View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by El Servicio de Difusién de la Creacién Intelectual

Parallel Ant Systems applied to the
Multiple Knapsack Problem

Marcelo Cena, Guillermo Leguizamon

Proyecto UNSL N 338403
Departamento de Informatica

Universidad Nacional de San Luis

Ejército de los Andes 950 - Local 106

5700 - San Luis - Argentina

e-mail: {mcena,legdi@unsl.edu.ar

Fax: +54 652 30224

Keywords: parallel programming, distributed systems, @zibny systems, combinatorial opti-
mization, multiple knapsack problem.

Abstract

Interesting real world combinatorial problems are NP-complete and matieof are
hard to solve by using traditional methods. However, several heeungthods have been
developed in order to obtain timely suboptimal solutions. Mosthoké heuristic meth-
ods are also naturally suitable for a parallel implementation and conséqaerddditional
improvement on the response time can be obtained. One way of increasingrtiputa-
tional power is by using multiple processors operating together anglesproblem. The
overall problem is split into parts, each of which is operated by a sepa@tegsor in par-
allel. Unfortunately problems cannot be divided perfectly into separats gad interaction
is necessary between the parts like data transfer and process synchronitdioever,
substantial improvement can be achieved, depending on the problem andtinet afrpar-
allelism in the problem. Our work aims to exploit the capability ofistributed computing
environment by using PVM and implementing a parallel version of an AateBy for solv-
ing the Multiple Knapsack Problem (MKP). An Ant System (a disttézbalgorithm) is a set
of agents working independently and cooperating sporadically in a commobfem solv-
ing activity. Regarding the above characteristics, an Ant System can balhatonsidered
as anearly embarrassingly parallel computatiohhe proposed parallel implementations of
an Ant System are based on two different approadtaic and dynamic task assignment
The computational study involves processors of different velocitiessandral MKP test
cases of different sizes and difficulties (tight and loose constraintsg. peEnformance on
the response time is measured by two inde$ggedup Factor and Efficienashen is com-
pared to a serial version of an Ant System. The results obtained shovotietipl power
of exploiting the parallelism underlying in an Ant System regardireggood quality of the
results and a remarkable decreasing on the computation time.

"The research group is supported by U.N.S.L and ANPCyT (Aigelecional para la Promocion de la Ciencia y
la Tecnologr)

https://core.ac.uk/display/301044976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Ant Systems applied to the
Multiple Knapsack Problem

1 Introduction

Parallel programming uses multiple computers, or compuigth multiple internal processors,
to solve a problem at a greater speed than using a single ¢empueas requiring great compu-
tational speed include optimization, numerical modelind aimulation of problems in science
and engineering, which often need huge repetitive calomaton large amounts of data to give
valid results. However, apart from having an algorithmituton and the amount of memory
required, the execution time is a key issue. One way of irsingethe computational power is by
using multiple processors operating together on a singlblem. The overall problem is split
into parts, each of which is operated upon by a separate ggocén parallel. Unfortunately
problems cannot be divided perfectly into separate pardsirteraction is necessary between
the parts like data transfer and process synchronizatia@weMer substantial improvement can
be achieved, depending on the problem and the amount ofgderal in the problem. More-
over, for obtaining the potential for increased speed onxastieg problem, the use of multiple
computers/processors often allows a larger or more pr@wsgnce of a problem be solved in a
reasonable time.

There exist several types of computer platforms suitatiénfiplementing parallel applica-
tions. Our work aims to exploit the capability of a distriedtcomputing environment by using
PVM package (Parallel Virtual Machine), and implementirgpaallel version of an Ant System
for solving the Multiple Knapsack Problem (MKP). The propdsparallel implementations of
an Ant System are based on two different approactesic and dynamic task assignmefte
computational study involves processors of different poavel several MKP test cases of differ-
ent sizes and difficulties (tight and loose constraints)e parformance on the response time is
measured by two indexeSpeedup and Efficieneyhen is compared toserial versionof an Ant
System. The results obtained show the potential power dbiixg the parallelism underlying
in an Ant System regarding the good quality of the results aneimarkable decreasing on the
computation time.

The remainder of the paper is organized in the following waythe next sections the clas-
sical and adapted version of an Ant System are given. Negstapproaches for task assignment
in a distributed system, the experiments performed andtsesibtained are shown. Finally, the
conclusions are exposed.

2 A Brief Description of an Ant System

An Ant System (AS)[2,3,7,8,9] is a new meta-heuristic farcdheombinatorial optimization prob-
lems. This meta-heuristic is a new member in the class of-metgistic derived from nature[4]
that includes Genetic Algorithms, Neural Networks, SinedeAnnealing, Evolution Strategies,
etc. AS is an approach based on the result of low-level ioteraamong many cooperating sim-
ple agents that are not aware of their cooperative beh@yidgach simple agent is calleghtand
the Ant System (a distributed algorithm) is a set of ants waylindependently and cooperating
sporadically in a common problem solving activity. Regagdihe above characteristics, an Ant
System can be naturally considered amarly embarrassingly parallel computatid4]. Since
earlier applications of Ant Systems [7], plenty of work hagb done in this area by applying Ant
Systems to solve ordering problems like Traveling SalesRrablem (TSP), Bin Packing Prob-
lem and Quadratic Assignment Problem [2,3,4,7,8,9,11]5])an Ant System was adapted in
order to solve non-ordering or subset problems. The ada&B§6] shown to be efficient to solve
MKP. In this section, theriginal AS for solving TSP (an ordering problem) and taptedAS
for solving MKP (a subset problem) are presented.

2.1 TheAnt System for Ordering Problems

Given a set ot cities, the Traveling Salesman Problem [12,13] is to findbaedl path that visits
every city exactly oncéour) with minimal total length. i.e.

mininize COST (iy, .., in) = ¥j-1 d(Cy;, Ci,,,) + d(Cy,,, Cy)

whered(Cy, Cy) is the distance between cityand cityy.

The Ant-cycle approach for solving TSP proposed in [7] ieflyipresented here.

Letb;(t) (¢ = 1, ...,n) be the number of ants in cityat time¢ and letNa = Y"1, b;(¢) be
the total number of ants in the system. kgi(t + n) be the intensity of trial opath;; at time
t + n, given by

7i5(t +n) = (p1i(t) + ATi(t, ¢ +n)) (2.1.1)

wherep is such(1 — p) is the coefficient of evaporatiofd < p < 1).

A7ij(t,t+n) = 0% Atk (t, t +n), whereAr: (¢, 4 n) is the quantity per unit of length
of trial substance (pheromone in real ants) laighath.;; by thek' ant between timeé andt + n
and is given by the following formula:

Q if kth ant uses edgé, 4) in its tour
ATE(t,t +n) :{ L 9e.j)

2.1.2
0 otherwise ()

where(Q is a constant and,, is the tour length of thé!” ant. The intensity of trial at time 0,
7;5(0), is set to a randomly chosen value.
During the nex{(t + n) tour the probability to visit cityj when being at city is

(O J € allowed
Ehe llowed Tﬁz(t)"fh b
P (t, k) = artowedy (2.1.3)

0 otherwise

whereallowedy, is a set of cities not visited for that particular tour apglis a local heuristic.
For TSP the parameteg;, called visibility, ism [7].

The parameters; and 3 allow control on the relative importance of trail versusitigy.
Hence, the transition probability is a trade-off betweesihiiity, which says that close cities
should be chosen with high probability, and trail intenstihat says that if opath;; there is a
lot of traffic then is it highly profitable .

A data structure, callethbu list is associated to each ant in order to avoid that ants visit a
city more than once, i.etabuy, list maintain a set of visited cities up to tinteby the k™* ant.
Thereforeallowed), set can be defined as followallowedy, = {j/j ¢ tabui}. When a tour
is completed theabuy, list (k = 1..Na) is emptied and every ant is free again to choose an
alternative tour for the next cycle.

By using the above definitions, we describe the Ant-cycleratigm:

Initialize
for t=1 to number of cycles do
for k=1 to Na do
Repeat Until k has completed a tour
- Select city j to be visited next with probabiliy; given by equatiof2.1.3)
end
Calculate the lengtiL,, of the tour generated by ant k
end
Save the best solution so far
Update the trail levels;; on all paths according to equatic2.1.1)
end
Print the best solution found

2.2 TheAnt System for Subset Problems

The Multiple Knapsack Problem which is an example of a supsaltlem can be formulated
[1,12,13] as follows:

mazimise) i pjT;

subject to 37 iy < ¢ i=1,...,m (2.2.1)
s e{0,1} j=1,.n

Each of then constrains described is called a knapsack constrain, ddkileis also called
the m-dimensional Knapsack Problerhet I = {1,...,m} andJ = {1,...,n}, with ¢; > 0 for
alli e I, j € J. A well-statedMKP assumes that; > 0 andr;; < ¢; < Z?Zl ri; foralls € I,

J € J, since any violation of these conditions will result in somebeing fixed to zero and/or
some constrains being eliminated. Note that(thg),,., matrix and(c;),, vector are both non-
negative which distinguishes this problem from generali@d€ar integer programming problem.
Many practical problems can be formulated as a MKP, for exantipe capital budgeting problem
where projectj has profitp; and consumes;; units of resourcé. The goal is to find a subset of
then projects such that the total profit is maximized and all resegonstrains are satisfied. For
solving MKP, the ants[5] look for a subset afitems or projects (see MKP formulation) such
that the total profit is maximized and all resource constraire satisfied.

Letbi («+ = 1,...,n) be the number of ants incorporating in the solution the ifeahtime
t =0and letNa = ;" b; be the total number of ants in the system. Since in MKP theze ar
not paths, thentensity of trialandlocal heuristicare computed in a slightly different way. Let
Ti(t + Npaz) be theintensity of trialon items at timet + Ny,q., given by

Ti(t + Nmafv) = pTi(t) + ATi(tv i+ Nmax) (22.2)

wherep is such(1 — p) is thecoefficient of evaporatioand N, is the maximum number
of items qualified to be added to some solution by some ant.

ATi(ta t+ Nmax) = Ez]\;al ATik(ta t+ Nmax):

whereATE(t,t + Npqz) is the quantity per unit of length of trial substance (phesamin
real ants) laid on itemby thek!” ant between timeéandt + N,,., and is given by the following
formula:

% if k" ant incorporates iteni

) 223
0 otherwise ()

ATE(t t +n) :{

where(is a constant and, is the profit(objective function in [Eq. 2.2.1¢btained by the
k' ant. The intensity of trial at time 0 (0), is set to a randomly chosen value. During the
next(t + N,.q.) item incorporation the probability for selecting itérby thek!” ant, in order to
complete theolutiony, is:

e (6)n) (k)
Zj Eallowedy, 7—‘]‘_1 (t)n‘]ﬁ (k)

1 € allowedy,

Pt k) = (2.2.4)

0 otherwise
whereallowedy, is a set of items still not considered by & ant and thesolution,, satisfies

all constraints if some of them are added. The paramgtéy, calledpseudo-utility is the local
heuristic. We chose; (k) as follows:

mi(k) = 5, (k) = 2= ’u®)

(2.2.5)
5ij (k) = m’ u](k) = Zlesolutionk T4

Where(c; — u;(k)) is the remaining amount to reach the boundary of constyain; <
(c; —uj(k)) andé;;(k) € (0,1], is thetightness of itemi on constraing when item: is added
to solution;,. Consequently theseudo-utilityn; (k) turns larger ag; (k) (tightness average)
turns smaller. The parametessand 3, as for TSP, allow control on the relative importance of
trail versus the local heuristifpseudo-utility for MKP) Hence, the transition probability is a
trade-off between pseudo-utility, which says that mordiaiole items that uses less resources
should be chosen with high probability, and trail intensibat says that if iten is part of a lot
of solutions, then is it highly desirable.

A data structure, callethbu list is also associated to each ant in order to avoid that ants
choice an item more than once, itebuy, list maintain the set of added items up to timay the
k™" ant. This list also maintains; (k) (j = 1..m) in order to reduce the required computational
time. Theallowed,, set can be defined as follows:

allowedy, = {j/j ¢ tabuy andsolution; with item; added satisfies all constrairjts

When all ants add to the solutions as many items as theyteauy, list (k = 1..Na) is emptied
and every ant is free again to choose an alternatileset of item#or the next cycle.

The outline of the adapted Ant-cycle algorithm for subsebjpgms follows:

Initialize
for t=1 to number of cycles do
for k=1 to Na do
Repeat Untikllowed;, is empty
- Select item i to be incorporated with probabiliiy given by equation (2.2.4)
end
Calculate Ly, the profit obtained by ark
Save the best solution so far
end
Update the trail levels; on all items according to equation (2.2.2)
end
Print the best solution found

3 Paralld Ant System for solving MKP

An Ant System is a distributed algorithm where multiple ipdedent agents cooperate with each
others for solving a common problem. The algorithm runs fixed number of cycles, after each
cycle the agents interchange some information (cooperat)der tolearn which is the more
promising area of the search space. During each cycle, alitagan execute independently
since no interaction between them is needed at all. Basdueambove features, two approaches,
static and dynamic task assignmjddf] were considered in order to accomplish a Parallel Ant
System (a nearly embarrassingly parallel program). Irsthdc task assignmemtpproach, the
problem is divided into a fixed number of processes to be é&ddu parallel. In addition, the
processes are simply distributed among the available gsoce without any discussion on the
effects of the types of processors and their speeds. Howieveay be that some of processors
will complete their task before others and became idle twx#ue work is unevenly divided or
some processors operate faster than others (or both gitgpatiOn the other hand, tlilynamic
task assignmenapproach intend to spread the tasks evenly across the popsda order to
maximize the efficiency. Under both of the implemented apghes, there existM aster andp
Slaves processes, all of them distributed on available proceq§agsire 1) in the system. The
master process is in charge of updating the {rajlaccording the solutions found by the slave
processes after each cycle of the algorithm. Every slaveegrois capable to separately access
the instance of MKP to be tested.

MASTER

I I
TRAIL (Tau)

SLAVES

Figure 1:Layout for Static and Dynamic Task Assignment Approaches

3.1 Static Task Assignment

Assuming that the Ant System involvé$q ants and there exist p processors available in the
system, Na/p ants are assigned to each processor. The raagtslave processes and a brief
explanation concerning the purpose of each message airgeoudls follows:

Messages
INIT_PROCESS: - The Ant system parameters

- Request for the first solutior{sVa/p)
NEW _t: - Modified trail (cooperation stage)

- Request fof Na/p) solutions
END_PROCESS: - Finish the slave

Master Process
Initialize p slaves
Send to every slaveENIT _PROCESS
do
{ Receive one solution from every slave
UpdateAr; regarding p received solutions
Choose the Best Solution from the p best solutions
Save the best solution so far
if (Ec < MazCycles) then /* Ec stands for Elapsed cycles */
Updater;(t,t + Nmax) (i : 1..Na) [EqQ. 2.2.2]
Send to every slaveV EW _r
FEc++
else
Send to every slavey ND_PROCESS
Print out the best solution found
Exit
endif
} while (FOREV ER)

Slave Process
do {Receive order from Master
switch (order }
case/NIT_PROCESS:
- Recover the Ant system parameters
- readMKP_instance();
- GeneratéVa/p solutions
- Send back the best out &fa/p solutions
caseNEW _r:
- Recover new trail
- GenerateéVa/p solutions
- Send back the best out &fa/p solutions
caseEND_PROCESS:
- Finish the slave

}
} while (FOREV ER)

3.2 Dynamic Task Assignment (Work-Pool)

By this approach, the master process maintains a Work P@agerits to be processédentral-
ized Dynamic Load Balancingy]. Thus, the Work Pool represents the inactive agenttingai
for an idle processor. The master and slave processes anef @kplanation concerning the
purpose of each message are oulined as follows:

Messages
INIT_PROCESS: - The Ant system parameters

- Request for the first solution
PROCESS_SOL: - Solution request
NEW _t: - Modified trail (cooperation stage)
END_PROCESS: - Finish the slave

Master Process
Initialize Work Pool withNa ants (tasks)
Initialize p slaves /* Each slave processes one ant */
Send to every slaveENIT _PROCESS
do{
Working_Slaves = {1, ...,p} I* Set of slaves still processing */
while (Working_Slaves is not empty)
{
Receive a solution (from some slave, 43y
UpdateAr regarding the Received Solution
Choose the best solution so far
if (Work Pool is empty)
Working_Slaves = Working_Slaves — {k}
else
Send to slavé:: PROCESS_SOL [*activate ageni from Work Pool */
Delete agent from Work Pool
endif
¥
if (Ec < MaxCycles) then /* Ec stands for Elapsed cycles */
Updater;(t,t + Npaz) (i : 1..Na) [Eq. 2.2.2]
Initialize Work Pool withNa — p ants (tasks)
Send to every slaveV EW _t
Ecet++
else
Send to every slaves ND_PROCESS
Print Out the Best Solution so far
Exit
endif
} while(FOREV ER)

Slave Process
do
{
Receive order from Master
switch (order){
caseINIT_PROCESS:
- Recover the Ant system parameters

- read MKP_instance()

- Generate one solution

- Send back the solution
casePROCESS_SOL:

- Generate one solution

- Send back the solution
caseNEW _r:

- Recover new trail

- Generate one solution

- Send back the solution
caseEND_PROCESS:

- Finish the slave
}

} while (FOREV ER)

4 Computational Study

Six instances of MKP taken from [1] were considered in ouresgipents. The Ant Parallel
Systems were tested, at the begining, on two procesBpmnd P, (Sun Sparc workstations
having a similar capacity) by using the optimal parametéirgefound in [5]. Table | shows
the results of our experiments expressed in terms of theageesfSpeedup Factofregarding
a Serial Ant System running on proces$g), Efficiency(Egs. 4.1)[14] and Percentage of Hits
out of 10 runs for each instance.

Speedup(n) = %—n Ts = Execution time using a single processor system
T,, = Execution time using a system withhprocessors
(4.1)
i.e the fraction of time the processors are being used on
the computation

Ef ficiency(n) = 751)861“’)(7‘)

ColumnsPAS-SandPAS-Dstand for Static and Dynamic Task Assignment in a Parallel An
System respectively.

PAS-S PAS-D
Instance| Speedup| Efficiency | %hits | Speedup| Efficiency | %hits
1 1.81 0.905 80 1.70 0.85 80
2 1.63 0.815 70 1.67 0.835 70
3 1.77 0.885 100 1.65 0.825 90
4 1.84 0.92 70 1.6 0.8 80
5 1.68 0.84 90 1.72 0.86 90
6 1.89 0.945 100 1.8 0.9 100

Tablel. PASs running on processof3 and P,

As we observe imable |, both approaches showed similar behaviour. The paral&ésys
performed very well regarding tHgpeedupEfficencyand additionally, the quality of the results
(%hits) compared to those results found in [5,6,10]. However, aitiadial study was neces-
sary in order to establish some difference betwBAS-Sand PAS-Dapproaches. In a second
experiment, a third processéy (slower thanP, and P,) was incoporated to the Parallel Virtual

Machine. Table |1 shows theSpeedumbtained by the two approaches. It is important remark-
ing that the Serial Ant System was run on proced3ofone of the faster processors). Columns
PV M; = {P;} stand for the set of processors conforming the Paralleli®iflachine.

The values inTable Il indicate thatPAS-Dperformed much better thadPAS-Srunning on
both environmentsPV M; and PV M, respectively. Although the the work is evenly divided,
the relative velocities of each processor are no considgr&AS-Spproach. For examplBAS-

S obtained for each instance considere8meedupess than 1 running on environmeRt M,
since processaP is the "bottle neck” of the system and turnigy idle most part of the time.
On the other hand, PAS-D took advantage of the Work Pool &btagien some processor turns
idle. A similar situation is observed iRV M, where the inclusion of processéh (the other
faster processor) produced only a little improvement orSpeedumbtained byPAS-S

PVM, = {P, P} PV DM, = {PL, Ps, Py}
Instance] PAS-S | PAS-D PAS-S | PASD
1 0.66 15 0.82 1.88
2 0.6 1.37 0.755 2.47
3 0.7 1.56 0.86 2.56
4 0.72 1.33 1.11 2.42
5 0.76 1.44 1.13 2.84
6 0.7 1.41 1.145 2.48

Tablell. Values for environmentBV M; and PV M,

It is remarkable that for this kind of highly distributed atghm (an Ant System) the profit
achieved by using PAS-D approach, is evident. HowéR&§-Salso achieve a good performance
running on an environment of processors having a similargp@aecrable |).

Although the results obtained show clearly the differenegvieenPAS-SandPAS-Drunning
on different environments, it is not evident to carry outraightforward analysis of the perfor-
mance of the parallel ant systems, eitR&S-Sor PAS-D due to they are stochastic algorithms
where their computation time strongly depend on the seeehgas input to generate random
numbers. For example, in image processing, a task can kaedivin a small number of tasks
and each one processefix@d numbepf pixels (some image partition). On the other hand, an
Ant System is a set of small tasks (independent agents) wuirfg a distributed algorithm and
the purpose is to distribute those small tasks on availalleggsors in a particular parallel plat-
form. However, when any parallel approach is applied to sors&ance of MKP, theSpeedup
achieved by augmenting the number of processors variektlgli(varying the seed) due to the
variation on the number of items incorporated by each antyee of the algorithm which per-
forms accordingly the initial seed. It is also possible foasome instances of MKP, the parallel
systems running on an heterogeneous platform are ableamaifpeedup Factovery close to
the optimal one .

5 Conclusions

An Ant System is a class of distributed algorithm which cambturally considered asreearly
embarrassingly parallel computationThe two proposed approaches showed that the explicit
parallelism involved in an Ant System can be easily exptblig using networked workstations.
However, there exist some considerations to take in acoatien a particular approach will
be used:Work division and processors power conforming the paralatironment Also, it is
worth remarking that the applications developed in PVM anggble enough to run on different
parallel platform without major changes.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Beasley, J. - "OR-Library: Distributing Test Problemy Electronic Mail” - e-mail:
o.rlibrary@ic.ac.uk

Bilchev, G. - "Evolutionary Metaphors for the Bin PacgifProblem” - Proceedings of the
Fifth Annual Conference on Evolutionary Programming. SdegD, California - USA,
1996.

Bilchev, G.; et al. - "The Ant Colony Metaphor for SearabiContinuous Design Spaces
- Published in Evolutionary Computation, selected papenms {AISB Workshop, Sheffield
UK, April 1995. Edited by T.C. Fogarty.

Bullnheimer, B.; et al. - "A New Rank Based Version of thet/System - A Computational
Study”. University of Vienna. April 1997.

Cena, M.; et al. - "The Ant Colony Metaphor for Multiple lipsack Problem” 3th CACIC.
La Plata, Argentina. October 1997

Chu, Paul; et al. - "A Genetic Algorithm for the Multi-cetraint Knapsack Problem”.
http://mscmga.ms.ic.ac.uk/pchu/pchu.html

Dorigo, M. ; et al. - "Distributed Optimization by Ant Cohies” - Proceedings of ECAL91.
Elsevier Publishing, pp 134-142.

Dorigo, M.; et al. - "An investigation of some propertiesan Ant algorithm” - Proceedings
on the Parallel Problem Solving from Nature Conferencee\&és Publishing, 1992.

Dorigo, M.; et al. - "A study of some properties of ANT-QRublished in Proceedings of
PPSN IV. Springer-Verlag, 1996.

Khuri, Sami; et al. - "The Zero/One Multiple KnapsackoBlem and Genetic Algorithms”.
ACM Symposium of Applied Computation "94.

Maniezzo, V.; et al. - "The Ant System Applied to the Quatit Assignment Problem”.
Technical Report 94/28. IRIDIA, Universite Libre de Brubesl, Belgium.

Nemhauser, G.; et al. - "Integer and Combinatorial @mation”. John Wiley & Sons, Inc.
1988.

Papadimitriou, C. - "Combinatorial Optimization: Adgthms and Complexity”. Prentice
Hall. 1982..

Wilkinson, Barry; et al. "Parallel Programming Techoes and Application Using Net-
worked Workstations”. Preliminary Draft. Prentice Hal99rr.

