
LUPA: A Workflow Engine

Emely Arráiz1, Ernesto Hernández-Novich1 and Roger Soler1

Universidad Simón Boĺıvar, Caracas, Venezuela
arraiz@ldc.usb.ve, emhn@ldc.usb.ve, soler@ldc.usb.ve

Abstract. Workflow Management Systems depend on a Workflow En-
actment Service having several interfaces to establish communication
with external applications, manage persistent information and exchange
it with similarly capable systems. The study of business processes has
shown multiple workflow patterns that have been modelled and im-
plemented in several engines. The Workflow Management Council has
combined commercial and academic efforts towards a standard struc-
ture for engines and information exchange regarding workflow processes.
LUPA is a Workflow Engine designed around the Workflow Management
Council Reference Model that implements basic workflow patterns with
a graphical syntax, establishing their semantics on Interpreted Petri
Nets with extensions. It provides a new Cancellation workflow pattern,
that has also been used to provide an Iteration pattern with guaranteed
termination.

1 Introduction

The Unified Language for Administrative Processes (LUPA) focuses on the pro-
gramming and communicating tasks associated with the transaction manage-
ment needed to fulfill business processes of an organization. It precisely models
de Routes and Rules that information must follow in order to comply with the
organizational policy.

LUPA’s syntactic specification consists of Process Expressions built over a
small set of operations that allow writing formulas which describe the Routes.
It has operational semantics expressed with Interpreted Petri Nets covering
the networked Process structure along with an Environment containing the
associated information. A Cancellation operator is particularly interesting, it
being able to model two transactions operating in parallel, keeping only the
operations of the first one that finishes.

A simple interpreter component has been implemented following the for-
mal syntactic and semantic specifications, leading to a prototype that is able
to instantiate, execute and control processes defined under this schema. The
prototype has been built following the WFMC recommendation regarding the
Workflow System Reference Model.

This paper has been structured in sections. Section 2 gives an introduction
regarding processes, process expressions and some of the associated graphs.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

190 Emely Arráiz, Ernesto Hernández-Novich and Roger Soler

Section 3 defines the semantic for the process expressions, along with its opera-
tional semantics. Section 4 presents a brief review of Workflow concepts. Section
5 shows how LUPA fits into the Worflow Reference Model and Section 6 briefly
comments on related and similar work both commercial and academic, while
Section 7 briefly explains LUPA’s implementation model. Finally, conclusions
and further directions are presented in Section 8 .

2 Process Expressions

Each transaction has an associated process formed by the set of tasks the or-
ganization completes in order to effectively complete such transaction, and by
the order and precedence in which those tasks have to be undertaken [1].

The set of tasks that make up the process has a “natural” graph structure
given by the “programming”. The idea of effective completion is seen as the
fact that the transaction finishes and all its associated events have taken place.
Therefore, a Process is understood as both the tasks and its programming.
Being able to define the state of a process, seen as the set of tasks that are
taken place at any given time along the process flow, becomes interesting. This
notion can be modeled as the marking of the Petri Nets [2].

The Process Expressions (PE) are defined inductively as:

– T the finite set of simple tasks.
– EP the process expressions.
– prj predicates.
– Clock, a process that measures time.

Table 1. Process Expressions

If ti ∈ T then 1. ti ∈ EP (simple task)
If Z, Q ∈ EP then

2. Z � Q ∈ EP (sequence)
3. Z ⊕ Q ∈ EP (conjunction)
4. Z ©pr Q ∈ EP (disjunction)
5. Z � Q ∈ EP (cancellation)

6. Z©pr,Clock ∈ EP (iteration)

Each process expression has an associated graph, with a general form G(E)
shown in Figure 1.

The transaction (a document) enters the net through the place i , is handled
by the transition E, where the transaction is properly “processed”, exiting the
net through the place o afterwards.
All associated graphs have a single input place i and a single output place o.
Since we are working with bipartite graphs, the lexicon is similar to the one
used when talking about Petri Nets.

LUPA: A Workflow Engine 191

i E o

Fig. 1. Generic Graph

We have the following cases with their associated graphs:

1. Simple Task: Process E = ti (ti being the simple task which is atomic).
This process E ends as soon as task ti ends.

2. Sequence: Process E = Z � Q, stating that process Z is processed until it
finished and its followed by process Q until it finishes. Process E ends when
Q ends. Figure 2 shows its associated graph G(E) = G(Z � Q). Where t
is a “dummy process” that helps preserve process’ Z output independent
from process’ Q input. That is, process t only copies its input to its output.

i = i Z Z o Z Q o Q = oiQt

Fig. 2. Sequence

3. Conjunction: Process E = Z⊕Q, stating that both processes Z y Q execute
in parallel until both have ended thus ending process E.

4. Disjunction: Process E = Z©pr Q, stating that one and only one of Z or Q
will execute depending on predicate’s pr truth value. Process E ends when
the process chosen to execute ends.

5. Cancellation: Process E = Z�Q, stating that both processes Z y Q execute
in parallel. When one of them finishes, process E will also finish. It also has
the effect of cancelling (rolling-back) all the tasks completed by the other
process. Figure 3 shows its associated graph G(E) = G(Z � Q). Where
�� is a “control place” that copies the input to both input places iZ and
iQ, while ��∗ is another “control place” which will determine which sub-
process finished first (be that Z or Q), handing its output to place o, while
remembering to cancel (rollback) the output of the sub-process finishing
last.

i Q

o

Q o
Q

i Z Z o Z

i / / *

Fig. 3. Cancellation

192 Emely Arráiz, Ernesto Hernández-Novich and Roger Soler

The Cancellation operator (�) is useful to start processes in parallel when
only the results of one of them is needed, but which one will end first is not
known or doesn’t matter for the correct outcome of the process.

6. Iteration: Process E = Z©pr,Clock, stating that process E will be repeatedly
executed until predicate’s pr truth value is false, or until the amount of time
controlled by Clock has passed. Figure 4 shows its associated graph.

Fig. 4. Iteration

3 Operational Semantic

Unlike [3], we use Interpreted Petri Nets as [4], simplifying of standard definition
and adapting them, thus partially using its potential. Our nets fall into Category
3 according to the Petri Net classification in [5].

Using Interpreted Petri Nets allows us to have and Environment carrying all
the information needed for the transaction in process, and a classical Petri Net
which establishes when to transform or create information on the Environment.

Definition 1 (Interpreted Petri Nets (IPN)) An Interpreted Petri Net con-
sists of a classical Petri Net < P, T,A >, an Environment Env =< D,OP, PR >,
and two functions ϕ and ψ that link Net and Environment together by complet-
ing operations. Thus IPN =<< P, T,A >,Env, ϕ, ψ >.

1. D = Dform + Dcontrol , the disjoint union of the Environment states, the
“form” and “control”.

2. OP = {op1, op2, · · · , ops}, a set of operators

opi : D → D

3. PR = {pr1, pr2, · · · , prk}, a set of predicates over D

pri : D → {true, false}

4. ϕ : P → OP , defining an operator opi for each place of the Net.
5. ψ : T → PR×OP , defining a pair <predicate,operator> for each transition

of the Net, being the specific task to complete there.

An IPN works like a classical Petri Net, except that before firing a transi-
tion its associated predicate must have a true truth value when applied on the
Environment, thus allowing the application of the operator.

LUPA: A Workflow Engine 193

The function ϕ will generally be the identity function, except for the place
i which stands “isolated”, that is ϕ : (P − {i}) → I
A precise construction of ϕ for each input place i, is given for each case, being
particularly important for cases 5 and 6.

3.1 Operational Semantics for Process Expressions

These semantics are given by the Interpreted Petri Net associated with the
expression, constructed inductively according to the particular case. Being
IPNE the Interpreted Petri Net associated to the Process Expression E,
that is: IPNE =<< PE , TE , AE >,Env, ϕE , ψE >> where the Environment
Env =< D,OP, PR > is general while constructing the net. For all cases it
must be true that: PZ ∩ PQ = ∅ and TZ ∩ TQ = ∅. We use the lambda
notation [6] to specify each case. Case 5, the Cancellation operator, is specified
as follows (all the specifications and the mathematical properties of the IPN
are in [7]):

Case 5 Let E = Z �Q .
restricted to:

(PZ ∪ PQ) ∩ {i,o,b, u, v, r, s} = ∅
(TZ ∪ TQ) ∩ {t1, t2, t3, t4, t5} = ∅

(ϕZ (PZ) ∪ ψZ(TZ) ↓ 1 ∪ ψZ(TZ) ↓ 2) ⊥ (ϕQ(PQ) ∪ (ψQ(TQ) ↓ 1 ∪ ψQ(TQ) ↓ 2)
λd.Mk1 ⊥ λd.Mk2

and IPNE :
PE = PZ ∪ PQ ∪ {i,o,b, u, v, r, s}
TE = TZ ∪ TQ ∪ {t1, t2, t3, t4, t5}
AE = AZ ∪AQ ∪ {< i, t1 >,< t1, s >,< t1, u >,< t1, iZ >,< t1, iQ >,< u, t2 >,

< u, t3 >,< v, t4 >,< v, t5 >,< oQ, t3 >,< oZ , t2 >,< t4,o >,< s, t4 >,
< t4, u >,< t4, r >,< t2, v >,< t3, v >,< r, t5 >,< t5,b >}

ϕE(i) = λd.(ϕQ(iQ) ◦ ϕZ(iZ) ◦Mk1 ◦Mk2)
ϕE(PE − {i}) = I
ψE(t1) ↓ 1 = λd.d ↓ k1 (unique codomain index of Mk1)
ψE(t1) ↓ 2 = λd.(Mk1 ◦ Copy(Dform))
ψE(TZ) ≡ ψZ(TZ) (i.e. ∀t ∈ TZ , ψE(t) = ψZ(t),

working over Dform +Dcontrol)
ψE(TQ) ≡ ψQ(TQ) (i.e. ∀t ∈ TQ, ψE(t) = ψQ(t),

working over a copy of Dform and the unique Dcontrol)
ψE(t2) ↓ 1 = ψE(t3) ↓ 1 = ψE(t4) ↓ 1 = ψE(t5) ↓ 1 = λd.true

ψE(t2) ↓ 2 = λd.

{
(Mk2 ◦Keep(Z))(d) si (d ↓ k2) in Dcontrol

(Mk2 ◦Destroy(Z))(d) if not

ψE(t3) ↓ 2 = λd.

{
(Mk2 ◦Keep(Q))(d) if(d ↓ k2) in Dcontrol

(Mk2 ◦Destroy(Q))(d) if not
ψE(t4) ↓ 2 = I
ψE(t5) ↓ 2 = λd.Mk1

194 Emely Arráiz, Ernesto Hernández-Novich and Roger Soler

This case will have one of the following execution flows, starting from an initial
marking μ0:

S ∈ {<< i, t1, < Z, t2, t4, {o} > ‖ < Q, t3, t5, {b} >>>,
<< i, t1, < Q, t3, t4, {o} > ‖ < Z, t2, t5, {b} >>>}

The set of output places is Po = {o,b}.

Fig. 5. Cancellation Operator underlying Petri-Net

Place i has a special ϕ component built (two Mkj for each cancellation
operator (�)). Each “memory” Mkj will keep track of specific conditions. Mk1

makes sure that the cancellation operator remains blocked until both processes
have finished, the last one being properly cancelled (rolled-back); while Mk2

signals which process has to be cancelled. The output place b becomes a
sink for all the tokens kept in the net by transitions that must be cancelled
(rolled-back). Function Keep does permanently modify the form part of the
Environment, whereas function Destroy discards any changes that were made
by the process finishing last and thus being cancelled.

The iteration operator has been built as a specialized cancellation operator
in such a way that all iterations will finish, either by completion or by the Clock
timing out.

4 Workflow System and the Reference Model

The Workflow Management Coalition (WFMC) defines Workflow as the total or
partial systematic automation of Business Processes during which documents,
information or tasks are exchanged among participants, determined by a set
of rules [8, 9]. It also defines a Workflow Management System as a set of soft-
ware components used to support the definition, administration and execution
of Workflow Processes [8, 9].
Research by the WFMC [10] have shown the feasibility of establishing a general
model for Workflow Management System’s implementation that fits the major-
ity of existing solutions, as well as a basis for interoperability among them.

LUPA: A Workflow Engine 195

Since all Workflow Systems have a number of generic components interact-
ing in predefined ways, the general model was built after identifying the main
functional components of those systems as well as the interfaces between them.
Several levels of functional capabilities have been established for each interface,
thus specifying each one’s minimal requirements.

In practice, the reference model of a Workflow System centers around at
least one Workflow Engine [11] in charge of storing, activating and interpreting
instances of processes as modeled by the organization. In fact, several engines
can act simultaneously in a cooperative fashion, becoming a Workflow Enact-
ment Service. It must provide interfaces that ease interaction with Process
Definition Tools, External Support Tools such as Human or Cybernetic Agents,
Control and Administration Tools, while helping exchange information with
other Engines.

The Workflow Engine works on Process Definitions, which are nothing more
than a Business Process presented in a way that eases its automatic manipu-
lation either for analysis or application. This representation is just a network
of activities and its relations, with several criteria allowing starting a finishing
processes, while keeping process’ relevant information at hand, who is involved
and which applications are needed in order to complete it. There’s a hierarchical
relationship among process definitions, and the concept of a sub-process gives
organizations the opportunity of reusing automation efforts, by solving simpler
processes first and then tackle complex ones in a “bottom-up” fashion. Figure
6 shows the high-level Reference Model with its components and interfaces.

A simple Workflow Enactment Service was implemented, providing a run-
time environment in which processes are instantiated and activated. A LUPA-
based Workflow Engine handles interpretation and activation of the needed
tasks, as described in the particular process definition, interacting with exter-
nal resources in order to complete them.

5 LUPA and the Reference Model

While studying the LUPA proposed model and the many refinements of both
“high-level” and “low-level” representations, LUPA’s roles in the Reference
Model were clearly identified.

5.1 LUPA as a Pre-Processor
The Workflow Enactment Service receives a process definition from a process
design tool, and transforms it into an internal in-core representation which helps
interpret it. During this conversion process 1 all the syntactic and semantic con-
ditions are verified following LUPA’s specification, checking if the process can
be effectively constructed and executed, whether it has been defined directly
or indirectly by means of combination of simpler existing processes. Once con-
verted to the internal representation, the process is available for activation on
1 A sort of “compilation” from a process “source form” closer to the designer, to an

“executable form” closer to the engine that will execute it.

196 Emely Arráiz, Ernesto Hernández-Novich and Roger Soler

Herramientas de
Control y
Monitoreo

Workflow Enactment Service

Flujo de Trabajo
Motor de

Workflow Enactment Service

Flujo de Trabajo
Motor de

Flujo de Trabajo
Formato de Intercambio y API para

Herramienta para
Definir Procesos

Herramienta
Cliente de

Flujo de Trabajo

Aplicaciones
Externas

Invocadas

Workflow Enactment Service

Flujo de Trabajo
Motor de Flujo de Trabajo

Motor de

Otro Workflow Enactment Service

Interfaz 1

Interfaz 2 Interfaz 3

Interfaz 4
Interfaz 5

Fig. 6. Workflow Reference Model. Components and Interfaces.

any authorized user’s request, or even moved to another Engine with a compat-
ible intermediate representation. Our reference implementation has shown that
LUPA fulfills these roles because:
– It receives a “high level” representation in terms of the graphical LUPA

syntax. Even though during this work we did not develop a process designing
application based on LUPA’s graphical syntax, the XML process definition
given as input to the engine is based on LUPA’s regular expressions, showing
not only it’s feasibility but also suggesting an usable representation.

– It is able to convert this input definition into a more efficient one for execu-
tion purposes. During this conversion process, all the conditions required by
LUPA’s semantics are enforced and only properly conditioned definitions are
accepted.

– It is able to turn this internal efficient representation into a textual “low level”
one that helps ensure the persistence of it inside the work area of the Workflow
Enactment Service. That is, if the service is stopped for whatever reason, the
available process definitions and the executing instances will be stored in a
persistent and consistent repository that allows resuming operations in the
same Workflow Enactment Service, or in any other one to which they can be
transported as long as its based on LUPA.

5.2 LUPA as an Interpreter
The Workflow Enactment Service takes a previously processed low level defi-
nition from its repository, and activates it as many times as necessary to han-
dle specific cases. This activation and consequent workflow, must keep Control
Information and Case Relevant Information, changing them according to the
concrete operations associated with each task to be performed. At any given
time there will be many types of processes, each one having several instances,

LUPA: A Workflow Engine 197

all of them executing simultaneously; knowing which tasks are pending, how far
has any case advanced, suspending and resuming, finding out whether or not a
process has finished, an even terminating o moving instances are some of the
needed capabilites on such a system. Our reference implementation has shown
that LUPA fulfills these roles because:
– The “low level” in core representation is based on a direct representation

of the LUPA Net, with or without markings, be it active or not, sharing
all the control (ϕ) and operation (ψ) functions in a single representation. A
single representation of the flow structure (a single net) and a single set of
operations, can model an abstract definition or as many instances as needed
by means of the Petri Net Color extension to the LUPA Net and the Envi-
ronments. The execution ability that models the operational semantic of the
LUPA Nets as Interpreted Petri Nets is able to work on the appropriately
colored marks and environment as needed by each case.

– The “low level” exchange representation is built from the “low level” in core
representation, being able to select either the process definition (network and
functions, without environment), a single instance (network, functions, and
a single color marking and environment) or all instances.

– The “low level” in core representations are easily exchanged over a text-
based protocol service, allowing for simple starting, stopping, checkpointing,
cancelling and other simple operations over the available processes including
exporting to other LUPA-based engines.

5.3 LUPA as an External Application Integrator
The Workflow Enactment Services must help the bidirectional exchange of in-
formation between the Workflow Engine and any external application needed
to complete the tasks for each transaction. If the task must be completed by
a human agent, it must be able to notify her of “pending tasks”; if the task
must be completed by a cybernetic agent, it must be able to initiate execution
possibly sending data and check its completion possibly retrieving processed
data. At any given time there may be several ongoing external interactions,
and knowing which ones are pending and checking for their current status must
be easy. Our reference implementation has shown that LUPA fulfills these roles
because:
– The Environment’s representation provides a simple mechanism for procedu-

ral manipulation through a simple class interface. This eases writing opera-
tions (ψ) that exploit all the power and flexibility of Perl [12].

– The Environment’s representation provides a simple mechanism for exporting
and importing equivalent XML documents [13, 14] to external applications.

– The invocation of external applications is clearly split in such a way that the
start of execution is separated from checking if it has finished. This allows for
exporting process information prior to executing the external applications,
and importing of results when finished. It also allows external applications
to be executed asynchronously, while the Engine continues processing other
tasks.

198 Emely Arráiz, Ernesto Hernández-Novich and Roger Soler

6 Related Work

An in depth analysis of thirteen commercial WorkFlow systems can be found in
[15], while [16] does a similar analysis over ten WorkFlow languages proposed by
academic communities. A large number of open source and free software initia-
tives [17] have worked on the process automation problem, providing different
tools and systems. This project belongs on that list, but being different insofar
as having a graphical syntax and a formal mathematical basis and expressive
power of Petri Nets that combine with the Interpreted Petri Net techniques in
order to link the workflow net, the case-specific and workflow-related informa-
tion, and the operations over them. Only YAWL [18] has a similar approach,
except that they use web-services and XML.

7 Modelling and Implementation

The interpreter for the language defined by LUPA’s syntax and semantics has
been modeled as closely as possible so as to be able to apply all the theory,
analysis and verification tools available for Petri Nets [19]. It also has been
built around the WFMC’s Workflow Reference Model by following all the rec-
ommendations and basing it on open standards for information exchange.

The Execution Environments have been built as symbol tables, with total
or partial exporting abilities to an XML representation. This eases portability
and manipulation for the persistence infrastructure and external application
interaction.

The Operators and Predicates have been modelled as functions in the native
programming language chosen, with explicit information regarding domain and
co-domain needed to perform the integrity checks while combining simple pro-
cesses to build complex ones. Operators may be asked to perform asynchronous
tasks, therefore their execution has been broken up in two phases: startup and
test for finish. Introspective features provided by the programming language
have been used to export the actual executable code for this functions (even if
they were dynamically built at runtime) to an XML representation for persis-
tence and interoperability purposes. Functions ϕ and ψ have been modelled in
a similar fashion.

LUPA Nets have been modelled as Petri Nets, building the operational se-
mantics using the aforementioned models for Environments and Functions and
utility libraries provided by the programming language, in particular the ability
to build closures. Each process operator has been implemented in such a way
that it builds new LUPA nets as long as it is possible based on the restrictions
imposed by each construction case. The network structure can be exported to
an XML representation for persistence and interoperability purposes.

The programming language of choice is Perl. It allowed object-oriented tech-
niques and functional programming techniques simultaneously, thus making the

LUPA: A Workflow Engine 199

programming as close as possible to the mathematical model. Perl’s own abil-
ities and the availability of several utility libraries allowed for the quick and
easy development of a working prototype that is as compact and elegant as the
formal structures it represents.

The Environment with the Petri Net and its markings, become an exact
representation of the process status, and by using the color extension on Petri
Nets, of all instances. The mechanisms in place for inspecting and exporting this
structures provide clear and direct means of finding out completed, enabled and
active tasks of any business process modeled with LUPA.

8 Conclusions and Further Directions

This work has formally defined the LUPA language as a way to model business
processes.
It has the advantage of being highly expressive and adequate, by means of
its fundamental flow patterns, including the cancellation and an iteration that
guarantees termination.

The Petri Nets were chosen as the semantic model for process expressions
because of their easily understandable and simple functionality, and the avail-
ability of analysis and graphical presentation tools [20].

Having developed a working Workflow Engine [19] shows that the LUPA
language is useful and effective at its purpose. Having developed it using free
software tools [21] enabled us to easily build a basic infrastructure following the
Workflow Reference Model.

The reference implementation is highly portable. Choosing Perl as a pro-
gramming language and libraries that are platform independent, ensure that
the engine runs on GNU/Linux (development platform), any Unix, Win32, Ma-
cOS and even VMS, since Perl has been ported to all of them. The programming
style also guarantees portability of all the programs without modification nor
conditional execution. Selecting XML [13, 14] to build the low level representa-
tion of the many structures, combined with the introspective abilities of Perl to
export source code out of its executables and dynamically generated data struc-
tures, makes then interchangeable across platforms and eases writing additional
tools for analysis and verification.

References

1. R. Endl G. Knolmayer and M. Pfahrer. Modeling processes and workflows by
business rules. Lecture Notes in Computer Science, 1806:16–29, 2000.

2. J. Peterson. Petri nets. ACM Computing Surveys, pages 223–252, Sept 1977.
3. W.M.P. van der Aalst. Workflow verification: Finding control-flow errors using

petri-net-based techniques. Lecture Notes in Computer Science, 1806, pages 161–
183, 2000.

4. G. W. Brams. Réseaux de Petri: Théorie et pratique. Texte de l’ Agence de l’
Informatique. Masson, 1983.

200 Emely Arráiz, Ernesto Hernández-Novich and Roger Soler

5. L. Bernardinello and F. De Cindio. A survey of basic models and modular net
classes. Advances in Petri Nets, pages 304–351, 1992.

6. A. Church. The Calculi of Lambda Convertion. Princenton University Press, 1941.
7. E. Arráiz. Las expresiones de procesos y su semántica a través de las redes de

petri interpretadas. Technical Report, Universidad Simón Bolivar, 2004.
8. Workflow Management Coalition. The workflow reference model. Disponible en

URL:http://www.wfmc.org/standards/docs/tc003v11.pdf, 1995.
9. Workflow Management Coalition. Terminology & glossary. Disponible en

URL:http://www.wfmc.org/standards/docs/TC-1011 term glossary v3.pdf,
1999.

10. The Workflow Management Coalition. Workflow management coalition terminol-
ogy and glossary. Disponible en URL:http://www.wfmc.org, 1999.

11. S. Jablonski. Workflow management between formal theory and pragmatic ap-
proaches. Lecture Notes in Computer Science, Volumen 1806, 2000.

12. T. Christiansen L. Wall and J. Orwant. Programming Perl, 3rd Edition. O’Reilly
& Associates, 2000.

13. World Wide Web Consortium (W3C). Extensible markup language (xml).
Disponible en URL:http://www.w3.org/XML.

14. World Wide Web Consortium (W3C). Extensible markup language (xml) 1.1.
Disponible en URL: http://www.w3.org/TR/2004/REC-xml11-20040204/, 2004.

15. B. Kiepuszewiski & A.P. Barros W.M.P. van der Aalst, A.H.M. ter Hofstede.
Workflow patterns. 2003.

16. W.M.P. van der Aalst & A.H.M. ter Hofstede. Yawl: Yet another workflow lan-
guage. QUT Technical Report, FIT-TR-2003-04, 2003.

17. C. E. Perez. Open source workflow engines written in java. 2004.
18. M. Dumas & A.H.M. ter Hofstede W.M.P. van der Aalst, L. Aldred. Implemen-

tation of the yawl system. Lecture Notes in Computer Science, 3084, 2004.
19. E. Hernández-Novich. Mirando procesos con lupa: Un motor de flujo de trabajo.

Tésis de Maestŕıa en Ciencias de la Computación, USB, 2005.
20. CNP group. Petri nets world. Disponible en

URL:http://www.daini.au.dk/PetriNets, 2002.
21. D. A. Wheeler. Why open source software/free software(oss/fs)? look at the

numbers! Disponible en URL:http://www.dwheeler.com/oss fs why.html, 2004.

