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Abstract

Robot arm control is a difficult problem. Fuzzy controllers have
been applied succesfully to this control task. However, the definition
of the rule base and the membership functions is itself a big problem.

In this paper, an extension of a previously proposed algorithm
based on neuro-genetic techniques is introduced and evaluated in a
robot arm control problem.

The extended algorithm can be used to generate a complete fuzzy
rule base from scratch, and to define the number and shape of the
membership functions of the output variables. However, in most con-
trol tasks, there are some rules and some membership functions that
are obvious and can be defined manually. The algorithm can be used
to extend this minimal set of fuzzy rules and membership functions,
by adding new rules and new membership functions as needed.

A neural network based algorithm can then be used to enhance
the quality of the fuzzy controllers, by fine tuning the membership
functions.

The approach was evaluated in control tasks by using a robot emu-
lator of a Philips Puma like robot called OSCAR. The fuzzy controllers
generated showed to be very effective to control the arm.

A complete graphical development system, together with the emu-
lator and examples is available in Internet.
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tionary algorithms.
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1 Robot emulator

The robot emulator selected was Simderella, developed by Patrick van der
Smagt at the University of Amsterdam in the Netherlands [11]. This system
emulates a Philips PUMA like robot called OSCAR with three rotational
joints. A diagram is presented in figure 1. The joint 3 is coupled with the
joint 2, providing the effect that when the joint 2 is moved, the joint 3 is
moved automatically in the opposite direction, in such a way that the angle
of the third link of the arm and the base remain constant.
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Figure 1: A diagram of OSCAR

The robot arm has a camera located in the end effector (hand) that
provides the distances to the target object in all z, y and z coordinates.
Distances can be positive or negative depending on the position of the hand
relative to the target object.

The emulator provides commands to reset the arm to a default position,
to move the arm by providing the offsets to apply to the joints, and to read
the distances to the target object.

2 Control Problem

The control task can be specified as follows: given a random starting position
for the arm and a random position for the target object, move the arm to
reach the target object.

The camera located in the hand of the robot provides the distance to
the target object at any time. The goal state is such that the distance in
the z direction is 0, the distance in the y direction is 0 and the distance in
the z direction is 0.



The objective is to build a controller that can provide the offsets to apply
successively to the joints 1 and 2 to move the arm to reach the target object.
The controller should have three inputs and two outputs. The three inputs
are the distance in the z direction to the target object, the distance in the
y direction and the distance in the z direction. The outputs are the offsets
to apply to the joints 1 and 2. A diagram is presented in figure 2.

distancex —» — offsetjoint 1
distancey —=| CONTROLLER
distancez — — offset joint 2

Figure 2: Controller

The space in which the robot operates is specified as a standard three
dimensional space with three coordinates corresponding to the axis z, y and
z. The joint 1 is always located at the origin. The robot arm cannot go
below the floor so z values are always positive. We restrict the = values to
be positive. The resulting range for z is 0..100, for y is -100..100 and for z
0..100.

The target object is located in random positions in the space, but avoid-
ing positions in which the arm cannot reach it. The distances obtained by
the camera can be in the range -100..100 for z, -200..200 for y and -100..100
for z. Figure 3 presents some examples.
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Figure 3: Some examples: The robot arms shown here have the hands in
(70,0,70) and (55,60,65) respectively, the target objects are in (55,60,65)
and (0,-60,40) respectively and the distances from the hands to the target
objects are (15,60,5) and (125.64,-40.54,25) respectively.

The outputs of the control system are the offset to be applied to the
joints. They can be positive or negative, and we restrict their values as float
values in the range -1..1, to allow smooth movements of the arm.



3 Fuzzy Control

The first step in the definition of a fuzzy controller is the selection of the
fuzzy membership functions for the input variables. We propose to chose a
standard partition with the three fuzzy sets negative, zero and positive for
each input variable, as it is show in figure 4.

negative zero positive
distance-x
-100 0 100
negative zero positive
distance-y
-200 0 200
negative zero positive
distance-z
-100 0 100

Figure 4: Fuzzy sets for the three input variables

The selection of the fuzzy membership functions for the output variables
and the rule base construction is a more difficult problem. Even if we select
a standard partition of seven fuzzy sets for each output variable, the defini-
tion of the rules to consider which action should be taken for both output
variables in all possible combination of inputs is quite difficult.

The algorithm that we propose here, allows to generate automatically
the output fuzzy sets and the rule base.

4 Symbiotic Evolution

In a previous work, we have proposed to use symbiotic evolution to evolve
neural networks that represents fuzzy systems [13]. The advantage to evolve
neural networks is that at the end, we obtain a fuzzy controller that can be
enhanced by traditional neural network methods.

Traditional developments in genetic algorithms consider each individual
in the population as a complete neural network, so all of them are evalu-



ated on an independent basis. The population converges to the dominant
structure. This convergence is desirable if it goes into the global optimum,
however, usually it converges into a local optimum.

When the population has converged prematurely, the genetic algorithm
does a linear search in the solution space by just doing mutations, instead
of doing an efficient parallel search.

The basic idea of the symbiotic evolution is that the individuals of the
population will represent partial solutions. The goal of each individual is
to be an adequate partial solution to be combined with other individuals of
the population. As each individual is not a solution by itself, and as it must
rely on others to reach a high fitness value, it must maintain a symbiotic
relation.

Each partial solution must be specialized in one aspect of the problem,
so in this way, it is impossible to have a premature convergence of the
population. The population remains diverse.

The SANE (Symbiotic Adaptive Neuro Evolution) algorithm was pro-
posed by Miikkulainen and Moriarty [1] [2]. The novel approach of SANE,
is that it encodes one unit of a neural network as one string (chromosome).
The fitness of a unit is determined by its degree of cooperation with the
other units used to form the network. SANE keeps a population of units
that represents the hidden units in a standard feed-forward neural network.
The input and output units are determined by the problem itself.

SANE is very good in doing a quick effective search of the solution space,
but it becomes very difficult for it to reach the best solution.

HSANE (Hierarchical SANE) is proposed by the same authors and over-
comes this difficulty. It combines the advantages of the network level evolu-
tion with the advantages of the unit level evolution. HSANE keeps two dif-
ferent populations, one for the units, and another one for network blueprints.
The population of units evolve into good units, and the population of net-
works into good combinations of units.

5 Representation of fuzzy systems as neural net-
works

A fuzzy system can be represented as a five layers GARIC-like neural net-
work [5]. For example, a simple fuzzy system with two input variables with
three fuzzy sets each one, two output variables with two fuzzy sets each one,
and five rules, can be represented as it is shown in figure 5.

The first layer contains one unit for each input variable. The second
layer contains one unit for each fuzzy set of the input variables. The third
layer one unit for each fuzzy rule. The fourth layer one unit for each fuzzy
set of the output variable. The fifth just one output unit. The connection
model between layers two, three and four is based on the fuzzy rules set.



Figure 5: Fuzzy system as a GARIC-like neural network

Just as an example, the rule 2 represented by the neural network in the
figure 5 is:

if T1 is L1 and I2 is H2 then A is Al and B is B1.

6 Codification

A new codification should be defined to apply HSANE to the domain of
the fuzzy neural networks that represents fuzzy systems with more than one
output variable. Note that with a symbiotic approach, one string will not
represent a complete neural network.

The layer one, two and five are not included in the codification because
they are fixed. Only the layers three and four, and the connection pattern
will be codified into the strings. One string will represent one unit for each
output variable of the fourth layer with all the units in the layer three to
which they are connected, and all the connections between them.

The following parameters are defined:

e NN: this is the number of chromosomes used to form a network and it
will determine the size of the fuzzy system obtained.

e OV this is the number of output variables and it is fixed depending
on the problem. In the case of the robot control it will be 2.

e [V: This is the number of input variables and it is also fixed depending
on the problem. In the case of the robot control it will be 3.

e NR: This is the maximum number of rules that can use one particular
fuzzy set of an output variable. The evolutionary process will consider



this limit and it will not generate more rules with the same conse-
quent. This is particularly important when the fuzzy system will be
implemented in hardware, where this restrictions apply.

The figure 6 shows two strings that codify the network from figure 5.

fuzzy set Al fuzzy set B1 rule 1 rule 2 rule 3
| 1T 1 1T 1 |

000 | 016 | 036 || 070 | 053 | 018 || 0 | O |

055

fuzzy set A2 fuzzy set B2 rule4 no rule rule5
L
v
[ I L |
ov NR

Figure 6: Strings that codify the network from figure 5

A string consists of a series of fields. It starts with OV groups of three
fields. These three first fields (16 bits values) will codify three floating point
numbers in the range 0...1, that represent respectively the center, left spread
and right spread of the fuzzy set defined by a fourth layer unit (output
fuzzy set). In this way, one output fuzzy set for each output variable will be
codified at the beginning of the string.

Following them, a series of NR groups of I'V 8 bits fields will codify how
the connections must be done to the units in layer three. Let k; (i = 1,...,n)
be the number of fuzzy sets for the input variable 7. If the value d of a field
is smaller than or equal to 127, then d modulo(k;) is the index of the input
fuzzy set of the variable 7. This means that this particular fuzzy set is an
antecedent of the rule node under consideration. If the value d is bigger
than 127, then no connection is made to this input variable. It is assumed
that the input fuzzy sets for each variable are numbered starting from zero.

The output fuzzy sets codified by these strings are shown in figure 7. The
areas of the fuzzy sets that are outside the range 0...1 are not considered at
all.

7 Learning strategy

The evolutionary algorithm starts by creating the two populations, and do-
ing the corresponding crossover and mutation operations. Each individual
in the networks population is evaluated by creating the fuzzy system it rep-
resents, and applying it to the control problem.



0 B 1

Figure 7: Output fuzzy sets codified by the strings from figure 6

Each system is evaluated in 100 time steps, always starting from the rest
position with the hand in (85,0,65). Four different test cases are considered
with the target object in (70,60,55), (55,45,75), (70,-60,55) and (55,-45,75).
Only four cases are enough, because they include all possible movements for
the arm. They include cases to move the arm in the right-down direction,
in the left-down direction, in the left-up and in the right-up direction.

The fuzzy controller obtained should be able to reach a target object
located in any position starting from any position, even if it was generated
by just considering these four cases. The reason is that the controller does
not know anything at all about absolute coordinates. It only considers
distances and offsets.

An incremental learning strategy is proposed to obtain controllers that
can to reach the target object as fast as possible. The arm is allowed to be
at least at 50% of the maximum distance at 50 time steps and at least at
25% of the maximum distance from the moment in which the 75 time steps
are reached. If it fails to fulfill these requirements the evaluation process for
the current test case is abandoned.

The fitness function is defined in such a way that controllers that can
reach the target object receives higher score the controllers that fail to reach
it.

4
fitness(system) = Z(maxX —2;)? % (maxY — y;)? * (maxZ — z)?
k=1

where k is the evaluation index, mazX the maximum value allowed for
the distance in the z axis, and z is the distance provided by the camera at

the end of the movement sequence. mazY, mazZ, y and z are defined in an
analogous way.



parameter value
low level population size 800
high level population size 100
fuzzy sets per output variable 7
maximum number of rules per fuzzy set 2
low level individuals for crossover 150
high level individuals for crossover 30
mutation rate 0.1

Table 1: Parameters for the evolutionary algorithm

The parameters of the evolutionary algorithm are defined as it is shown
in table 1.

8 Experimental results

All runs of the evolutionary process were successful, it means that in every
execution of the evolutionary process, a successful controller is obtained.
The results presented here corresponds to one example of these runs.

Figure 8 shows the evolution of the fitness against the number of gener-
ations.
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Figure 8: Fitness evolution

Figure 9 to figure 12 shows the plot of the distances when the fuzzy
controller obtained in generation 15 is evaluated on the four cases used for
learning. The performance is adequate as expected.

The algorithm produces 7 fuzzy sets for each output variable. Their
details are presented in table 2.
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Figure 12: Performance at test case 4

variable | set | center | left spread | right spread
Set0 | -0.622 1.363 1.663
Setl | -0.769 0.689 0.126
Set2 | 0.344 0.706 1.721
Jointl | Set3 | 0.530 0.907 1.003
Set4 | 0.500 0.297 1.547
Setb | -0.574 1.604 0.292
Set6 | 0.647 1.046 1.400
Set0 | 0.618 0.130 0.692
Setl | -0.463 1.097 1.553
Set2 | 0.767 0.414 1.613
Joint2 | Set3 | -0.652 1.392 1.434
Setd | -0.025 1.079 1.248
Setb | -0.475 0.882 0.744
Set6 | 0.286 1.843 0.958

Table 2: Fuzzy sets produced by the algorithm

The algorithm produced 14 rules. They are presented in table 3. The
rules may seem strange, but this is the usual aspect of rules when they are
generated through an automatic procedure.

The generated fuzzy controller has also a good performance starting from
different random positions, and reaching objects located in different random
positions. Some examples are shown in figure 13 to figure 15.

9 The FC-DT system

The algorithm introduced in this paper was included in the FC-DT (Fuzzy
Controllers Design Tool) developed by the same authors. FC-DT is a graph-



If dist-y is positive then Jointl is Set6 and Joint2 is Set6.

If dist-x is positive and dist-z is negative then Jointl is Set6 and Joint2 is Set6.
If dist-y is negative then Jointl is Setb and Joint2 is Setb.

If dist-x is positive then Jointl is Setd and Joint2 is Set5.

If dist-z is positive then Jointl is Set4 and Joint2 is Set4.

If dist-y is positive then Jointl is Set4 and Joint2 is Set4.

If dist-z is negative then Jointl is Set3 and Joint2 is Set3.

If dist-z is negative then Jointl is Set3 and Joint2 is Set3.

If dist-y is positive and dist-z is negative then Jointl is Set2 and Joint2 is Set2.
If dist-x is negative and dist-y is positive then Jointl is Set2 and Joint2 is Set2.
If dist-x is zero and dist-y is negative then Jointl is Setl and Joint2 is Setl.

If dist-y is positive and dist-z is positive then Jointl is Setl and Joint2 is Set2.
If dist-y is negative then Jointl is Set0 and Joint2 is Set0.

if dist-x is negative then Jointl is Set0 and Joint2 is Set0.

Table 3: Fuzzy rules produced by the algorithm
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Figure 13: Performance at new case with starting position at (95,25,35) and
target position at (80,-45,60)

ical tool that allows the definition and graphical edition of complete fuzzy
controllers. Includes the possibility to enhance fuzzy controllers by neural
network algorithms and now, to generate rules and fuzzy membership func-
tions for systems with more than one output variable. The fuzzy controllers
can also be enhanced by manual edition.

By using the environment introduced by FC-DT, some rules and some
membership functions for the output variables can be defined before. For
example, it is very easy to imagine that a kind of zero fuzzy membership
functions will be useful for any controller. Some rules for making no move-
ments when the distances are zero could be convenient also. The evolution-
ary process will create a new controller but always including the rules and
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Figure 14: Performance at new case with starting position at (73,-30,75)
and target position at (100,5,45)
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Figure 15: Performance at new case with starting position at (45,-55,75)
and target position at (75,-55,60)

fuzzy sets defined previously. This inclusion of obvious rules and obvious
membership functions saves a lot of learning time.

An inverted pendulum system, and now also a robot arm emulator has
been included in the distribution. The system and on-line documentation is
available in the home web page of FC-DT, at http://www-pr.unsl.edu.ar/
projects/fc-dt. The reader can reproduce the results shown here just by
running the system, and of course, can experiment with new problems.

10 Conclusions

The enhanced version of the evolutionary algorithm presented in this paper
can successfully generate fuzzy controllers for the robot arm control prob-
lem. The algorithm is very robust because it can obtain successful fuzzy



controllers in every run. The quality of the obtained fuzzy controllers can
still be enhanced by running the neural network based algorithm that was
proposed in previous works [12] [13].

The incremental learning strategy allows to reduce the learning time,
because systems that fail to go in the right direction from the beginning,
are discarded as soon as they fail to fulfill the requirements.

The codification proposed is general and can be applied to other prob-
lems as well.

The system is freely available allowing other members of the research
community to experiment with it.
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