

Student's Approach to Linear
Programming Modeling

Lioubov Dombrovskaia1 and Liliana Guzmán2
1 Departamento de Informatica, Universidad Tecnica Federico Santa

Maria, av. Espana 1680, Valparaiso, Chile7
liuba@inf.utfsm.cl

2 Departamento de Computacion, Universidad de Valparaiso, av. Gran
Bretana 1091, Playa Ancha, Valparaíso liliana.guzman@uv.cl

Abstract. Software design implies searching for and establishing an adequate
morphism between the real world and the desired software. Morphisms
establish correspondences between different domains while some properties
are preserved, at the same time. It allows seeing different things as the same,
taking the substitute image for the real one. The more adjusted to reality the
morphism is, the better the system models the real situation. We propose the
use of morphisms as a pedagogical tool in order to teach object-oriented
concepts and also to promote better software design. We developed a course
based on the explicit use of morphisms. Through experimentation, we
compared the results with an equivalent course not using morphisms. From
the results we may infer that using morphisms helps to develop strategies to
analyze and to construct adequate software models.

1 Introduction

This study aims to understand how students acquire the ability to model linear
programming (LP) problems. Our motivation is to improve LP teaching through the
employment of better teaching methods and modeling languages.

Current studies on teaching methods denote a dissatisfaction with traditional
operations research (OR) courses and propose multiple changes [9,10]. Murphy and
Pachandam [7] studied experimentally the impact of teaching methods on the
student's acquisition of modeling skills. Their schema earlier approach provides a
framework to organize knowledge based on analogies and what is demonstrated to

7 The authors are grateful to the Chilean National Science Foundation (FONDECYT) for its

partial support in this research under grant N°1010125.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Lioubov Dombrovskaia and Liliana Guzmán

be the most effective method. Stevens and Palocsay [12] studied the difficulty of
verbal problem solving and demonstrated that a translation approach consisting of
successive phrase reformulations to formulate verbally a constraint improves the
success of LP modeling.

Modeling languages have evolved through three stages: solver-oriented (such as
MPS), analyst-oriented (such as AMPL), and visual (such as MGPL) [5]. Algebraic
languages such as AMPL [2] are the most popular today. LP languages can be
essentially different from the point of view of the quantity of work, ability and
understanding required from the LP analyst [4]. Two criteria have been proposed to
measure the analyst's effort: Murphy et al. [6] define work intensiveness as the
amount of detailed work required from the analyst, and Geoffrion [3] declares ease
of use as a required property of modeling tools.

The need for testing potential languages has been stated by several authors for a
long time [5,7,8,11], but no such studies have been published to the best of our
knowledge. The available knowledge about the modeling languages and teaching
process is scarce in the area of LP modeling. Therefore, the goal of the quasi-
experiment herein described is to test the criteria for measuring the effectiveness of a
modeling process. We intentionally avoid experimental jargon to make this research
more understandable to the readers.

Section 2 describes the results of evaluating the AMPL language, discussing
briefly issues of modeling efficiency and style. The article finishes with conclusions
and future work.

2 Experimental study

A characterization of the modeling process should describe how an analyst models a
problem using a specific language. Comparative characterizations can improve the
teaching process, and/or give feedback on how the language should be. Thus, the
experimental study should respond to the following questions: How do participants
perform and what are their major difficulties? How do participants model?

2.1 Did students learn LP modeling?

Fifty-six computer science students participated in the experiment, 50 male and six
female, with an average age of 21 years. Their average cumulative grade has a mean
of 59%. None of the students had previous LP training. The experiment began with
training and continued with performance measurement in laboratory sessions. The
training took four sessions. The teaching method was based on schema formation
and analogical reasoning that is shown to be the most effective [7]. The most
common problem types are included in the training: production, blending,
transportation, assignment, and fixed costs treatment [2,13].

Training effectiveness was measured at the last session through a test that asks
participants to identify the correct formulation of model parts in AMPL. Most
students recognized the correct model but picked a syntactically wrong version over

Student's approach to linear programming modeling 3

a syntactically correct one. It was expected that this problem would be overcome
when working in front of a computer.

Afterwards, participants had 6 laboratory sessions. The first session introduced
them to the use of a modeling environment, and the following ones measured their
individual modeling performance for increasingly complex problems. Students did
not receive any feedback on their work, so they developed their own quality control
methods. The modeled problems belong to problem types covered in training and
are adapted from well known textbooks [2,13] to be solvable in less than 1.5 hrs.
The modeled problems will be hereafter be called “swimmers”, “mining”,
“generators” (electrical), “forest” and “warehouse” and were presented in the same
order as named here. Modeling performance is characterized by the following two
aspects:

− Quality: closeness of the obtained model to the optimal model (rank: 0-100).
− Solution: indication of the fact that a solution can or can not be obtained

from the model (rank: 0 or 1).
Students’ performance in each laboratory varies from very bad to excellent

(Table 1), but taking into account the increasing problem complexity, it can be said
that students really learned LP modeling. Most participants developed acceptable
models, but less than half of the students reached any solution except in one problem
(“swimmers”), where 50% of the participants found a solution. The model quality is
similar throughout all the laboratory sessions: there is no significant quality
difference between them except for the “forest” problem, whose significantly lower
model quality is probably due to its difficulty.

Table 2. Quality and solution rate

Variable Swimmers Mining Generators Forest Warehouse
Quality mean (σ) 62.7 (28.2) 58.9 (16.8) 55.8 (15.1) 45.34 (8.1) 56.2 (24.8)
Solution (%) 50 33.9 30.4 21.4 30.4

Students had more difficulties defining constraints, then variables and objective

functions. In fact, the difference between the students who reach a solution and
those who could merely develop an acceptable model is explained by the ability to
recognize those model components. This result is noteworthy because the problem
statements actually make the component identification easy according to the
instructors. Therefore, it seems that a solid algebraic background is necessary but
not sufficient for effective learning of LP modeling.

2.2 How did students model?

The modeling style was studied by considering the number of iterations and
executions and their relation with quality and solution. These two numbers were
collected through a log file recorded for each laboratory session of each student.

− Iterations: number of model trials whether or not resulting in errors.
− Executions: number of model executions leading to a solution of the

problem.

4 Lioubov Dombrovskaia and Liliana Guzmán

Students who reached a solution presented a high number of executions for all
problems. The number of executions was alike across all laboratory sessions with
the exception of the “forest” problem (Table 2). This difference can be explained by
the comparatively bigger data volume of the “forest” problem. However, some
students never passed the syntax revisions, which means that they never got to
execute their models.

Table 3. Number of iterations and executions

Variable Swimmers
Mean (σ)

Mining
Mean (σ)

Generators
Mean (σ)

Forest
Mean (σ)

Warehouse
Mean (σ)

Iterations 19.7 (11.6) 17.2 (13.9) 17.0 (17.1) 8.7 (11.3) 12.2 (10.7)
Executions 6.1 (4.8) 5.2 (6.9) 6.9 (11.9) 3.3 (6.2) 3.9 (5.6)

Table 2 also indicates that students sustained a high number of iterations

throughout the laboratory sessions. All students had syntax problems, but only some
of them corrected their errors through trial-and-error; all other students were unable
to solve the syntax problems or simply did not know how to model.

The higher the number of executions, the higher is the quality of the model and
the achievement of the solution. Therefore, some students develop an iterative style
that allows them to improve their models and reach a solution.

3 Conclusions

The presented experiment allows measuring different aspects of the modeling
process. Its most important findings are:

• Most students develop acceptable models, but less than half of them reach
any solution due to syntax and semantics errors.

• Syntax errors are not a minor issue in AMPL; students do not master the
syntax.

• Students always use the trial-and-error approach to solve syntax and
semantics errors, instead of using the syntax guide.

• Modeling is difficult for the students.
The teaching of LP modeling with algebraic languages can be improved by the

findings of this experiment. The reinforcement of schema formation should improve
the modeling skills and diminish the number of semantics errors, while the
reinforcement of syntax or the creation of languages with better syntax should
diminish the number of iterations. Both aspects lead to time savings and therefore
should improve the models’ quality.

This research established and tested objective factors to evaluate the effort
required from LP analysts: model quality, solution, number of iterations and number
of executions. The experiment findings are consistent with existing studies [7,12].
Clearly, the method needs to be tested with other languages, and ongoing work is
evaluating a visual LP language [1] with the same treatment, enabling later
comparison between both languages. Of course, the answer to the question of which

Student's approach to linear programming modeling 5

language is better suited for an LP analyst requires further testing with other
languages and other audiences.

References

1. Dombrovskaia L., Rodriguez P., Nussbaum M. (1998) Knowledge based modeling tool
for linear programming. Comput Oper Res 25: 379-388

2. Fourer R. M.Gay D., Kernighan B. (1993) AMPL. A modelling language for
mathematical programming. First Edition. The Scientific Press Series

3. Geoffrion H. I. (1987) Introduction to structured modelling. Manage Sci 33: 547-588

4. Greenberg H., Murphy F.H. (1995) Views of mathematical programming models and
their instances. Decis Support Syst 13: 3-34

5. Jones C.V. (1994) Visualization and optimization. INFORMS J Comput 6: 221-257

6. Murphy F.H., Sthor E.A., Asthana A. (1992) Representation schemes for linear
programming models. Manage Sci 38: 964-991

7. Murphy F.H., Panchanadam V. (1998) Using analogical reason and schema formation to
improve the success in formulation linear programming models. Oper Res 47: 663-674

8. Petre M. (1995) Why looking isn`t always seeing: Readership skills and graphical
programming. Commun ACM 38: 33-43

9. Pidd M. (1999) Just modelling through: a rough guide to modelling. Interfaces 29: 118-
132

10. Robinson S., Meadows M., Mingers J., O\'Brien F., Shale E., Stray S. (2003) Teaching
OR/MS to MBAs at Warwick Business School: A turnaround story. Interfaces 33: 67-76

11. Srivanasan, A., Te'eni, D. (1995) Modeling as constrained problem solving: an empirical
study the data modeling process. Manage Sci 41: 419-434

12. Stevens S.P., Palocsay S.W. (2004) A translation approach to teaching linear
programming formulation. Informs Transactions on Education 4 (3)

13. Williams H. (1999) Model building in mathematical programming. 4th edition. John
Wiley and Sons Ltda.

6 Lioubov Dombrovskaia and Liliana Guzmán

