
Parallel Ant Systems applied to the
Multiple Knapsack Problem

Marcelo Cena, Guillermo Leguizamón
Proyecto UNSL N� 338403�

Departamento de Informática
Universidad Nacional de San Luis

Ejército de los Andes 950 - Local 106
5700 - San Luis - Argentina

e-mail: fmcena,leguig@unsl.edu.ar
Fax: +54 652 30224

Keywords: parallel programming, distributed systems, antcolony systems, combinatorial opti-
mization, multiple knapsack problem.

Abstract

Interesting real world combinatorial problems are NP-complete and many ofthem are
hard to solve by using traditional methods. However, several heuristic methods have been
developed in order to obtain timely suboptimal solutions. Most of those heuristic meth-
ods are also naturally suitable for a parallel implementation and consequently, an additional
improvement on the response time can be obtained. One way of increasing the computa-
tional power is by using multiple processors operating together on a single problem. The
overall problem is split into parts, each of which is operated by a separate processor in par-
allel. Unfortunately problems cannot be divided perfectly into separate parts and interaction
is necessary between the parts like data transfer and process synchronization.However,
substantial improvement can be achieved, depending on the problem and the amount of par-
allelism in the problem. Our work aims to exploit the capability of a distributed computing
environment by using PVM and implementing a parallel version of an Ant System for solv-
ing the Multiple Knapsack Problem (MKP). An Ant System (a distributed algorithm) is a set
of agents working independently and cooperating sporadically in a common problem solv-
ing activity. Regarding the above characteristics, an Ant System can be naturally considered
as anearly embarrassingly parallel computation. The proposed parallel implementations of
an Ant System are based on two different approaches,static and dynamic task assignment.
The computational study involves processors of different velocities andseveral MKP test
cases of different sizes and difficulties (tight and loose constraints). The performance on
the response time is measured by two indexes,Speedup Factor and Efficiencywhen is com-
pared to a serial version of an Ant System. The results obtained show the potential power
of exploiting the parallelism underlying in an Ant System regardingthe good quality of the
results and a remarkable decreasing on the computation time.

�The research group is supported by U.N.S.L and ANPCyT (Agencia Nacional para la Promoción de la Ciencia y
la Tecnoloǵia)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Ant Systems applied to the
Multiple Knapsack Problem

1 Introduction

Parallel programming uses multiple computers, or computers with multiple internal processors,
to solve a problem at a greater speed than using a single computer. Areas requiring great compu-
tational speed include optimization, numerical modeling and simulation of problems in science
and engineering, which often need huge repetitive calculations on large amounts of data to give
valid results. However, apart from having an algorithmic solution and the amount of memory
required, the execution time is a key issue. One way of increasing the computational power is by
using multiple processors operating together on a single problem. The overall problem is split
into parts, each of which is operated upon by a separate processor in parallel. Unfortunately
problems cannot be divided perfectly into separate parts and interaction is necessary between
the parts like data transfer and process synchronization. However substantial improvement can
be achieved, depending on the problem and the amount of parallelism in the problem. More-
over, for obtaining the potential for increased speed on an existing problem, the use of multiple
computers/processors often allows a larger or more preciseinstance of a problem be solved in a
reasonable time.

There exist several types of computer platforms suitable for implementing parallel applica-
tions. Our work aims to exploit the capability of a distributed computing environment by using
PVM package (Parallel Virtual Machine), and implementing aparallel version of an Ant System
for solving the Multiple Knapsack Problem (MKP). The proposed parallel implementations of
an Ant System are based on two different approaches,static and dynamic task assignment. The
computational study involves processors of different power and several MKP test cases of differ-
ent sizes and difficulties (tight and loose constraints). The performance on the response time is
measured by two indexes,Speedup and Efficiencywhen is compared to aserial versionof an Ant
System. The results obtained show the potential power of exploiting the parallelism underlying
in an Ant System regarding the good quality of the results anda remarkable decreasing on the
computation time.

The remainder of the paper is organized in the following way.In the next sections the clas-
sical and adapted version of an Ant System are given. Next, two approaches for task assignment
in a distributed system, the experiments performed and results obtained are shown. Finally, the
conclusions are exposed.

2 A Brief Description of an Ant System

An Ant System (AS)[2,3,7,8,9] is a new meta-heuristic for hard combinatorial optimization prob-
lems. This meta-heuristic is a new member in the class of meta-heuristic derived from nature[4]
that includes Genetic Algorithms, Neural Networks, Simulated Annealing, Evolution Strategies,
etc. AS is an approach based on the result of low-level interaction among many cooperating sim-
ple agents that are not aware of their cooperative behavior[7]. Each simple agent is calledantand
the Ant System (a distributed algorithm) is a set of ants working independently and cooperating
sporadically in a common problem solving activity. Regarding the above characteristics, an Ant
System can be naturally considered as anearly embarrassingly parallel computation[14]. Since
earlier applications of Ant Systems [7], plenty of work has been done in this area by applying Ant
Systems to solve ordering problems like Traveling SalesmanProblem (TSP), Bin Packing Prob-
lem and Quadratic Assignment Problem [2,3,4,7,8,9,11]. In[5] an Ant System was adapted in
order to solve non-ordering or subset problems. The adaptedAS[5] shown to be efficient to solve
MKP. In this section, theoriginal AS for solving TSP (an ordering problem) and theadaptedAS
for solving MKP (a subset problem) are presented.

2.1 The Ant System for Ordering Problems

Given a set ofn cities, the Traveling Salesman Problem [12,13] is to find a closed path that visits
every city exactly once(tour) with minimal total length. i.e.mininize COST (i1; :::; in) =Pn�1j=1 d(Cij ; Cij+1) + d(Cin ; Ci1)

whered(Cx; Cy) is the distance between cityx and cityy.
The Ant-cycle approach for solving TSP proposed in [7] is briefly presented here.
Let bi(t) (i = 1; :::; n) be the number of ants in cityi at timet and letNa = Pni=1 bi(t) be

the total number of ants in the system. Let�ij(t + n) be the intensity of trial onpathij at timet+ n, given by �ij(t+ n) = (��ij(t) + ��ij(t; t+ n)) (2:1:1)
where� is such(1� �) is the coefficient of evaporation(0 < � < 1).��ij(t; t+n) =PNak=1��kij(t; t+n), where��kij(t; t+n) is the quantity per unit of length
of trial substance (pheromone in real ants) laid onpathij by thekth ant between timet andt+n
and is given by the following formula:��kij(t; t+ n) = (QLk if kth ant uses edge(i; j) in its tour0 otherwise

(2.1.2)

whereQ is a constant andLk is the tour length of thekth ant. The intensity of trial at time 0,�ij(0), is set to a randomly chosen value.
During the next(t+ n) tour the probability to visit cityj when being at cityi isPij(t; k) = 8>>><>>>: ��ij(t)��ijPh2allowedk ��ih(t)��ih j 2 allowedk0 otherwise

(2.1.3)

whereallowedk is a set of cities not visited for that particular tour and�ij is a local heuristic.
For TSP the parameter�ij, called visibility, is 1d(Ci;Cj) [7].

The parameters� and� allow control on the relative importance of trail versus visibility.
Hence, the transition probability is a trade-off between visibility, which says that close cities
should be chosen with high probability, and trail intensity, that says that if onpathij there is a
lot of traffic then is it highly profitable .

A data structure, calledtabu list, is associated to each ant in order to avoid that ants visit a
city more than once, i.e.tabuk list maintain a set of visited cities up to timet by thekth ant.
Thereforeallowedk set can be defined as follows:allowedk = fj=j =2 tabukg. When a tour
is completed thetabuk list (k = 1::Na) is emptied and every ant is free again to choose an
alternative tour for the next cycle.

By using the above definitions, we describe the Ant-cycle algorithm:

Initialize
for t=1 to number of cycles do

for k=1 to Na do
Repeat Until k has completed a tour

- Select city j to be visited next with probabilityPij given by equation(2.1.3)
end
Calculate the lengthLk of the tour generated by ant k

end
Save the best solution so far
Update the trail levels�ij on all paths according to equation(2.1.1)

end
Print the best solution found

2.2 The Ant System for Subset Problems

The Multiple Knapsack Problem which is an example of a subsetproblem can be formulated
[1,12,13] as follows:maximisePnj=1 pjxjsubject to Pnj=1 rijxj � ci i = 1; :::;m (2:2:1)xi 2 f0; 1g j = 1; :::n

Each of them constrains described is called a knapsack constrain, so theMKP is also called
them-dimensional Knapsack Problem. Let I = f1; :::;mg andJ = f1; :::; ng, with ci � 0 for
all i 2 I, j 2 J . A well-statedMKP assumes thatpj > 0 andrij � ci �Pnj=1 rij for all i 2 I,j 2 J , since any violation of these conditions will result in somexj being fixed to zero and/or
some constrains being eliminated. Note that the(rij)mxn matrix and(ci)m vector are both non-
negative which distinguishes this problem from general 0-1linear integer programming problem.
Many practical problems can be formulated as a MKP, for example, the capital budgeting problem
where projectj has profitpj and consumesrij units of resourcei. The goal is to find a subset of
then projects such that the total profit is maximized and all resource constrains are satisfied. For
solving MKP, the ants[5] look for a subset ofn items or projects (see MKP formulation) such
that the total profit is maximized and all resource constrains are satisfied.

Let bi (i = 1; :::; n) be the number of ants incorporating in the solution the itemi at timet = 0 and letNa = Pni=1 bi be the total number of ants in the system. Since in MKP there are
not paths, theintensity of trialandlocal heuristicare computed in a slightly different way. Let�i(t+Nmax) be theintensity of trialon itemi at timet+Nmax, given by�i(t+Nmax) = ��i(t) + ��i(t; t+Nmax) (2.2.2)

where� is such(1 � �) is thecoefficient of evaporationandNmax is the maximum number
of items qualified to be added to some solution by some ant.

��i(t; t+Nmax) =PNai=1��ki (t; t+Nmax),
where��ki (t; t + Nmax) is the quantity per unit of length of trial substance (pheromone in

real ants) laid on itemi by thekth ant between timet andt+Nmax and is given by the following
formula: ��ki (t; t+ n) = (LkQ if kth ant incorporates itemi0 otherwise

(2.2.3)

whereQ is a constant andLk is the profit(objective function in [Eq. 2.2.1]obtained by thekth ant. The intensity of trial at time 0,�i(0), is set to a randomly chosen value. During the
next(t+Nmax) item incorporation the probability for selecting itemi by thekth ant, in order to
complete thesolutionk is:Pi(t; k) = 8>><>>: ��i (t)��i (k)Pj2allowedk ��j (t)��j (k) i 2 allowedk0 otherwise

(2.2.4)

whereallowedk is a set of items still not considered by thekth ant and thesolutionk satisfies
all constraints if some of them are added. The parameter�i(k), calledpseudo-utility, is the local
heuristic. We chose�i(k) as follows:�i(k) = pi�i(k) ; �i (k) = Pmj=1 �ij(k)m (2:2:5)�ij(k) = rji(cj�uj(k)) ; uj(k) =Pl2solutionk rjl

Where(cj � uj(k)) is the remaining amount to reach the boundary of constraintj, rji �(cj � uj(k)) and�ij(k) 2 (0; 1], is thetightness of item i on constraintj when itemi is added
to solutionk. Consequently thepseudo-utility�i(k) turns larger as�i (k) (tightness average)
turns smaller. The parameters� and�, as for TSP, allow control on the relative importance of
trail versus the local heuristic(pseudo-utility for MKP). Hence, the transition probability is a
trade-off between pseudo-utility, which says that more profitable items that uses less resources
should be chosen with high probability, and trail intensity, that says that if itemi is part of a lot
of solutions, then is it highly desirable.

A data structure, calledtabu list, is also associated to each ant in order to avoid that ants
choice an item more than once, i.e.tabuk list maintain the set of added items up to timet by thekth ant. This list also maintainsuj(k) (j = 1::m) in order to reduce the required computational
time. Theallowedk set can be defined as follows:allowedk = fj=j =2 tabuk andsolutionk with itemj added satisfies all constraintsg
When all ants add to the solutions as many items as they can,tabuk list (k = 1::Na) is emptied
and every ant is free again to choose an alternativesubset of itemsfor the next cycle.

The outline of the adapted Ant-cycle algorithm for subset problems follows:

Initialize
for t=1 to number of cycles do

for k=1 to Na do
Repeat Untilallowedk is empty

- Select item i to be incorporated with probabilityPi given by equation (2.2.4)
end
CalculateLk, the profit obtained by antk
Save the best solution so far

end
Update the trail levels�i on all items according to equation (2.2.2)

end
Print the best solution found

3 Parallel Ant System for solving MKP

An Ant System is a distributed algorithm where multiple independent agents cooperate with each
others for solving a common problem. The algorithm runs for afixed number of cycles, after each
cycle the agents interchange some information (cooperate)in order tolearn which is the more
promising area of the search space. During each cycle, all agents can execute independently
since no interaction between them is needed at all. Based on the above features, two approaches,
static and dynamic task assignment[14] were considered in order to accomplish a Parallel Ant
System (a nearly embarrassingly parallel program). In thestatic task assignmentapproach, the
problem is divided into a fixed number of processes to be executed in parallel. In addition, the
processes are simply distributed among the available processors without any discussion on the
effects of the types of processors and their speeds. However, it may be that some of processors
will complete their task before others and became idle because the work is unevenly divided or
some processors operate faster than others (or both situations). On the other hand, thedynamic
task assignmentapproach intend to spread the tasks evenly across the processors in order to
maximize the efficiency. Under both of the implemented approaches, there exist aMaster andp
Slaves processes, all of them distributed on available processors(Figure 1) in the system. The
master process is in charge of updating the trail(�) according the solutions found by the slave
processes after each cycle of the algorithm. Every slave process is capable to separately access
the instance of MKP to be tested.

MASTER

1 2 P
SLAVES

TRAIL (Tau)

Figure 1:Layout for Static and Dynamic Task Assignment Approaches

3.1 Static Task Assignment

Assuming that the Ant System involvesNa ants and there exist p processors available in the
system, Na/p ants are assigned to each processor. The masterand slave processes and a brief
explanation concerning the purpose of each message are outlined as follows:

MessagesINIT PROCESS: - The Ant system parameters
- Request for the first solutions(Na=p)NEW � : - Modified trail (cooperation stage)
- Request for(Na=p) solutionsEND PROCESS: - Finish the slave

Master Process
Initialize p slaves
Send to every slave:INIT PROCESS
dof Receive one solution from every slave

Update��i regarding p received solutions
Choose the Best Solution from the p best solutions
Save the best solution so far
if (Ec < MaxCycles) then /*Ec stands for Elapsed cycles */

Update�i(t; t+Nmax) (i : 1::Na) [Eq. 2.2.2]
Send to every slave:NEW �Ec++

else
Send to every slave:END PROCESS
Print out the best solution found
Exit

endifg while (FOREV ER)

Slave Process
dofReceive order from Master

switch (order)f
caseINIT PROCESS:

- Recover the Ant system parameters
- readMKP instance();
- GenerateNa=p solutions
- Send back the best out ofNa=p solutions

caseNEW � :
- Recover new trail
- GenerateNa=p solutions
- Send back the best out ofNa=p solutions

caseEND PROCESS:
- Finish the slavegg while (FOREV ER)

3.2 Dynamic Task Assignment (Work-Pool)

By this approach, the master process maintains a Work Pool ofagents to be processed(Central-
ized Dynamic Load Balancing)[14]. Thus, the Work Pool represents the inactive agents waiting
for an idle processor. The master and slave processes and a brief explanation concerning the
purpose of each message are oulined as follows:

MessagesINIT PROCESS: - The Ant system parameters
- Request for the first solutionPROCESS SOL: - Solution requestNEW � : - Modified trail (cooperation stage)END PROCESS: - Finish the slave

Master Process
Initialize Work Pool withNa ants (tasks)
Initialize p slaves /* Each slave processes one ant */
Send to every slave:INIT PROCESS
dofWorking Slaves = f1; :::; pg /* Set of slaves still processing */

while (Working Slaves is not empty)f
Receive a solution (from some slave, sayk)
Update�� regarding the Received Solution
Choose the best solution so far
if (Work Pool is empty)Working Slaves = Working Slaves� fkg
else

Send to slavek: PROCESS SOL /*activate agenti from Work Pool */
Delete agenti from Work Pool

endifg
if (Ec < MaxCycles) then /*Ec stands for Elapsed cycles */

Update�i(t; t+Nmax) (i : 1::Na) [Eq. 2.2.2]
Initialize Work Pool withNa� p ants (tasks)
Send to every slave:NEW �Ec++

else
Send to every slave:END PROCESS
Print Out the Best Solution so far
Exit

endifg while(FOREV ER)

Slave Process
dof

Receive order from Master
switch (order)f
caseINIT PROCESS:

- Recover the Ant system parameters

- readMKP instance()
- Generate one solution
- Send back the solution

casePROCESS SOL:
- Generate one solution
- Send back the solution

caseNEW � :
- Recover new trail
- Generate one solution
- Send back the solution

caseEND PROCESS:
- Finish the slavegg while (FOREV ER)

4 Computational Study

Six instances of MKP taken from [1] were considered in our experiments. The Ant Parallel
Systems were tested, at the begining, on two processorsP1 andP2 (Sun Sparc workstations
having a similar capacity) by using the optimal parameter setting found in [5]. Table I shows
the results of our experiments expressed in terms of the average ofSpeedup Factor(regarding
a Serial Ant System running on processorP1), Efficiency(Eqs. 4.1)[14] and Percentage of Hits
out of 10 runs for each instance.Speedup(n) = TsTn Ts = Execution time using a single processor systemTn = Execution time using a system withn processors

(4.1)Efficiency(n) = Speedup(n)n i.e the fraction of time the processors are being used on
the computation

ColumnsPAS-SandPAS-Dstand for Static and Dynamic Task Assignment in a Parallel Ant
System respectively.

PAS-S PAS-D
Instance Speedup Efficiency %hits Speedup Efficiency %hits

1 1.81 0.905 80 1.70 0.85 80
2 1.63 0.815 70 1.67 0.835 70
3 1.77 0.885 100 1.65 0.825 90
4 1.84 0.92 70 1.6 0.8 80
5 1.68 0.84 90 1.72 0.86 90
6 1.89 0.945 100 1.8 0.9 100

Table I. PASs running on processorsP1 andP2
As we observe inTable I, both approaches showed similar behaviour. The parallel systems

performed very well regarding theSpeedup, Efficencyand additionally, the quality of the results
(%hits) compared to those results found in [5,6,10]. However, an additional study was neces-
sary in order to establish some difference betweenPAS-SandPAS-Dapproaches. In a second
experiment, a third processorP3 (slower thanP1 andP2) was incoporated to the Parallel Virtual

Machine. Table II shows theSpeedupobtained by the two approaches. It is important remark-
ing that the Serial Ant System was run on processorP1 (one of the faster processors). ColumnsPVMi = fPjg stand for the set of processors conforming the Parallel Virtual Machine.

The values inTable II indicate thatPAS-Dperformed much better thanPAS-Srunning on
both environments,PVM1 andPVM2 respectively. Although the the work is evenly divided,
the relative velocities of each processor are no consideredby PAS-Sapproach. For example,PAS-
Sobtained for each instance considered aSpeedupless than 1 running on environmentPVM1
since processorP3 is the ”bottle neck” of the system and turningP1 idle most part of the time.
On the other hand, PAS-D took advantage of the Work Pool of tasks when some processor turns
idle. A similar situation is observed inPVM2 where the inclusion of processorP2 (the other
faster processor) produced only a little improvement on theSpeedupobtained byPAS-S.PVM1 = fP1; P3g PVM2 = fP1; P3; P2g

Instance PAS-S PAS-D PAS-S PAS-D

1 0.66 1.5 0.82 1.88
2 0.6 1.37 0.755 2.47
3 0.7 1.56 0.86 2.56
4 0.72 1.33 1.11 2.42
5 0.76 1.44 1.13 2.84
6 0.7 1.41 1.145 2.48

Table II. Values for environmentsPVM1 andPVM2
It is remarkable that for this kind of highly distributed algorithm (an Ant System) the profit

achieved by using PAS-D approach, is evident. However,PAS-Salso achieve a good performance
running on an environment of processors having a similar power (seeTable I).

Although the results obtained show clearly the difference betweenPAS-SandPAS-Drunning
on different environments, it is not evident to carry out a straightforward analysis of the perfor-
mance of the parallel ant systems, eitherPAS-Sor PAS-D, due to they are stochastic algorithms
where their computation time strongly depend on the seed given as input to generate random
numbers. For example, in image processing, a task can be divided in a small number of tasks
and each one processes afixed numberof pixels (some image partition). On the other hand, an
Ant System is a set of small tasks (independent agents) conforming a distributed algorithm and
the purpose is to distribute those small tasks on available processors in a particular parallel plat-
form. However, when any parallel approach is applied to someinstance of MKP, theSpeedup
achieved by augmenting the number of processors varied slightly (varying the seed) due to the
variation on the number of items incorporated by each ant percycle of the algorithm which per-
forms accordingly the initial seed. It is also possible thatfor some instances of MKP, the parallel
systems running on an heterogeneous platform are able to obtain aSpeedup Factorvery close to
the optimal one .

5 Conclusions

An Ant System is a class of distributed algorithm which can benaturally considered as anearly
embarrassingly parallel computation. The two proposed approaches showed that the explicit
parallelism involved in an Ant System can be easily exploited by using networked workstations.
However, there exist some considerations to take in accountwhen a particular approach will
be used:Work division and processors power conforming the parallelenvironment. Also, it is
worth remarking that the applications developed in PVM are portable enough to run on different
parallel platform without major changes.

References

[1] Beasley, J. - ”OR-Library: Distributing Test Problems by Electronic Mail” - e-mail:
o.rlibrary@ic.ac.uk

[2] Bilchev, G. - ”Evolutionary Metaphors for the Bin Packing Problem” - Proceedings of the
Fifth Annual Conference on Evolutionary Programming. San Diego, California - USA,
1996.

[3] Bilchev, G.; et al. - ”The Ant Colony Metaphor for Searching Continuous Design Spaces”
- Published in Evolutionary Computation, selected papers from AISB Workshop, Sheffield
UK, April 1995. Edited by T.C. Fogarty.

[4] Bullnheimer, B.; et al. - ”A New Rank Based Version of the Ant System - A Computational
Study”. University of Vienna. April 1997.

[5] Cena, M.; et al. - ”The Ant Colony Metaphor for Multiple Knapsack Problem” 3th CACiC.
La Plata, Argentina. October 1997

[6] Chu, Paul; et al. - ”A Genetic Algorithm for the Multi-constraint Knapsack Problem”.
http://mscmga.ms.ic.ac.uk/pchu/pchu.html

[7] Dorigo, M. ; et al. - ”Distributed Optimization by Ant Colonies” - Proceedings of ECAL91.
Elsevier Publishing, pp 134-142.

[8] Dorigo, M.; et al. - ”An investigation of some propertiesof an Ant algorithm” - Proceedings
on the Parallel Problem Solving from Nature Conference. Elsevier Publishing, 1992.

[9] Dorigo, M.; et al. - ”A study of some properties of ANT-Q” -Published in Proceedings of
PPSN IV. Springer-Verlag, 1996.

[10] Khuri, Sami; et al. - ”The Zero/One Multiple Knapsack Problem and Genetic Algorithms”.
ACM Symposium of Applied Computation ’94.

[11] Maniezzo, V.; et al. - ”The Ant System Applied to the Quadratic Assignment Problem”.
Technical Report 94/28. IRIDIA, Universite Libre de Bruxelles, Belgium.

[12] Nemhauser, G.; et al. - ”Integer and Combinatorial Optimization”. John Wiley & Sons, Inc.
1988.

[13] Papadimitriou, C. - ”Combinatorial Optimization: Algorithms and Complexity”. Prentice
Hall. 1982..

[14] Wilkinson, Barry; et al. ”Parallel Programming Techniques and Application Using Net-
worked Workstations”. Preliminary Draft. Prentice Hall, 1997.

