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Abstract

The matrix connection method (MCM) is an alternative procedure for the-
orem proving than the usual resolution technique. We already have used the
MCM for finding models in a real-time knowledge-based system generator. In
this paper, we adapt the MCM to the particular case of some annotated propo-

sitional paraconsistent logics. Further developments related to these ideas are
also outlined.
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1 Introduction

Automatic proof methods are actually widely used in Artificial Intelligence appli-
cations. In the particular case of the Real-Time Knowledge-Based Systems do-
main, knowledge-based embedded programs have the convenience of reacting conve-
niently stimulus within imposed time restrictions to the environment. In [KAE 92a),
[KAE 92b], [KAE 93a], [KAE 93b], [KAE 95], it was presented the RETIKS system,
which is a real-time knowlédge-based system generator based on a annotated para-
consistent propositional logic, which makes use of the synchronous approach for time
modeling.

In order to attain its main purposes, RETIKS exhaustively calculates its outputs
for each possible input. This compilation procedure is equivalent to that one of finding
all models of the theory obtained from the rules that constitute the Knowledge-Base of
the system [KAE 93b]. If it is desirable that each input determines an unique output,
then the paraconsistent treatment should be used. The final execution structure
obtained by the compilation procedure is a finite automata; this fact grants good
performance and permits the verification of the desired time requirements.

In this paper, we describe the method used for finding models in the RETIKS sys-
tem. Although theorem provers for similar paraconsistent logics based on resolution
were already proposed, e.g. [SUB 87][BLA 88], the RETIKS system uses a method
based on a variation of the Wallen and Bibel matriz connection method [BIB 82],
[WAL 87], [WAL 90], [GOC 90}, suited for these particular logics.

We begin by adapting the basic concepts of the matrix connection method in order
to consider a peculiar paraconsistent case. We restrict ourselves to the propositional
case, which is the base of the RETIKS compilation procedure. Meanwhile, the main
ideas discussed here can be suitable adapted for first-order logics.

The paper is organized as follows: in the next section the fundamental concepts
of the matrix connection method are given and the ground formalism is briefly intro-
duced; in the section 3 the semantics for this formalism is outlined; in the section 4
the concepts of path, connections, and a characterization of validity are introduced; in
the section 5 the case of theorem proving and the technics for finding models for the
characterized systems are also considered. Finally, further research and applications
are also suggested.

2 Matrix concepts and basic syntax

The terminology is based on [BIB 82] and [BLA 88]. Let A be a non-empty finite
ordered set of propositional symbols. To each element a € A, a non-empty finite
lattice 7, is associated. The elements of 7, will be named annotated constants and
denoted by y,v.

Definition 2.1 A (ground) literal is a triple (a,u,p) where a € A, p € T, and
p € {0,1}. p is the polarity of the literal. Literals will be denoted by K,L, M. We
also use 9L, q € {0,1} to denote the literal (a, s, (p + ¢) mod 2).
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Figure 1: Tree representation of matrices

Let R be an alphabet of occurrences or positions. The elements of R are denoted
by r.

Definition 2.2 By induction, we definc the concepts of (propositional) matrices over
(A, R), denoted by D, E, F, so as their size o(F'), their positions }(F') C R and their
depth é6(r) of r in F for any r € Q(F):

e For any literal L and for any r € R, the pair (L,r) = L' is a matrix with
o(L")=0,L") = {r} and 6(L") = 0.

o If Fy,...F,, n > 0 are matrices such that Q(F;) N Q(F;) = 0 for i # j and
1 <1,j <n,then the set F' = {F,...F,} is a matrix where:

- o@)=0forn=0and o(F) =1+ YL, 0(F) forn > 0;
_QF) = Q(F)U...UQ(F);

- §(r) =m+1 for any r € Q(F;), 1 <1 < n, where m is the depth of r in
F,.

According to this definition, the atomic parts of the matrices are ground literals,
and in general a matrix is a nested set of occurrences of literals.

Example 2.1 Let us consider A = (a,b,¢,d) with T, = T, = T, = T = 2{01} (the
Boolean lattice of the power set of {0,1} ordered by inclusion) and R = {0, 1, 2,3}
be an alphabet of positions. Then L = (a, {0},0) and M = (c,{0,1},1) are ground
literals, while {{L}, {*M}} and {M, {}, {{L},)M}} are matrices over (A4, R).

A matrix can also be viewed as a tree, where some leaves are associated to literals.
Figure 1 presents the trees corresponding to the matrices of above example.
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Definition 2.3 Let F be a matrix and {,m € {0,1}. The set of formulas I* repre-
sented by F' with respect to ({,m) is inductively defined as follows:

o if Fisaliteral F=L" and [ =0 then " = I;
o if F is aliteral F = L™ and [ = 1 then i ='I;

o if F={F,...,[L},n>0andilm=1, then F= A(ﬁl,...,ﬁﬂ), where the I}
are formulas represénted by F; with respect to (1,0),7=1,...n;

o if F={R,...,F,},n>0andif m =0 then ' = V(F,..., F,), where F; are
formulas represented by F; with respect to (I,1),7 =1,...n.

Definition 2.4 A formula Fis positively represented by a matrix F if it is represented
by F with respect to | = m = 0; [ is negalively represented if it is represented by
F with respect to ] = m = 1. A proposilional formula is any formula representcd by -
some matrix. Formulas are also denoted by D, F, F.

In order to adequate our notation to the usual one, we will introduce the following
notations:

o if n =0 A(Fy,...,F,) = A() is abbreviated by T, and V() by F;
¢ if n =1 both A(F) and V(F) are abbreviated by F;
o if n >2A(F,...,F,) is a conjunction and V(F,...,F,) is a disjunction;

¢ for any literal L, the formula =* L is called a hyper-literal; if L is a hyper-literal,
then —=*L = (a, -*(y), p), where = : T, — 7, denotes some fixed function (that
gives the meaning of the negation), and k is a multiplicity factor (a natural
number);

¢ if F is a formula which is not a hyper-literal, then ~F is defined by:
- if F=A(F,...,FR),n 20 then -F =V(-F,...,-F,),
- if F=V(F,...,I),n 20 then ~F = A(-Fy,...,~F,).

¢ any formula =F V G may be written as I — G,

¢ any formula (F — G) A (G — F) may be written as F « G;

o any formula F — ((F — F) A ~(FF — F)) may be written as ~ F and it is
called the strong negation of I;

o parentheses are eliminated in the obvious way.

According to the above conventions, every well-formed formula (defined in the
standard way) determines an unique matrix; notwithstanding, a matrix may represent
more than one formula.
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Figure 2: Positive representation of ' = { K, {L, M}, {}}

Example 2.2 Let F = {K,{L,M},{}} bc a matrix. The tree in figure 2 is the
positive representation of /.

Example 2.3 Let be F' = K — (LV'M); I is an abbreviation of =K V(LVIM). This

formula is represented by the matrix {-K, L,!M}. Obviously the formula ~KVLV!M
has the same matrix.

Results presented in [BIB 82], chapter 2 remain applicable here, such as for in-
stance:

e If a formula F is positively represented by a matrix F then ~ F is negatively
represented by F;

e If two formulas Fy and [ are positively represented by the same matrix I,
then Fy and F; are logically equivalents in the sense of the annotated logics
[BLA 88].

These results justify the use of matrices instead of formulas.

The following example justify the name matriz employed firstly by Bibel [BIB 82]
and used also here.

Example 2.4 Let £ be the formula:
(K AL = 'N)AM A-L — (N AK)

where K, L, M and N are literals; if we put [ in the disjunctive normal form (as
usual), we will obtain:

(K AWLA='N)V-MV-2LV (N A'K)
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This formula may be presented in a bidimensional arrangement, where the literals
placed in a fixed column are connccted by “A”, and the columns are connected by
“v” . as follows:

K IN
F= | 'L -M 2L
~IN LK

3 Semantics

As usual, we admit that the truth of a certain knowledge depends on the truth values
of its atomic constituents.

Definition 3.1 An interpretation M for our formalism is a function which associates
an element of the lattice to every propositional symbol. By denoting M(a) = pi,, we
may write (a,b,c,...) = (Lay Mo, fc - - )-

Let us consider the two “special” matrices introduced earlier:

V)=F=0={}and A) =T = {0} = {{}}.
Now we will define the “truth value” M(F) of a matrix F' as follows:

o if F is a literal (a, y,p), then M(F) =T = {0} iff M(a) > p when p =0 and
M(a) # p when p = 1. Otherwise M(F)=F = 0.

o if F is a matrix F = {[,...,[.}, n 2 0, then M(F) = Uk=y M(Fi) when
m =0 and M(F) = Ny M(Fk) when m = 1.

We will write M sat F (and also M sat F)iff M(F) =T for a matrix F which
represents F'.

Definition 3.2 A matrix F' is valid iff M(F) = T for every possible interpretation.
It is called contradictory iff M(F) = F for every interpretation.

We can note that if F' is valid then ~ J" is contradictory, and the converse is also
true.

Other semantical concepts can be introduced in such a way so that the standard
semantical results can be obtained, but we will not present such details here.

4 Paths, Connections, and a Characterization of
Validity

Definition 4.1 A path through a matrix F is a set of occurrences of literals, defined
as follows:
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Figure 3: The path {K,-M,-2?L,"K'} through the matrix F

o if F' = () then the only path through F is §;
o if FF = L then the only path through F is the set {L"};

oif F' = {F1,....,Fn,Frny1,...,Fngn}, myn 2 0, m+n > 1 for m literals

Fy, ..., Fy and for n matrices which are not literals Fi44,. .., Finga, then for

any matrix E; € [,4; and for any path p; through E;;1 < 7 < n, the set
T {F;} UUL, pi is a path through F.

Example 4.1 Let F be the matrix in example 2.4; a path through F is a crossing
from left to right, constrained to pass by the literals (to be interpreted as “gates”) as
shown in figure 3.

Definition 4.2 We call complementary literals a pair of literals L = (a, g, p),
M = (a,v,q) such that:

¢ (p+q)mod2=1,and

o U(p)UN(v) = T,, where we denote U(p) = {t € T, : p < 7} and
N(r) = T \ U{r).

Definition 4.3 Paths which have complementary literals as elements are called con-
nections.

Example 4.2 If 7, = 2%} then (a, {1},0) and (a, {0}, 1) atc complementary literals.

Example 4.3 Let F' be the matrix in the example 2.4;

the paths are {K,-M,-2L,'N}, {K,-M,-*L,'K}, {!L,~-M,-*L,'N}, {*L,~M,-?L,'K},
{-IN,-M,~*L,'N}, and {-'N,-M,-L'K}.

The path {K,-M,-2L,'K} is obviously a connection, since K and 'K are com-
plementary literals. In order to others paths be connections, it is necessary to analyze
their compounding literals, the negation function definition, and so on.

Proposition 4.1 (Soundness and Completeness): A matrix F' is valid iff every path
through F' is a connection.

Proof: Adapted from [BIB 82, pp. 30-31], by using induction over the size of ¢ in
the matrix F.
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5 Theorem proving technics and models

In order to adapt the usual proof theorem procedures to our case, we should consider
the following situation. Suppose that we have a set of formulas

I'={F,...,F,} and a query G. Then, in order to investigate if G is a semantical
consequence of the set I', we should verify if the matrix provided by (AL, F;)V ~G
is contradictory.

The paraconsistent caée is included in this procedure due to our definition of
complementary literals. In fact, in this case the existence of a literal

L = (a,pu,p) and its ‘negation’ ~L = (a,—(p),p) is not a sufficient condition
to assure complementary literals in the path. This exemplifies perfectly well the
underlying ideas of the general paraconsistence program [COS 74]. We note that
in order to obtain a proof of the query, it is necessary that all paths of the matrix
~ (AL F;) V ~ G) have connections, which imply the existence of complementary
literals in every path.

If there are no complementary literals in the paths, then the set of paths represents
the set of models of I' U {~ G} as in usual tableaux semantic method; this was the
methodology used in [KAE 93b].

6 Further Developments

The methodology presented in this paper were implemented in an prototype version
of the system written in CommomLisp [KAE 93b]. It is interesting to note that
this method is adequate also for the paraconsistent treatment, so that it provides an
alternative way for theorem proving than the classical resolution procedures presented
in the papers described in the Introduction.

As mentioned in [BIB 82, p. 45ff) and repeated by [WAL 87}, [WAL 90], [GOC 90],
we guess that the method presented here is more suitable for finding models as re-
quired by the RETIKS system. In fact, as the mentioned authors sustain, the con-
nection method seems to be algorithmicaly more efficient than resolution in most
cases.

It would be also interesting to ask for the algebra of connections, which apparently
might differ from the classical case, as presented in [BIB 82].

The first-order case can be obtained without difficulty by adapting the procedure
sketched in this paper.

One could also to investigate the possibility of extending the method presented
here to the so called multideductive logics [COS 95]. In short, multideductive logics
are defined so that several deduction symbols, say -, b3, ... can be introduced in
such a way so that the notions of F;-deduction (i = 1,2,...) are defined as usual by
means of the stated F;-axioms. Then, if T is a set of formulas of the language and if F
is a particular formula, the concept of I' F; F' as well as the concept of an i-theorem
are well defined. Since the set of i-theorems and the set of j-theorems (i # j) may
contain contradictory formulas, the general underlying logic must be a paraconsistent
one, as shown in just mentioned paper.



424

2do. Workshop sobre Aspectos Tedricos de la Inteligencia Artificial

Then, if it is done a query G and a set of formulas I, one could ask if the query is
a consequence of I' by one of the concepts F-;. In fact, in a most general idealized case,
the ‘proof’ of the query might require more that one deductive notion. To investigate
the applicability of the connection method in this situation could be useful in several
cases, such as for instance when a certain knowledge may depends on different canons
of inference.
In the particular case of Artificial Intelligence applications, the above discussion
appears both in the context of knowledge-based systems obtained from several experts
.and in the context of cooperative multiagent systems. In the first case, the obtained
date-base may be inconsistent in several ways, and the matrix connection approach
could be done in a rather different way than that one provided by [COS 89], [COS 90].
In the context of cooperative multiagent systems, the use of multideductive logics
seems to be more evident, since to each one of the agents it could be associated a
different ; notion.
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