

Semiotic Engineering – A New Paradigm
for Designing Interactive Systems

Clarisse Sieckenius de Souza

SERG – Semiotic Engineering Research Group
Departamento de Informática, PUC-Rio

Rua Marquês de São Vicente, 225
22453-901 Rio de Janeiro, RJ – Brazil

clarisse@inf.puc-rio.br
http://www.inf.puc-rio.br/~clarisse

Abstract. This paper presents semiotic engineering – a semiotic theory of
HCI. The theory has the advantage to integrate back end and front end design
and development perspectives into a single metacommunication process that
affects the user’s experience and, ultimately, the success of any system. By
means of illustrative examples, we show the kinds of effects that can be
achieved with the theory, and discuss why a semiotic perspective is relevant
for the future of information systems.

1 Introduction

This paper presents the gist of semiotic engineering, a semiotic theory of human-
computer interaction (HCI) 0. Back in 1980, Ives et al. proposed a model to organize
Information Systems (IS) research 0. They structured the world of IS in three layers:
the external environment, the organizational environment, and the IS environment. In
their view, as a discipline, IS should investigate three embedded environments within
the IS environment, namely: the user environment, the IS development environment,
and the IS operation environment. Although at the time HCI did not exist as a
discipline, in retrospect we see that in the last two decades, the contribution of HCI
to IS research comes from complementary perspectives. From inside the IS
environment, HCI sets out to discover, organize and instrumentalize knowledge
about the user environment. From the outside, HCI sets out to provide knowledge
about how the whole IS environment interacts with the organizational environment
and the external environment.

The specific contribution of semiotic engineering to IS design and evaluation is
twofold. First, it has the ability to integrate the perspectives of back end and front

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Clarisse Sieckenius de Souza

end development activities, and to let the users know and enjoy the benefits of all the
intellectual efforts that eventually crystallize into software artifacts. Second, it has
the ability to frame the users’ experience within increasingly broader contexts of
communication – from basic user-system dialogue, to contemporary user-in-
cyberspace activity. Bearing on key concepts drawn from the work of such
semioticians as Peirce 0 and Eco 0, this theory views all instances of HCI as
involving a particular case of computer-mediated communication (CMC). In it, the
producers of interactive technology talk to users through the interfaces of the
artifacts they build. Although this CMC perspective is the hallmark of all semiotic
approaches to HCI and IS [5-8], semiotic engineering is different because it is a
theory, not a semiotic analysis, of HCI. Hence, it has its own ontology, from which
specific models and methods to support design and evaluation can be derived [1,9].

One of the difficulties for practical collaboration between HCI and IS researchers
is that mainstream HCI is heavily influenced by cognitive theories, like Norman’s
cognitive engineering and user-centered design (UCD) 0. A study of about research
in Computer Science (CS) found that HCI publications are outliers compared to
others. For example, they do not have Mathematics as a reference discipline, they do
not use mathematical methods of analysis, and don’t aim to formulate processes or
algorithms 0. Because these three features are predominant throughout CS, there is a
gap between disciplines, which makes it difficult to turn HCI contributions into a
scientific and practical asset for both CS and IS. Semiotic engineering, however, may
constitute an important step for bridging this gap.

Fig. 1. Norman’s execution and evaluation gulfs

A brief illustration of the kinds of contrast between semiotic engineering and
Norman’s influential cognitive engineering 0, for example, helps to show why IS
design and evaluation can benefit from what we propose. Cognitive engineering
views human-computer interaction as the traversal of two gulfs (see Figure 1). All
interaction is dominated by the user’s overall goal. Given this goal, interaction starts
by the user establishing her immediate intent (e.g. playing back her favorite CD in
her new laptop), then planning how to achieve it as result of various software
functions, and finally executing the plan by activating interface controls. These three

Semiotic Engineering – A New Paradigm for Designing Interactive Systems 3

steps help the user traverse the execution gulf that spans between user and system.
Next, the user must perceive the signal corresponding to the system’s reaction (e.g.
the button turns from grey to black), interpret what it means (she can press it to
start the playback), and evaluate her success. These three steps help the user traverse
the evaluation gulf. User-centeredness springs from the fact that all relevant activity
for HCI is enacted by the user, even if as a response to what the system suggests.
Norman’s original theory does not include the system as a partner in HCI, which
represents a radical shift from the once traditional view that user and system play
equal (or, more often than not, unequal) parts in interaction. By the same token, his
theory makes it difficult for IS researchers and developers to connect to HCI.

Fig. 2. A screen shot of Windows® Media Player®

The kinds of design concerns that the theoretical foundations of UCD help
address are eminently cognitive: How difficult is it for the user to know what to do
or expect? How difficult is it to learn something new? How difficult is it to retain
and recall it? Which analogies and metaphors can be used to accelerate the
appropriate framing of concepts to be learned? As a result, voluminous research and
valuable techniques based on cognitive theories helped designers make interaction
easier for users, and account for most that is meant by usability. Nevertheless, usable
technologies have to exhibit qualities other than cognitive. For example, what other
sorts of theories will explain (or support) design choices and decisions in the
Windows Media Player® interface (see Figure 2)? How does a designer integrate
being connected (and takes full advantage of it) into the user’s experience while she
is listening to her CD? Which theories and techniques support choices about what
information to display on screen, what links to offer (for further details about artists
and music), what related activities to enable (buying other CD’s or chatting with
other fans)? And how should all these things be expressed – through words, images,

4 Clarisse Sieckenius de Souza

sounds, movement? The best answers to each of these and other related questions
determine the success of technology, and they are not always easy to find. Notice, for
example, that in Figure 2, although the preferred interface language is English, an
effect of automatic customization (based on the user’s IP being located in Brazil)
incorrectly introduces linguistic miscellanea in the user’s experience (the three
rightmost tabs magnified in Figure 2 contain words in Portuguese), but correctly
directs the user to “MSN Music Brasil”.

Various HCI approaches have helped address the above questions and issues.
Some examples are: activity theory 0, the language-action perspective (LAP) 0,
social computing 0 and online communities 0. Language and communication-
centered approaches like LAP, in particular, have been praised as a relevant
alternative approach to IS design. According to Hirschheim and co-authors, they
“point the direction which some important IS research will likely take in the future to
strengthen the interpretive and critical traditions […] within the field” 0.

Compared to both cognitive approaches and LAP, semiotic engineering is
different because it emphasizes the communicative role of designers and developers
in HCI, and brings them up into the user environment of IS research. It promotes
intent (users’ and designers’) to first-class citizen in HCI, and centers around the
necessary communicative settings that will bring designers and users together at
interaction time 0, to negotiate the scope and evolution of shared meanings encoded
in software. Cognitive approaches, for instance, deny the presence of designers at
interaction time. And LAP, in spite of its explicit account of IS as communication
systems, typically focuses on IS-enabled communication among users, and not on
designer-user communication.

In the remainder of this paper we will: briefly outline the profile of semiotic
engineering; present an example of the kinds of account and epistemic tools that the
theory can provide; and discuss the advantages of semiotic engineering as a means to
bridge the gap between HCI and IS.

2 Semiotic Engineering

Our theory centers around two fundamental concepts: metacommunication and
meaning. Metacommunication is “communication about communication”. It is the
main process taking place in user interfaces and, ultimately, in HCI: interfaces and
interaction enable designer-to-user communication(i) about all designed types of
system-user communications(ii) and their corresponding effects. Top-level
communication(i) is a one-shot comprehensive message that can be paraphrased as:

Here is my understanding of who you are, what I've learned you want or need to do, in
which preferred ways, and why. This is the system that I have therefore designed for you,
and this is the way you can or should use it in order to fulfill a range of purposes that fall
within this vision.

The addresser “I” in the message is the artifact’s designer (or a spokesperson for
the design team), and the addressee “you” is the user (or the users). The content of
the message is strongly referenced to the context of design (where the design vision
is elaborated and imprinted in the design product). It is unfolded through the process

Semiotic Engineering – A New Paradigm for Designing Interactive Systems 5

of interaction, just like the content of a book is unfolded through reading. Hence,
ontologically, designers and users belong to the same category – they are
interlocutors at interaction time. This is one of the major differences between
semiotic engineering and prevailing HCI theories. It underlines the fact that the
legitimacy and consistency of the message (“this is the systems that I have build for
you”) depend on the design intent being shared and restated at every single stage of
the software development cycle. In other words, all developers must understand the
metacommunication message, agree with it, and contribute to making it clear and
useful to the end user. Another difference, related to the second central concept in
the theory, is taking meaning to be a culturally-determined constantly evolving
process, rather than a fixed target to be captured, encoded and met. Most implicit or
explicit theories of meaning supporting computation and software engineering
postulate that, just like computer (program) symbols each have their established
(enumerable) meaning(s), human meanings occurring in various domains of activity
are also fully determined a priori. However, human meanings like human life evolve
in both predictable and unpredictable ways. In other words, “the user's meaning” is a
moving target, and we as developers or designers can never claim to have fully
captured it. But we can and do capture relevant parts of it, which are encoded in
programs that inexorably compute and predict their occurrence according to well-
specified semantic rules. They encode our interpretation of users' meanings in a finite
range of possible contexts. The better the job we do at the initial stages of design
(through user studies), the greater our chances to communicate and share our
understanding with users. When the unavoidable step to outside the boundaries of
encoded meanings is made, and the user begins to mean things that are “knowable”
but not “known”, user’s satisfaction will be more dependent on “communicability”
than on “usability” 0. Here is a plausible e-commerce scenario to illustrate this.

Scott has been using E-Store for a number of years and different purposes: buying
books and computer supplies; buying music CDs, DVDs and cooking books; buying gifts for
friends and family of all ages. E-Store uses sophisticated recommendation systems and
powerful customization techniques. So, Scott has “his” E-Store, that is nothing like his
wife’s. Hers looks a different locale – a department store, whereas Scott’s feels like a huge
music and entertainment warehouse. Based on his purchasing habits over the years, Scott’s
E-Store puts together recommendations for HCI books back to back with others for
children books. Likewise, the organization of store sections gives the same priority access
to computer supplies as to flowers (which he often sends to his Mom). He understands this,
but he really doesn’t like it that much – he’d rather not get the flowers in the way when he
visits E-Store for professional purposes, not get recommendations for Dr. Seuss books
when trying to check the latest design guidelines for cell phone browsing.

He then decides to use his email strategy to get around the annoyance. Just like he has
5 different emails accounts for different purposes, he chooses to create specialized
personas for E-Store. He clicks on the ‘If you are not Scott click here’ link to create
“Skip”, his “professional clone”. All works fine till “Skip” decides to purchase his first lot of
professional books. As he provides his credit card and billing address information, a red
light flashes online: “The information you provided is apparently that of another user. Our
Customer Service Department will get in touch with you, both electronically and through

6 Clarisse Sieckenius de Souza

regular mail. If you want to save the data you have provided so far, click on ‘Save
information for future use’. We are sorry for the inconvenience.”

A number of meaning-related aspects are illustrated by this scenario. First, Scott
is happy that E-Store provides recommendations and customized shopping
experiences. Second, Scott understands how recommendations and customization
work. The only annoyance is that over time the mixed types of purchases he makes
online mess up Scott’s E-Store. But, third, no problem: he thinks he knows how to
get around the issue, using knowledge from his online culture. Fourth, E-Store
supports his strategy for a while, but breaks down when it comes to finishing Skip’s
first purchase online. Why? Because parts of information provided by customers as
they conclude purchasing processes online are used as identity keys. As it is usually
the case in social life, identity is a unique image of you. No two people can share the
same identity. But online we can have multiple identities, often confused with
multiple roles by both users and designers.

So what about evolving meanings as opposed to fixed meanings? When E-Store
was developed, all agreed that identifying the users was a key need if security and
trust were expected to qualify the users’ experience. They decided to identify users
by means of a particular tuple of data extracted from the most reliable and valuable
piece of information they provide – their credit card information and their personal
name and address. Nothing wrong with that. But nobody could predict (not even
Scott, if you asked him) that E-Store customers would ever wish or need to create
clones online. So, designers and developers feel justified with respect to their
original choices, Scott feels justified with respect to his current needs. And an
interactive problem is in place.

The issues involved in the above scenario are not only strictly pertinent to the
user environment and how it interacts with the E-Store organizational environment,
but also to how the user environment relates to the external environment, helping
users engage in existing social and cultural practices. Lyytinen 0 remarks that
sociotechnical approaches to IS bring together “features of the information system,
user, and organizational environment”. However, he says, because they focus on the
technical aspects of IS, they may miss important factor lying beyond these (e.g.
factors that belong to the external, socio-cultural, environment). Semiotic approaches
are promising because Semiotics can be viewed as the logic of culture 0.

Taking into account cultural signs and practices, and the way they are
communicated, semiotic engineering can explain why Scott is right and angry, even
if E-Store designers and developers are also right and justified. It can also call the
designers’ and developers’ attention to the fact that the systems they produce will
necessarily be used in different scenarios than the ones they thought of. Therefore,
the more efficiently and effectively designers and developers communicate the key
concepts of design rationale to users, the more efficiently and effectively users will
work around the demands of context evolution and situational change. In this
particular case, although the creators of E-store may be excused for not anticipating
Scott’s specific problems and preferences, merely signaling at the interface that the
user’s name, address and credit card info combine and constitute his identity should
have put Scott’s imagination on a more productive path. He would probably realize
that his email strategy would not work for E-Store.

Semiotic Engineering – A New Paradigm for Designing Interactive Systems 7

Semiotic engineering also explores the design and development consequences of
the fact that computer meanings have human origin and destination. In spite of all
formal verification procedures that can prove symbols to be consistently computed
one after the other through all layers of software programming, semantic adequacy
and relevance actually depends fully on human judgment. It takes a human mind to
ascertain that any particular computation is, for all practical purposes, semantically
adequate, and ultimately useful Feil! Fant ikke referansekilden.. Hence, although
HCI research does not use Mathematics as a foundational discipline or mathematical
analysis as a method, knowledge about human meanings should contribute to both
CS and IS.

Semiotic engineering proposes to connect both ends by postulating that
designers/developers, systems, and users, all belong to the same ontological
category: they are all interlocutors whose conversations are inter-related. Designers
are brought onto the stage of human computer interaction, where they communicate
what they have done, how, and why, to the users of the artifact they have designed.
The system’s interface speaks for designers at interaction time. The interface
conveys all communication that designers must and wish to exchange with users,
effect all the expected results, exhibit all the expected behavior, and make all the
possible sense of the conversation with the users. They are the legitimate
representatives of the designer’s mind. To design a system thus amounts to designing
a rational mechanic spokesperson that will tell users what sense (predicted or not) to
make of the artifact 0. Most importantly, it also amounts to designing the remedial
sense-making and meaning-negotiating dialogues, which will give users resourceful
signs to reason upon and recover from communicative breakdowns and
misunderstandings.

Implicit in the above is the fact that the system, as the designers’ deputy, must be
able to explain itself to end users, to disclose the essence of its logic and rationale, in
case of interactive breakdowns and/or system repurposing. This can only be achieved
with sound underlying models that are comprehensible and satisfactory for all
members of the development team. If the semantics of the design rationale, as
intended by the designer, is tweaked or misinterpreted by developers, the users will
suffer the consequence of nonsensical interface discourse.

3 Communication and Metacommunication with an Online Store

Like many other online stores, Amazon.com® makes extensive use of
recommendation and customization techniques. Figure 3 shows a piece of the page
Clarisse gets as she goes to http://www.amazon.com.

Notice the explicit conversational style of interaction (“Hello, Clarisse”),
reinforced in numerous dialogues as, for example, in the “Frequently Asked
Questions” about recommendations (see Figure 4). FAQ techniques introduce a
“user’s deputy” in the conversation, one that speaks for the user (e.g. “Are my
recommendations saved so I can look at them again later?”). The use of “I”, “you”,
“we” establishes a speaker/listener structure, and even signs of persuasive rhetoric
are present in the dialogue (e.g. “We wouldn’t want you to miss something you

8 Clarisse Sieckenius de Souza

might enjoy!”). However, this natural conversation feeling is shaken when the user’s
deputy asks: “How do I turn off recommendations?” The advice is: “Simply click the
link on our home page that says ‘If you're not (your name), click here.’ Then, leave
the e-mail and password spaces blank and click the ‘Amazon.com’ tab. This will
remove our recommendations for you until you sign in again.”

Fig. 3. A detail of Clarisse’s customized entry page at Amazon.com

Fig. 4. A detail of Amazon.com explanations about how recommendations work

By framing HCI as metacommunication and shifting the traditional user-system
interaction to a user-designers’ deputy conversation, semiotic engineering provides
conversational models and methods for designing critical parts of such
metacommunication. For example, it calls the designer’s attention to the importance
of observing factors like topical structure in conversation. Notice that the user
(through his deputy) is asking about “turning off recommendations”. But the
designer’s deputy responds with apparent non sequitur discourse: “Click on the link
that says ‘If you’re not (your name), click here’”. Why raise a question of identity for
turning off recommendations? Even worse: Why advise the user to belie her own
identity? What other kinds of convenient side effects may this socially serious
misbehavior cause? Why not simply have a link saying “Turn recommendations off”,
or another saying “Visit the store anonymously”?

Semiotic Engineering – A New Paradigm for Designing Interactive Systems 9

Following Schön’s reflection-in-action design paradigm 0, semiotic engineering
bets on epistemic tools, which fire the designer’s semiosis along certain structured
paths for reflection. Thus, when the interaction style is explicitly and prominently
conversational as with Amazon.com, the designer is led to ask himself questions
about fundamental issues for productive verbal interchange: the consistent
identification of interlocutors, topic and purpose of each message, turn-taking and
rhetorical structure, and so on. More than that, in the spirit of semiosis, the designer
is prompted to ask further questions, and explore the design space, taking semiotic
engineering on board as an epistemic resource theory.

In order to highlight the relevance of such issues for both front end and back end
design and development activities, note that semiotic engineering has the power to
raise issues of reuse in the Amazon.com example. Epistemic tools for designing
communication in multi-user applications like groupware, online communities and
others capture the design rationale and use it extensively for building the designer’s
deputy discourse 0. Thus, in the process, a designer is not likely to explain and
justify a change of identity as a rational solution for turning off recommendations.
This would be in obvious contradiction with one of Grice’s famous maxims for a
logic of conversation 0, which we integrate to our tools.

Although the same range of effects caused by a given program may be
interpreted in a number of different ways and serve many different purposes (e.g.
allow for anonymous visits to an e-store and momentarily clear the recommendation
list of long-time customers), there must be a differentiation of expression and
representation when humans are engaged in interpretive processes for which such
differences matter. This is the case not only of end users, but also of maintenance
programmers and technical documentation writers. They must all know what the
system can and cannot do, no matter how extensively reuse techniques have been
applied to accelerate its development cycle or optimize its size and performance.

Just for illustration, one of our tools walks the designer through the
communication design space, asking questions like: Who is speaking? To whom?
What is the speaker saying? Using which code and medium? Are code and medium
appropriate for the situation? Are there alternatives? Is(are) the listener(s) receiving
the message? What if not? How can the listener(s) respond to the speaker? Is there
recourse if the speaker realizes the listener(s) misunderstood the message? What is
it?

A walkthrough of FAQ-style interaction reveals some interest facets. Is “the
user” really speaking? Are the words in the questions phrasing really hers? And if
they aren’t, should “you” and “yours” be used instead of “the customer”?

One last aspect that is somewhat related to identity, but more precisely to
legitimate agency, can be seen on the snapshot in Figure 5, on the FAQ about “the
page you made”. Curiously, the designer’s deputy is telling the user that she is
(unknowingly and perhaps unwillingly) making an HTML page as she navigates
through the store. But she isn’t. The system is automatically assembling this page on
the user’s behalf, which raises issues of control and legitimacy in the whole cycle of
interaction. Users may end up asking themselves what they are doing, and even who
they are, given that the system is apparently taking the user’s identity and doing
unsolicited things along the way. Some may be pretty nice, some may not. Can the

10 Clarisse Sieckenius de Souza

user always trust this system then? The ethical implications of such choices are all
very likely to emerge in the designer’s semiosis along the design process.

Fig. 5. A detail of Amazon.com explanations about the page you made

4 Concluding Remarks

Although semiotic engineering is firmly established in the HCI camp, it sheds light
on universal semiotic processes that occur throughout the development cycle, and on
the kinds of commitments and consequences that one is expected to assume when it
comes to producing useful, pleasurable, high-quality information technology.

Among the points we’ve raised in this paper, we want to highlight the following.
First, we reject the view that meaning is a fixed ideal value that designers can elicit
from users and hopefully encode into a system. The expectation that well done user
studies will capture the user’s meaning and entail satisfaction denies the intrinsic
creative and evolutionary character of human nature. In terms of the future of IS
research, this point suggests that abductive reasoning systems 0 and even
evolutionary computing 0 may provide radically different conceptions of
computation, and consequently broaden the spectrum of meanings that can be
exchanged between the internal components of the IS environment, and between the
IS environment and the socio-cultural environment (not only the sociotechnical
environment).

Second, semiotic engineering favors model-based design and development,
although for a somewhat different purpose than is usually the case in literature 0.
Instead of using models to generate implementations of specifications automatically,
we propose to use them to generate explanations about design and implementation.
These explanations should be primarily used to elicit and negotiate interpretations
and meanings throughout the development cycle, with a positive effect on the user’s
experience at the very end of the process chain. That these models can be used for
program generation or transformation is the object of formal methods investigation.
The semiotic engineering point is that the semantic adequacy of representations used
for specifications and programming is the object of human judgment, and not of
automatic syntactic manipulations of symbols.

Third, because the fundamental process in HCI is metacommunication of design
rationale, it is of prime importance that this rationale be not undermined by
programming practices (like the case of reuse, in our example) that cannot guarantee
the consistency of the designer’s deputy’s discourse at interaction time, and hence

Semiotic Engineering – A New Paradigm for Designing Interactive Systems 11

make sense to users. The role of contingency and context in intelligible
communication 0 challenges the idea that design and implementation components
can be reused without problems in communicative situations other than the ones they
have been originally used for. The reuse ideal is fundamentally dependent on fixed
and universal meanings. In terms of the future of IS research, this point suggests that
software and design components, objects or patterns should include representations
of the metacommunicative meanings with which they are thought to be associated.
This integrative view of back end and front end issues is one of the strengths of
semiotic engineering.

Fourth and finally, because meanings evolve in unpredictable ways, allowing
users to customize and extend applications (broadly covered by the term end user
development 0) deserves high-priority among development techniques that are in line
with our theory. Users should be able to incorporate contingent meanings to the
technology, achieving evolutionary computing in a very particular way. Viewed from
the perspective of the external environment, the IS environment would evolve on
demand.

Other theories and approaches to HCI usually don’t bring all the above issues
together. They tend to focus on one or another aspect only, contributing to the
feeling that IS and HCI belong to worlds apart. The separation creates tension and
favors independent initiatives that try to take care of the user environment within IS
based on ontologies and models that exclude some of the most fundamental aspects
of the users’ experience. Because of its semiotic foundations, whereas other theories
seek to provide tools and methods that generate answers to design problems,
semiotic engineering’s tools and methods are meant to generate questions. As
epistemic tools, they are not intended to replace other tools, neither is the theory
intended to replace other theories. This may frustrate IS developers and researchers,
who would like to get answers for long-standing questions in the field. But, as
Hirschheim and co-authors say 0, alternative IS development approaches, including
those based on language and communication, are important because they represent
useful scientific counterparts of orthodox views. Altogether, we strongly believe that
semiotic engineering is a useful bridging theory for bringing together IS and HCI.

Acknowledgment

The author thanks CNPq, the Brazilian Council for Scientific and Technological
Development, for giving continued financial support for her research.

References

1. C.S. de Souza. The semiotic engineering of human computer interaction.
Cambridge, MA. The MIT Press (2005).

12 Clarisse Sieckenius de Souza

2. R. Hirschheim, J. Iivari, and H.K. Klein. A Comparison of Five Alternative
Approaches to Information Systems Development. Australian Journal of Information
Systems, Volume 5(1). (1997).
3. C.S. Peirce. Collected papers of Charles Sanders Peirce, Vols. 1-8, C. Hartshorne
and P. Weiss. Cambridge, MA. Harvard University Press (1931-1958).
4. U. Eco. A theory of semiotics. Bloomington, IN. Indiana University Press (1976).
5. P.B. Andersen, B. Holmqvist, and J.F. Jensen The computer as medium.
Cambridge. Cambridge University Press (1993).
6. J. Kammersgaard. Four Different Perspectives on Human-Computer Interaction.
International Journal of Man-Machine Studies 28(4) pp. 343-362. (1988).
7. K. Liu. Semiotics in Information Systems Engineering. Cambridge. Cambridge
University Press. (2000).
8. M. Nadin. Interface design and evaluation. In R. Hartson, D. Hix (Eds.) Advances
in Human-Computer Interaction, Vol. 2. Norwood, NJ. Ablex Publishing Co. (1988).
9. C.S. de Souza. Semiotic engineering: bringing designers and users together at
interaction time. Interacting with Computers, 17 (3) pp. 317-341. (2005)
10. D.A. Norman and S.W. Draper. User-centered system design. Hillsdale, NJ.
Laurence Erlbaum (1986).
11. V. Ramesh, R.L. Glass, and I. Vessey. Research in computer science: an
empirical study. The Journal of Systems and Software 70 (2004) pp. 165-176
12. B.A. Nardi. Context and consciousness. Cambridge, MA. The MIT Press. (1996).
13. T. Winograd and F. Flores. Understanding computers and cognition. New York,
NY. Addison-Wesley (1986).
14. P. Dourish. Where the action is. Cambridge, MA. The MIT Press (2001).
15. J. Preece. Online Communities: Designing Usability and Supporting Sociability.
New York, NY. John Wiley & Sons, Inc (2000).
16. K. Lyytinen. Different Perspectives on Information Systems: Problems and
Solutions. ACM Computing Surveys, Vol. 19, No. 1, March 1987. pp. 5-46 (1987).
17. D. A. Schön. The Reflective Practitioner. New York, NY. Basic Books (1983).
18. H.P. Grice. Logic and Conversation. In: P. Cole & Morgan (eds.), Syntax and
Semantics 3: Speech Acts. New York, NY. Academic Press (1975).
19. J.R. Josephson and S.G. Josephson. Abductive inference: computation,
philosophy, technology. Cambridge. Cambridge University Press (1994).
20.D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. Piscathaway, NJ. IEEE Press (1995).
21. F. Paternò. Model-Based Design and Evaluation of Interactive Applications.
Heidelberg. Springer (1999).
22. L.A. Suchman. Plans and Situated Action. Cambridge. Cambridge University
Press (1987).
23. Lieberman, H.; Paternò, F.; Wulf, V. End-User Development. Human-Computer
Interaction Series, Vol. 9. Heidelberg. Springer. (2006).

