and showed results of an improved implementation wing a Paralel Virtual
Madhine gproach and a new variant cdled variable-per-epoch approad.

Most recet results were mntrasted against sequential and parallel approaches previously
implemented. In the paralel case the variable-per-epoch and the per-epoch approaches were
compared showing better performancefor the new variant.

Furthermore, we need to remark that PVM provided us a unified framework within which our
parallel application was developed in an efficient and clea manner. That resulted in a
straightforward program structure and very simple implementation. PVM transparently
manipulated all message routing, synchronization aspeds, data mnversion, message pading
and unp@ding, process group manipulation and al asped regarding heterogeneity. All these
fadors contributed to reduced development and debugging time. It worth remarking that a
more dfediveimplementation d parall el badkpropagation reural network was completed.

Finaly, at the light of the dfediveness fiowed by the distributed approach for the parallel
leaning process by means of PVM, at the present time, testing with larger number of
processors and dff erent training set sizes are being performed for diff erent neural networks.
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