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1 Robot emulatorThe robot emulator selected was Simderella, developed by Patrick van derSmagt at the University of Amsterdam in the Netherlands [11]. This systememulates a Philips PUMA like robot called OSCAR with three rotationaljoints. A diagram is presented in �gure 1. The joint 3 is coupled with thejoint 2, providing the e�ect that when the joint 2 is moved, the joint 3 ismoved automatically in the opposite direction, in such a way that the angleof the third link of the arm and the base remain constant.
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Figure 1: A diagram of OSCARThe robot arm has a camera located in the end e�ector (hand) thatprovides the distances to the target object in all x, y and z coordinates.Distances can be positive or negative depending on the position of the handrelative to the target object.The emulator provides commands to reset the arm to a default position,to move the arm by providing the o�sets to apply to the joints, and to readthe distances to the target object.2 Control ProblemThe control task can be speci�ed as follows: given a random starting positionfor the arm and a random position for the target object, move the arm toreach the target object.The camera located in the hand of the robot provides the distance tothe target object at any time. The goal state is such that the distance inthe x direction is 0, the distance in the y direction is 0 and the distance inthe z direction is 0.



The objective is to build a controller that can provide the o�sets to applysuccessively to the joints 1 and 2 to move the arm to reach the target object.The controller should have three inputs and two outputs. The three inputsare the distance in the x direction to the target object, the distance in they direction and the distance in the z direction. The outputs are the o�setsto apply to the joints 1 and 2. A diagram is presented in �gure 2.
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Figure 2: ControllerThe space in which the robot operates is speci�ed as a standard threedimensional space with three coordinates corresponding to the axis x, y andz. The joint 1 is always located at the origin. The robot arm cannot gobelow the 
oor so z values are always positive. We restrict the x values tobe positive. The resulting range for x is 0..100, for y is -100..100 and for z0..100.The target object is located in random positions in the space, but avoid-ing positions in which the arm cannot reach it. The distances obtained bythe camera can be in the range -100..100 for x, -200..200 for y and -100..100for z. Figure 3 presents some examples.
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Figure 3: Some examples: The robot arms shown here have the hands in(70,0,70) and (55,60,65) respectively, the target objects are in (55,60,65)and (0,-60,40) respectively and the distances from the hands to the targetobjects are (15,60,5) and (125.64,-40.54,25) respectively.The outputs of the control system are the o�set to be applied to thejoints. They can be positive or negative, and we restrict their values as 
oatvalues in the range -1..1, to allow smooth movements of the arm.



3 Fuzzy ControlThe �rst step in the de�nition of a fuzzy controller is the selection of thefuzzy membership functions for the input variables. We propose to chose astandard partition with the three fuzzy sets negative, zero and positive foreach input variable, as it is show in �gure 4.
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Figure 4: Fuzzy sets for the three input variablesThe selection of the fuzzy membership functions for the output variablesand the rule base construction is a more di�cult problem. Even if we selecta standard partition of seven fuzzy sets for each output variable, the de�ni-tion of the rules to consider which action should be taken for both outputvariables in all possible combination of inputs is quite di�cult.The algorithm that we propose here, allows to generate automaticallythe output fuzzy sets and the rule base.4 Symbiotic EvolutionIn a previous work, we have proposed to use symbiotic evolution to evolveneural networks that represents fuzzy systems [13]. The advantage to evolveneural networks is that at the end, we obtain a fuzzy controller that can beenhanced by traditional neural network methods.Traditional developments in genetic algorithms consider each individualin the population as a complete neural network, so all of them are evalu-



ated on an independent basis. The population converges to the dominantstructure. This convergence is desirable if it goes into the global optimum,however, usually it converges into a local optimum.When the population has converged prematurely, the genetic algorithmdoes a linear search in the solution space by just doing mutations, insteadof doing an e�cient parallel search.The basic idea of the symbiotic evolution is that the individuals of thepopulation will represent partial solutions. The goal of each individual isto be an adequate partial solution to be combined with other individuals ofthe population. As each individual is not a solution by itself, and as it mustrely on others to reach a high �tness value, it must maintain a symbioticrelation.Each partial solution must be specialized in one aspect of the problem,so in this way, it is impossible to have a premature convergence of thepopulation. The population remains diverse.The SANE (Symbiotic Adaptive Neuro Evolution) algorithm was pro-posed by Miikkulainen and Moriarty [1] [2]. The novel approach of SANE,is that it encodes one unit of a neural network as one string (chromosome).The �tness of a unit is determined by its degree of cooperation with theother units used to form the network. SANE keeps a population of unitsthat represents the hidden units in a standard feed-forward neural network.The input and output units are determined by the problem itself.SANE is very good in doing a quick e�ective search of the solution space,but it becomes very di�cult for it to reach the best solution.HSANE (Hierarchical SANE) is proposed by the same authors and over-comes this di�culty. It combines the advantages of the network level evolu-tion with the advantages of the unit level evolution. HSANE keeps two dif-ferent populations, one for the units, and another one for network blueprints.The population of units evolve into good units, and the population of net-works into good combinations of units.5 Representation of fuzzy systems as neural net-worksA fuzzy system can be represented as a �ve layers GARIC-like neural net-work [5]. For example, a simple fuzzy system with two input variables withthree fuzzy sets each one, two output variables with two fuzzy sets each one,and �ve rules, can be represented as it is shown in �gure 5.The �rst layer contains one unit for each input variable. The secondlayer contains one unit for each fuzzy set of the input variables. The thirdlayer one unit for each fuzzy rule. The fourth layer one unit for each fuzzyset of the output variable. The �fth just one output unit. The connectionmodel between layers two, three and four is based on the fuzzy rules set.
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Figure 5: Fuzzy system as a GARIC-like neural networkJust as an example, the rule 2 represented by the neural network in the�gure 5 is:if I1 is L1 and I2 is H2 then A is A1 and B is B1.6 Codi�cationA new codi�cation should be de�ned to apply HSANE to the domain ofthe fuzzy neural networks that represents fuzzy systems with more than oneoutput variable. Note that with a symbiotic approach, one string will notrepresent a complete neural network.The layer one, two and �ve are not included in the codi�cation becausethey are �xed. Only the layers three and four, and the connection patternwill be codi�ed into the strings. One string will represent one unit for eachoutput variable of the fourth layer with all the units in the layer three towhich they are connected, and all the connections between them.The following parameters are de�ned:� N : this is the number of chromosomes used to form a network and itwill determine the size of the fuzzy system obtained.� OV : this is the number of output variables and it is �xed dependingon the problem. In the case of the robot control it will be 2.� IV : This is the number of input variables and it is also �xed dependingon the problem. In the case of the robot control it will be 3.� NR: This is the maximum number of rules that can use one particularfuzzy set of an output variable. The evolutionary process will consider



this limit and it will not generate more rules with the same conse-quent. This is particularly important when the fuzzy system will beimplemented in hardware, where this restrictions apply.The �gure 6 shows two strings that codify the network from �gure 5.
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IVFigure 6: Strings that codify the network from �gure 5A string consists of a series of �elds. It starts with OV groups of three�elds. These three �rst �elds (16 bits values) will codify three 
oating pointnumbers in the range 0...1, that represent respectively the center, left spreadand right spread of the fuzzy set de�ned by a fourth layer unit (outputfuzzy set). In this way, one output fuzzy set for each output variable will becodi�ed at the beginning of the string.Following them, a series of NR groups of IV 8 bits �elds will codify howthe connections must be done to the units in layer three. Let ki (i = 1; :::; n)be the number of fuzzy sets for the input variable i. If the value d of a �eldis smaller than or equal to 127, then d modulo(ki) is the index of the inputfuzzy set of the variable i. This means that this particular fuzzy set is anantecedent of the rule node under consideration. If the value d is biggerthan 127, then no connection is made to this input variable. It is assumedthat the input fuzzy sets for each variable are numbered starting from zero.The output fuzzy sets codi�ed by these strings are shown in �gure 7. Theareas of the fuzzy sets that are outside the range 0...1 are not considered atall.7 Learning strategyThe evolutionary algorithm starts by creating the two populations, and do-ing the corresponding crossover and mutation operations. Each individualin the networks population is evaluated by creating the fuzzy system it rep-resents, and applying it to the control problem.
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BFigure 7: Output fuzzy sets codi�ed by the strings from �gure 6Each system is evaluated in 100 time steps, always starting from the restposition with the hand in (85,0,65). Four di�erent test cases are consideredwith the target object in (70,60,55), (55,45,75), (70,-60,55) and (55,-45,75).Only four cases are enough, because they include all possible movements forthe arm. They include cases to move the arm in the right-down direction,in the left-down direction, in the left-up and in the right-up direction.The fuzzy controller obtained should be able to reach a target objectlocated in any position starting from any position, even if it was generatedby just considering these four cases. The reason is that the controller doesnot know anything at all about absolute coordinates. It only considersdistances and o�sets.An incremental learning strategy is proposed to obtain controllers thatcan to reach the target object as fast as possible. The arm is allowed to beat least at 50% of the maximum distance at 50 time steps and at least at25% of the maximum distance from the moment in which the 75 time stepsare reached. If it fails to ful�ll these requirements the evaluation process forthe current test case is abandoned.The �tness function is de�ned in such a way that controllers that canreach the target object receives higher score the controllers that fail to reachit. �tness(system) = 4Xk=1(maxX� xt)2 � (maxY� yt)2 � (maxZ� zt)2where k is the evaluation index, maxX the maximum value allowed forthe distance in the x axis, and x is the distance provided by the camera atthe end of the movement sequence. maxY, maxZ, y and z are de�ned in ananalogous way.



parameter valuelow level population size 800high level population size 100fuzzy sets per output variable 7maximum number of rules per fuzzy set 2low level individuals for crossover 150high level individuals for crossover 30mutation rate 0.1Table 1: Parameters for the evolutionary algorithmThe parameters of the evolutionary algorithm are de�ned as it is shownin table 1.8 Experimental resultsAll runs of the evolutionary process were successful, it means that in everyexecution of the evolutionary process, a successful controller is obtained.The results presented here corresponds to one example of these runs.Figure 8 shows the evolution of the �tness against the number of gener-ations.
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Figure 8: Fitness evolutionFigure 9 to �gure 12 shows the plot of the distances when the fuzzycontroller obtained in generation 15 is evaluated on the four cases used forlearning. The performance is adequate as expected.The algorithm produces 7 fuzzy sets for each output variable. Theirdetails are presented in table 2.
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Figure 9: Performance at test case 1
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Figure 10: Performance at test case 2
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Figure 11: Performance at test case 3
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Figure 12: Performance at test case 4variable set center left spread right spreadSet0 -0.622 1.363 1.663Set1 -0.769 0.689 0.126Set2 0.344 0.706 1.721Joint1 Set3 0.530 0.907 1.003Set4 0.500 0.297 1.547Set5 -0.574 1.604 0.292Set6 0.647 1.046 1.400Set0 0.618 0.130 0.692Set1 -0.463 1.097 1.553Set2 0.767 0.414 1.613Joint2 Set3 -0.652 1.392 1.434Set4 -0.025 1.079 1.248Set5 -0.475 0.882 0.744Set6 0.286 1.843 0.958Table 2: Fuzzy sets produced by the algorithmThe algorithm produced 14 rules. They are presented in table 3. Therules may seem strange, but this is the usual aspect of rules when they aregenerated through an automatic procedure.The generated fuzzy controller has also a good performance starting fromdi�erent random positions, and reaching objects located in di�erent randompositions. Some examples are shown in �gure 13 to �gure 15.9 The FC-DT systemThe algorithm introduced in this paper was included in the FC-DT (FuzzyControllers Design Tool) developed by the same authors. FC-DT is a graph-



If dist-y is positive then Joint1 is Set6 and Joint2 is Set6.If dist-x is positive and dist-z is negative then Joint1 is Set6 and Joint2 is Set6.If dist-y is negative then Joint1 is Set5 and Joint2 is Set5.If dist-x is positive then Joint1 is Set5 and Joint2 is Set5.If dist-z is positive then Joint1 is Set4 and Joint2 is Set4.If dist-y is positive then Joint1 is Set4 and Joint2 is Set4.If dist-z is negative then Joint1 is Set3 and Joint2 is Set3.If dist-z is negative then Joint1 is Set3 and Joint2 is Set3.If dist-y is positive and dist-z is negative then Joint1 is Set2 and Joint2 is Set2.If dist-x is negative and dist-y is positive then Joint1 is Set2 and Joint2 is Set2.If dist-x is zero and dist-y is negative then Joint1 is Set1 and Joint2 is Set1.If dist-y is positive and dist-z is positive then Joint1 is Set1 and Joint2 is Set2.If dist-y is negative then Joint1 is Set0 and Joint2 is Set0.if dist-x is negative then Joint1 is Set0 and Joint2 is Set0.Table 3: Fuzzy rules produced by the algorithm
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Figure 13: Performance at new case with starting position at (95,25,35) andtarget position at (80,-45,60)ical tool that allows the de�nition and graphical edition of complete fuzzycontrollers. Includes the possibility to enhance fuzzy controllers by neuralnetwork algorithms and now, to generate rules and fuzzy membership func-tions for systems with more than one output variable. The fuzzy controllerscan also be enhanced by manual edition.By using the environment introduced by FC-DT, some rules and somemembership functions for the output variables can be de�ned before. Forexample, it is very easy to imagine that a kind of zero fuzzy membershipfunctions will be useful for any controller. Some rules for making no move-ments when the distances are zero could be convenient also. The evolution-ary process will create a new controller but always including the rules and
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Figure 14: Performance at new case with starting position at (73,-30,75)and target position at (100,5,45)
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Figure 15: Performance at new case with starting position at (45,-55,75)and target position at (75,-55,60)fuzzy sets de�ned previously. This inclusion of obvious rules and obviousmembership functions saves a lot of learning time.An inverted pendulum system, and now also a robot arm emulator hasbeen included in the distribution. The system and on-line documentation isavailable in the home web page of FC-DT, at http://www-pr.unsl.edu.ar/projects/fc-dt. The reader can reproduce the results shown here just byrunning the system, and of course, can experiment with new problems.10 ConclusionsThe enhanced version of the evolutionary algorithm presented in this papercan successfully generate fuzzy controllers for the robot arm control prob-lem. The algorithm is very robust because it can obtain successful fuzzy



controllers in every run. The quality of the obtained fuzzy controllers canstill be enhanced by running the neural network based algorithm that wasproposed in previous works [12] [13].The incremental learning strategy allows to reduce the learning time,because systems that fail to go in the right direction from the beginning,are discarded as soon as they fail to ful�ll the requirements.The codi�cation proposed is general and can be applied to other prob-lems as well.The system is freely available allowing other members of the researchcommunity to experiment with it.References[1] D. E. Moriarty and R. Miikkulainen (1996). E�cient ReinforcementLearning through Symbiotic Evolution. Machine Learning, 22:11-32.[2] D. E. Moriarty and R. Miikkulainen (1996). Hierarchical Evolution ofNeural Networks. Technical Report AI96-242. Department of ComputerSciences, The University of Texas at Austin.[3] D. D. Leitch (1995). A New Genetic Algorithm for the Evolution ofFuzzy Systems. PhD Thesis. Department of Engineer Science, Univer-sity of Oxford.[4] A. G. Barto, R. S. Sutton and C. W. Anderson (1983). Neuronlike adap-tive elements that can solve di�cult learning control problems. IEEETransactions on Systems, Man, and Cybernetics, SMC-13:834-846.[5] H. R. Berenji and P. Khedkar (1992). Learning and Tuning FuzzyLogic Controllers Through Reinforcements. IEEE Transactions on Neu-ral Networks, vol. 3, no. 5.[6] C. L. Karr (1991). Design of a Cart-Pole balancing Fuzzy Logic Con-troller using a Genetic Algorithm. SPIE Conf. on Applications of Arti-�cial Intelligence, WA.[7] M. A. Lee and H. Takagi (1993). Neural Networks and Genetic Algo-rithms Approaches to Auto-Design a Fuzzy System. FLAI'93. SpringerVerlag, Berlin.[8] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-chine learning. Reading, MA, Addison Wesley.[9] Z. Michalewicz (1994). Genetic Algorithms + Data Structures = Evo-lution Programs. Springer Verlag, 2nd ed.
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