
AN EFFICIENT ADAPTIVE PREDICTIVE LOAD BALANCING METHOD FOR
DISTRIBUTED SYSTEMS

ESQUIVEL, S., C. PEREYRA C, GALLARD R.
Proyecto UNSL-3384031

Departamento de Informática
Universidad Nacional de San Luis

Ejército de los Andes 950 - Local 106
5700 - San Luis - Argentina

E-mail:{esquivel, cpereyra, rgallard}@.unsl.edu.ar
 legui@inter2.unsl.edu.ar

Teléfono: 54++ 652 20823. Fax : 54++ 652 30224

Abstract

When allocating processors to processes in a distributed system, load balancing is a main concern
of designers. By its implementation, system performance can be enhanced by equally distributing
the dynamically changing workload and consequently user expectation are improved through an
additional reduction on mean response time. In this way, through process migration, a rational and
equitable use of the system computational power is achieved, preventing degradation of system
performance due to unbalanced work of processors.

This article presents an Adaptative Predictive Load Balancing Strategy (APLBS), a variation of
Predictive Load Balancing Strategy (PLBS) reported elsewhere [1]. As PLBS, APLBS is a sender
initiated, prediction-based strategy for load balancing. The predictive approach is based on
estimates given by a weighted exponential average [12] of the load condition of each node in the
system. The new approach tries to minimise traffic en the network selecting the most suitable
subset of candidates to request migration and the novel aspect is that the size of this subset is
adaptative with respect to the system workload. APLBS was contrasted against Random (R),
PLBS and Flexible Load Sharing (FLS) [7] strategies on diverse scenarios where the load can be
characterised as static or dynamic. A comparative analysis of mean response time, acceptance hit
ratio and number of migration failures under each strategy is reported.

Keywords: Distributed systems, load balancing strategies, mean response time, acceptance hit
ratio, migration failures.

1 The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT
(National Agency to Promote Science and Technology).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN EFFICIENT ADAPTIVE PREDICTIVE LOAD BALANCING METHOD FOR
DISTRIBUTED SYSTEMS

1. INTRODUCTION

A typical example of a Distributed System is formed by a set of processors interconnected by a
Local Area Network (LAN). The model studied here consist of a set of homogeneous an
independent nodes having their own processing resources and information storage. In such a
system, users from different sites create autonomous processes, which sporadically need
synchronisation to share critical resources.
A node workload embodies a set of local and, possibly, external demands on all or some of its
resources. This global demand varies during the execution of processes and could lead the
system to an unbalanced state; some of the nodes can be overloaded while others are
underloaded and even idle.
In general, the load balancing strategies are clasified as [2]:

Fig.1: Load Balancing Strategies

The classification of the proposed Adaptative Predictive Load Balancing Strategy (APLBS), is
characterized by the shaded squares in figure 1. APLBS is a dynamic load balancing strategy
because decides while executing to which processor assign a process. It is non preemptive because
once the processor is assigned the process must finish execution on that processor without any
further migration. And finally, it is decentralised because decision making is distributed between
network nodes.
Many research groups have been investigating load sharing and balancing [3],[5],[6], [7], [8],
[11] and [13].
Also some approaches based on evolutionary computation achieved improved results [4], [9]
for dynamic load balancing. In most cases the improvements were the consequence, of a lower
number of migration requests from an overloaded node.
This paper presents APLBS, an strategy which by guessing the working load at each node
attempts to predict the subset, of adaptive size, containing the candidates more prone to accept
the migration request.

2. ADAPTIVE PREDICTIVE LOAD BALANCING DESIGN

 load balancing

 when

 static dynamic Centralized Non-centralized

 Preemtive Non-preemtive

 where

Internal components and their interaction are depicted below

BUS

Fig.2: Internal Structure of Load Balancing Strategy

Short description of modules functions follows:

INIT, executes only once at node bootstrapping, is in charge of activating the three central
system modules which in their turn manage local or external requests and load balancing
.
BALANCE_MOD, this module implements the load balancing strategy. In the simulated system
it contains diverse load balancing algorithms for performance studies.

REMOTE_REQ_ADM, has two main tasks:

• Replies migration requests from other nodes, giving information about local loading state
(number of waiting processes, or ready queue length). Also, when an immigrated process
finishes execution in the local node, informs about this event to the (original) sending node.

• Activates a child server process when a remote process from an overloaded node arrives and

the local node is idle or in a low loading condition.

MIGRATED_PROC-SERV, executes locally an immigrated process and, on completion,
signals the event to REMOTE_REQ_ADM.

LOCAL_EXEC_SERV, is in charge of local execution for a process.

LOCAL_PROC_ADM, it is responsible, at local process creation time, to verify the local node
balancing state by comparing the current queue length with a prefixed threshold to determine
overloading.
Depending on comparison results some of the following actions will be undertaken:

• If L ≤ 0 then the task will be locally executed and a child process, LOCAL_EXEC_SERV
will be activated.

Init

Balance_Mod

Remote_Req_Adm Local_Proc_Adm

Migrated_Proc_Serv Local_Exec_Serv Remote_Exec_Serv

• Otherwise, invokes BALANCE_MOD, who indicates if the new process can be migrated

and to which node. If a receiving node can be found then a REM_EXEC_SERV process is
created. On the contrary, local execution will be accepted and behaves as above explained.

REM_EXEC_SERV, is responsible for migration of the process (indicated by
LOCAL_PROC_ADM) to the receiving node (pointed by BALANCE_MOD). Finally blocks
itself waiting for reply related to the remote execution completion.

3. ADAPTIVE PREDICTIVE LOAD BALANCING STRATEGY DESCRIPTION

APLBS attempts to reduce the number of requests from an overloaded node and is an
improvement on PLBS proposed in [1]. PLBS proceeded in the following way:

Two thresholds O and U (related to a metric) were used to define the loading state L of a node:

OL > ⇒ overloaded,
OLU ≤≤ ⇒ medium load

UL < ⇒ underloaded

Each node maintains its loading state metric, which is determined at fixed time intervals. In our
case this metric is related to the number of processes in the ready queue. At each node there are
two daemon processes: spreader and refresh. The scheme for the BALANCE_MOD is shown
below:

The spreader process disseminates local metric information to a random subset of 40% of the
system nodes when either metric values changed or a time limit is exceeded without changes.

Fig.3: Scheme for PLBS and APLBS implementations

REFRESH SPREAD

APLBS LOCAL-PROC-ADM

INIT

BUS

Global
Load
State
Table

The refresh process maintains, in a global information table at each node location, the metric
values of all nodes in the system. Values in that table are weighted exponential average values
of collected metric (load) values.
The philosophy behind APLBS is to predict the current working load of a given processor when a
migration request is necessary.

In PLBS the migration requests were sent to those nodes that were expected to be more inclined to
accept due to their probable low loads. In this strategy request were sent to the best subset of the
nodes in the system. This information was retrieved from the global load state table of the
overloaded node. Best subset sizes were of 50%, 20% and 10% of the total for 10, 25 and 50
nodes in the system, respectively.

APLBS differs with PLBS essentially in that the subset size is dynamically updated. It retains the
property of requesting migrations to the nodes more inclined to accept, but the subset sizes varies
according to the feedback each node receives from the system. Best subset size begin with 10% of
nodes in the system. After requesting migration of a process to candidate nodes, the requester have
the answer of each of the targets and this is its feedback from the system.
Let us call BSS the best subset size, NA the number of accepted requests and NR the number of
rejected requests
The following simple rule, based on the number of requests accepted and rejected, is followed by
APLBS:

If NR > NA then BSS = BSS+1
 else if NA > NR then BSS = BSS-1

In this way , for a given node, BSS varies dynamically while the system is running. The
mechanism to control this parameter is adaptive because some feedback information is used to
determine the direction of the change in the parameter.

For establishing a reliable current metric value, Weighted Exponential Average [12] permits to
predict a value on the basis of values appeared during certain elapsed time.
In our model, due to the dynamic behaviour of ths system, it is appropriate to give a larger weight
to the recent history. For an arbitrary processor, the predicted working load is given by:

Ln + 1 = αSn + (1 - α) Ln , 0 ≤ α ≤ 1 (1)

where:
Ln + 1 : predicted processor load for the next migration request.
Sn : effective processor load at the nth sample interval.

The parameter α allows controlling the relative weight to be given to immediate or old history.
If α is equal to zero the recent history is considered irrelevant (present conditions are transient),
otherwise if α is equal one then recent history is important and past history obsolete.
In this way the past and recent history is maintained and weighted for each system component
and when a migration is needed from an overloaded node, requests are addressed to those
candidates more inclined to accept the request.
The corresponding side effect is lower number of request, high acceptance hit ratio and
therefore an enhanced performance of the distributed system is achieved. In order to decrease
the communication traffic, typically generated by load balancing schemes, exchange of
information relative to load level in a node is controlled by a daemon process, local to each
node, and then broadcast to a random select subset of nodes each time.

4. EXPERIMENT DESCRIPTIONS

The distributed system implementing the strategy was simulated using a computer systems
modelling tool, PARASOL [10], which is oriented to modern distributed or parallel computer
systems.
The system parameters were defined as follow: Systems with 10, 25 and 50 nodes were
simulated. Each node executed concurrent process under a round-robin policy maintaining a
ready queue. The network topology was Ethernet. All processes were CPU intensive of 64 KB.
The service time was fixed for all processes in 50 time units. The network transfer rate was of
10 Mbits.
Process arrivals follow a Poisson distribution of mean λ. A simulation was completed when
50,000 processes where executed in the network nodes.
Experiments were carried out on following scenarios, using 1/λ as mean interarrival time with λ
= 0.002, 0.004, ... , 0.016, 0.018, 0.019.

• Scenario 1: 60% of the nodes are receiving processes with equal arrival rate λ while in the
remaining nodes does not occur any arrival. This schema allows simulation of a clearly
unbalanced situation.

• Scenario 2: 40% of the nodes are receiving processes with low arrival rate (λ) and the other
60% with more high arrival rate (2 λ).

• Scenario3 : Each node has its own arrival rate λ , which varies randomly through time.

Scenario 1 attempted to reflect a real situation, which frequently occurs, where the workload is
not evenly distributed. Scenarios 2 and 3, are similar in the sense that arrivals occur in every
node, but scenario 3 differs reflecting time depending arrival rates as often occurs in a
computer network.

5. EXPERIMENT RESULTS

For the discussions of results we choose three representative instances of the diverse scenarios.
But in general the same trend is observed in any scenario with any number of nodes in the
network.. In every case the mean response time, number of requests issued, acceptance hit ratio
and number of migration failures are reported.

Scenario 1, 25 Nodes

λ Random FLS PLBS APLBS
0,01 75,9679 75,7693 75,3716 75,0413

0,012 86,1944 85,2521 84,7125 84,1877
0,014 98,3181 96,0296 94,9120 94,6534
0,016 111,2317 105,8215 103,8312 104,1134
0,018 126,7020 117,1297 113,5067 113,8647
0,019 140,9986 126,1461 122,1383 121,7103

MEAN RESPONSE TIME
0

50

100

150

0,01 0,012 0,014 0,016 0,018 0,019

Random

FLS

PLBS

APLBS

In scenario 1 with 25 nodes, when contrasted against PLBS, results about the performance
variables for APLBS are the following:
The mean response time is almost always less than or equal to those of PLBS, and consequently
the minimum when compared with other strategies.
The number of requests is reduced about 33% to 36% and the acceptance hit ratio is
augmented between 1 and 3% along the varying arrival rate λ. Migration failures remains null,
augmented and diminished for low, intermediate to moderate and high values of λ, respectively.

λ Random FLS PLBS APLBS
0,01 454 1946 1380 920

0,012 1171 3959 3132 2156
0,014 2355 7855 6027 4025

0,016 4253 11793 9693 6282
0,018 6947 17588 14196 9846
0,019 9968 22510 19089 13491

NUMBER OF REQUESTS

λ Random FLS PLBS APLBS
0,01 92,95 98,97 99,64 98,70

0,012 87,62 97,95 97,92 98,93
0,014 82,89 96,68 98,11 98,76
0,016 75,97 96,10 97,50 98,74
0,018 67,47 94,30 95,94 97,14
0,019 61,58 92,40 92,40 95,54

ACCEPTANCE HIT RATIO

λ Random FLS PLBS APLBS
0,01 32 36 0 0

0,012 145 95 0 0
0,014 403 212 0 2
0,016 1022 285 4 2
0,018 2260 436 10 12
0,019 3830 651 68 46

MIGRATION FAILURES

0

5000

10000

15000

20000

25000

0,01 0,012 0,014 0,016 0,018 0,019

Random

FLS

PLBS

APLBS

0

20

40

60

80

100

0,01 0,01 0,01 0,02 0,02 0,02

Random

FLS

PLBS

APLBS

0

1000

2000

3000

4000

0,01 0,012 0,014 0,016 0,018 0,019

Random

FLS

PLBS

APLBS

Scenario 2, 50 Nodes

Again in scenario 2 with 50 nodes, when contrasted against PLBS, results about the
performance variables for APLBS are the following:
The mean response time is almost always less than or equal to those of PLBS, and consequently
the minimum when compared with other strategies.

λ Random FLS PLBS APLBS
0,01 81,4379 80,7430 80,6736 80,7703

0,012 90,9181 89,6548 89,2745 89,3846
0,014 101,0775 98,9344 97,2472 97,9350
0,016 111,0505 106,9376 106,0185 105,9856
0,018 122,9868 116,5085 114,6033 113,7497
0,019 135,6011 124,2325 121,0705 121,1705

MEAN RESPONSE TIME

λ Random FLS PLBS APLBS
0,01 492 1928 1311 1182

0,012 1078 3466 2880 2326
0,014 2059 6561 5223 3603
0,016 3352 10223 8289 5914
0,018 5052 14724 11799 8282
0,019 7627 18760 15459 11313

NUMBER OF REQUESTS

1/λ Random FLS PLBS APLBS
0,01 27 38 0 0

0,012 106 78 0 0
0,014 277 154 0 0
0,016 675 249 0 4
0,018 1318 385 10 4
0,019 2527 469 36 26

MIGRATION FAILURES

λ Random FLS PLBS APLBS
0,01 94,51 98,55 99,39 99,41

0,012 90,17 97,84 99,10 99,14
0,014 86,55 96,89 98,14 98,97
0,016 79,86 96,59 97,25 97,95
0,018 73,91 95,21 94,98 96,97
0,019 66,87 93,60 93,60 96,00

ACCEPTANCE HIT RATIO

0

20

40

60

80

100

120

140

0,01 0,01 0,01 0,02 0,02 0,02

Random

FLS

PLBS

PLBAd

0

5000

10000

15000

20000

0,01 0,01 0,01 0,02 0,02 0,02

Random

FLS

PLBS

PLBAd

0

500

1000

1500

2000

2500

3000

0,01 0,01 0,14 0,02 0,02 0,02

Random

FLS
PLBS

PLBAd

0

20

40

60

80

100

0,
01

0,
01

0,
02

Random

FLS

PLBS

PLBAd

The number of requests is reduced about 10% to 32% and the acceptance hit ratio is
augmented between 2% and 3% in the higest values of λ. The number of migration failures
shows a behaviour similar to that observed in scenario 2 and 50 nodes.

Scenario 3, 10 Nodes

Again in scenario 3 with 10 nodes, when contrasted against PLBS, results about the
performance variables for APLBS are the following:

MEAN RESPONSE TIME

Random FLS PLBS APLBS
121,1294 113,1027 112,3549 112,3047

NUMBER OF REQUESTS

Random FLS PLBS APLBS
4793 7747 11226 10647

ACCEPTANCE HIT RATIO

Random FLS PLBS APLBS
68,75 93,77 88,55 92,46

NUMBER OF MIGRATION FAILURES

Random FLS PLBS APLBS
1498 418 146 68

106
108
110
112
114
116
118
120
122

Ran d o m

FL S

PL BS

PL BA d

0

2000

4000

6000

8000

10000

12000

Random

FLS

PLBS

PLBAd

0

20

40

60

80

100

Ran d o m

FL S

PL BS

PL BA d

0

500

1000

1500

Ran d o m

FL S

PL BS

PL BA d

The mean response time is equal to that of PLBS, and consequently the minimum when
compared with other strategies.
The number of requests is reduced about 6%, the acceptance hit ratio is augmented between
4%, and the number of migration failures is reduced in about 50%.

6. CONCLUSIONS

This paper introduced an improvement of the new load balancing strategy PLBS presented in
[1]. The main characteristics of APLBS are simplicity and efficiency. Analogous to the
previous one APLBS is based on prediction of the current working load of prospective
migration request acceptors. But differently, here the size of the best candidates subset is
updated dynamically by means of an adaptive technique.
Comparative analysis of results show interesting improvements when mean response time,
acceptance hit ratio and percentage of migration failures are considered as relevant
performance variables. all of this is achieved with a sensitive reduction of the number of
requests.

7. ACKNOWLEDGEMENTS

We acknowledge the cooperation of the project group for providing new ideas and constructive
criticisms. Also to the Universidad Nacional de San Luis the CONICET, and the ANPCYT from
which we receive continuous support.

8. BIBLIOGRAPHY

[1] Esquivel S., Pereira C. and Gallard R. - “Predictive Load Balancing for a Workstation
Distributed System, Proceedings de la International Conference on Applied Informatics,
Garmish, Germany, February 1998

[2] Kremien O. and Kramer J. - “Methodical Analisys of Adaptative Load Sharing
Algorithms”, IEEE Transaction on Paralell and Distributed Systems, V. 3, Nº 6,
págs. 747-760, November 1992.

[3] Chu W., Holloway L., Lan M., Efe K. - “Task Allocation in Distributed Data Processing” -
Distributed Computing: Concepts and Implementations, pp 109-119, Addison Wesley -
1984.

[4] Esquivel S., Leguizamón G., Gallard R. - “A Hybrid Strategy for Load Balancing in
Distributed Systems Environments”, Proceedings of the Fourth IEEE International
Conference on Evolutionary Computation (ICEC’97), pp. 127 -132, Indianapolis, USA,
April 1997.

[5] Ferrari D., - “Study of Load Indices for Load Balancing Schemes”, University of
California, Berkeley, 1985.

[6] Jun C., Li X., Zhong-xiu S. - “A Model for Intelligent Task Scheduling ina Large
Distributed System”, ACM Press, Operating Systems Review, Vol.24, Nº 4, October 1990.

[7] Kremin O., Kramer J. and Magee J. - “Scalable, Adaptive Load Sharing for Distributed
Systems - IEEE Parallel and Distributed Technology, pp. 62-70August 1993.

[8] Mullender S. - “Distributed Systems” - Addison Wesley, 2da. edition, 1995.
[9] Munetomo M., Takai Y., y Sato Y. - “ A Genetic Approach to Dynamic Load Balancing

in a Distributed Computing System”, Proceeding of the First IEEE Conference on
Evolutionary Computation, June 1994, Vol. 1, pp.419-421.

[10] Neilson J., - “ Parasol User’s Manual ”, School Of Computer Science, Carleton
University, Canada.

[11] Panjak M. - “ Automated Learning of Load Balancing Strategies for a Distributed
Computer Systems” PhD. Thesis, University of Illinois at Urbana, Chapaign, 1993.

[12] Stallings William - “Operating Systems” - MacMillan publishing Company, New York,
1992.

[13] Stone H., Bokhari S. - “Control of Distributed Processes” - Distributed Compu-ting:
Concepts and Implementations, pp. 109-119, Addison Wesley - 1984.

