
426 2do. Workshop sobre Aspectos Teóricos de la Inteligencia Artificial 

Similarity-Based Graded ivIadal Lagic 

Ricardo Rodríguez, Pere Garcia and Lluís Godo 

lnstitute lor Research in Artificial lntelligence (lIlA) 
Spanish Research Councíl (CSIC) 

Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain 

{ricardo,pere,godo}~iiia.csic.es 

Abstract 

Within the approximate reasoning Cramework, several systems oC modallogic have been proposed 
to formalize several kinds oC reasoning models ([MP94], [HM92], [FH91]). In particular, in [EGG95] 
a Kripke model-like theory for a logic of graded necessity and possibility operators is presented to 
model similarity-based reasoning. In this paper, we propose an axiomatization for this logic and we 
show that it is sound and complete with respect to classes oC models based where the accesibility 
relation is defined in terms of fuzzy similarity relations on the set oC possible worlds. Finally, we 
indicate how this logic can be used to characterize several graded entailments proposed in [DEG*95]. 

Keywords: Similarity Function, Graded Modal Logic and Graded Entailment. 



2do. Worksbop sobre Aspectos Teóricos de la Inteligencia Artificial 427 

Similarity-Based Graded Modal Logic 

1 Introduction 

One of the goals of a variety of approximate reasoning models is to cope with inference patterns more 
flexible than those of classical reasoning. Por instance, a pattern Hke this one, if A approximately 
entails B, and we observe A', then it is plausible, at sorne extent, to concIude B, whenever A' is close 
enough to A would be a generalization of the well-known modus ponens rule. This kind of patterns 
have been the focus of a huge amount of the research done in the field of fuzzy logic, where, in general, 
the statement "if A approximatelyentails B" has been modelled as a fuzzy rule whereas A, B and A' 
are modelled as fuzzy facts (see for instance [ZAD79]). However, terms like :'approximately" or "close" 
aboye, although fuzzy, denote notions of resemblance or proximity among sorne propositions which must 
not be necessarily fuzzy. One way of proceeding is to equip the referential W with a similarity relation 
S, that is, a reflexive, symmetric and t-norm transitive fuzzy relation ([TV84]). This kind of approach 
was started out by Ruspini ([RUS91]) by proposing a similarity-based semantics for fuzzy logic, trying 
to capture inference patterns like the so-called generalized modus ponens. Given a similarity relation S, 
Ruspini proposes two measures, the implication and consistency measures, to account for the degree with 
which a proposition B is an approximate consequence from, or is consistent with, another proposition A, 
respectively. Namely, 

Is(B I A) = INF SUP S(wl,w2) 
w¡I=A w21=B 

Cs(B lA) = SUP SUP S(wl,w2). 
WIFA w21=B 

Based on such measures, Ruspini proposes a formalization of the generalized modus ponens in fuzzy 
logic. This framework has been recently extended in ([EGG+94c]) and «(EGG94a]) and compared to 
the possibilistic approach in ([DLP94]) and ([EGG94bj). See also ([KK94]) for another approach to 
similarity-based reasoning. From a logical point of view, several formalisms can be envisaged to capture 
a notion of similarity-based reasoning system. In [EGG95a], Esteva, Garda and Godo describe sorne of 
the work done in this direction and to point out sorne open problems. First, they consider a system of 
graded consequence relations proposed in ([DEG+95]). Next they turn their attention to a non-standard 
fuzzy logic approach. Finally, the frameworks of sphere systems and multi-modallogics are also examined 
at the semantic level, in a similar way Fariñas and Herzig did it for possibility theory ([FH91j). Links 
among all approaches were also provided. In this paper, we continue in the exploration ofthe multi-modal 
logic but now at the syntactic level. ~amely, we will present a modal language with graded necessity 
and possibility operators and a normal system for it. The aximatization of this system is presented and 
it is proved to be complete and correct with respect to classes of similarity-based models . At the end, 
we indicate how to capture the different entailment of [DEG+95] in this formali!ml and mention several 
open problem. 
For our purposes, in the rest of the paper, we will take W as the set of interpretations of a given finite 
booles.n algebra of propositions L. We will identify interpretations w of W with their corresponding 
maximal elementary conjunctions. The symbol ® will denote a t-norm and S wiIl denote an arbitrary 
®-similarity relation on W, Le. S: W x W 1-+ [O, 1], verifying: reflexivity S( w, w') = 1 iff w = w'; 
symmetry S(w, tu') = S(w', w); ®-transitivity S(w, w") ~ S(w, w') ® S(w', w"). Thesymbol 1= will 
denote the classical entailment. Moreover, given a ®-similarity relation on W we define a graded 
satisfaction relation between world~ and propositions, written tu I=a A with the foIlwing intended 
meaning: although B may be false at world w, B is close to be true at least to the degree a. In 
particular, when a = 1 we want to recover the notion that, at world w, Bis true. 

Definition 1.1 w 1=0: B iff there exists a B-world w' which is a-similar to W. 

This graded satisfaction relation between worlds and propositions is naturally extended to a consequence 
relation between propositions as usual. 

Definition 1.2 A proposition A entails a proposition B at degree a, written A I=Q B, if for each A-Uiorld 
w, there is a B-world w' such that S(w,w') ~ 0:. In other words, A I=Q B iffw 1=0: B for every A-world 
W. 

This notion of consequence relation is directly related to Ruspini's implication measure in the finite case. 
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Fact A I=a: B iff ls(B I A) ~ a. 

In [DEG+95] it is also shown how the graded entailement Fa: can be extended in several ways to cope 
with a background knowledge K in the form of a set of propositions. Basica))y, they correspond to differ­
ent possibilities of conditionalizing the implication measure ls as proposed in [EGG94b]. Of particular 
interest are the consequence relations defined as: 

1. A FK B 

2. A 1=; B 

iff 

iff 

Is,K(B I A) 2: a. 

Is,K(B 1\ A I A) ~ a. 

where the conditional implication me asure ls,K is defined as: 

ls,K(B I A) = IJ!.f (ls,w(A) @---4 ls,w(B)). 

®--+ standing for the residuated many-valued implication generated froIn the t-norm ®. Consequence 
relation (1) is monotoruc while (2) is noto It is shown there that they enjoy "good" properties, like 
®-Transitivity or Cut (onIy (2)), that a))ow tú capture sorne form of interpolative reasorung very similar 
to that used in fuzzy control systems. 

Here we will be explarate other natural setting, one of the modal logics which is tailored to account 
for relations on the set of interpretations. The similarity relation S will be considered as a family of 
nested accesibility relations Ra: over the set of possible worlds W definid as 

Ra(w,w') iff S(w,w') 2: a 

Therefore, enlarging the logicallanguage we will define, for each a, a usual pair of operators Da: and Oa: 
with the following standard semantics: 

w 1= Oa: B iff there exists w' F B Ra:(w, w') 
w 1= Da:B iff for every w' if Ra( w, w') then v.;' 1= B. 

Combining this definition with the aboye given of graded satisfaction between a world and a proposition, 
we will give the first relation between graded entailment and graded possibility operator througt the 
following equivelence: 

w Fa: B iff w F Oa:B 

The paper is organized as follows. In section 2 the symilarity-based graded modallanguage and the 
its underlying logic are described. In section , possible world semantic for this logic, while in section 
4 we present its axiomatization and prove that it is sound and complete respect of given semantic in 
section 2. Finally, in section 5 sorne connexions between this similarity-based graded logic and graded 
entailments are stressed. We end with sorne concluding remarks and several open problems will be waiting 
for resolution. 

2 Similarity-Based Graded Modal Logic 
This section is devoted to a recital of the s)ntactic based concepts for the language of graded modallogic, 
many of which are probably known by the reader. The ideas are very simple. The few formal definitions 
we offer may be helpful, but they are not essential; we state them mainly for the sake of completeness 
and future reference. 
The language of graded modallogic is based on: 

1. A denumerable set of atomic formulas: FQ, Fl, F2, ..... 

2. Two constants: T and .1.. 

3. A set of numbers G between O and 1 such that O and 1 belong to G. 

4. One-place operators: .." Da: and Oa: for each a in G. 

5. Four two-place operators: 1\, V, ~ and +-+. 
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Deftnition 2.1 The language 01 graded modal logic is the minimal set L satisJyting the lollowing condi­
tions: 

1. Fn E L lor n ~ O. 

2. T,l.EL. 

3. DoT EL. 

4. JI A EL then .,A, Da:A (with o: in G and a i= O) and 0a:A (with a in G) E L. 

5. Jf A E L then A A B, A V B, A -+ B and A +-+ B E L 

From now on, we shall use A, B, e, ... , sometimes with subcripts and supercripts, for sentences and 
r, Ll, E, ... for sets of sentences. The sentence Da:A is the graded necessitation of A and it represents the 
grade of necessity of A. By example, Vle assume that D1A is true when A is true and that DoA if and 
only if A is a tautology. 

3 Model Theory 

In this section, we define the idea of a model and state the truth and validity conditions for modal 
sentences in a worlds, in a model and in a class of models. 

According to the kripkean idea, a sentence is necessarily true at the actual world if it is true in every 
world accesible from it. Intuitively, a world is a full interpretation of all atomic formulas Fo, Fl, F2, ..... . 
So, two different worlds determine two different assignment of thuth to Fo, F¡, F2, ...... 

A similarity-based model fQr a graded modallogic is a structure M = (w, Rs , 11 11), in which W is 
the set of p05sible worlds, 11 11 represents an assignment of possible worlds to atomic formulas, and Rs is 
a family of nested accesibility relations between p05sible worlds. Formaly: 

Definition 3.1 M = (W,Rs, 11 ID is a similarity-based Kripke's model iff: 

1. W is a not empty set 01 possible worlds, 

2. Given similarity function S: W x W -+ G(C [0,1]), Rs is a lamily 01 nested accesibility relations 
{Ra:}a:E[O,l] based on the similarity relation S, defined by: 

Ra:( w, w') iff S( w, w') ~ a. 

3. 11 11 is a lunction that given an atomic formula F retum the set W F ~ W where F is considered to 
be true. 

In our case, we consider that p05sible worlds are interpretations of propositional language and that 
the accesibility relation Ra: represents pairs of worlds with similarity degree greater than a. 

We write "I=tt A" to mean that A is true at the possible world w in the model M. This notion is 
defined as follows. 

Definition 3.2 Let w be a world in a model M = (w, Rs , 11 ID then: 

1. I=tt Fn iff w E IlFnll, lor any n ~ O. 

2. F~T 

3. Not I=~ l. 

4· I=~.,A iff not I=tt A 

5. I=~ A A B iff both I=~ A and I=~ B. 

6. I=tt A V B iff either I=~ A or I=~ B, or both . 

7. I=~ A -+ B iff I=~ A implies I=~ B. 

8. I=tt A +-+ B iff ~=~ A il and only il I=~ B. 



430 2do. Workshop sobre Aspectos Teóricos de la Inteligencia Artificial 

9. p~ 0o:A iff for every w' in M such that wRo:w', p~ A. 

10. p;;¿ 0o:A iff for some w' in M such that wRo:w', p~ A. 

We write "pM A" to mean that A is valid in the model M, and "pc A" to mean that A is valid in 
the dass C of models. We recall these definitions formally. 

Definition 3.3 pM A iff for every world w in lvf, p~ A 

Definition 3.4 pc A iff for every model M in C, pM A 

Definition 3.5 Given the family of min-transitive .9imilarity functions S, we define Cm as the class of 
models defined by this family. 

Notice that if the similarity function is min-transitive then for each a, Ro: is a equivalence relation. 
Moreover, in this case, 00: and 00: are a pair of dual S5 "classical" modaloperators. 

4 Axiomatic System 

Rere, we are going to present the GS5 system of the graded modal logic which is very related to that 
presented by L.F. Goble in [GL070]. 

Definition 4.1 The graded modal logic GS5 is the smallest set of sentences containing every instance 
of the following axiom schemes and closed under the two last rules: 

PL. Ais a tautology in propositional logic. 

GDF. Do:A +-+ -.Oo:-.A (with a in G and a "1= O). 

GK. Oo:(A ~ B) ~ (Oo:A - Oo:B). 

GT. 0o:A ~ A. 

G5. Oo:A ~ Do:Oo:A : with a "1= O. 

GC. A~OlA. 

GN. Do:A ~ D,8A : UJith {3;:;: a. 

GRN. O~A : Íor all a in G and a "1= O. 

MP A,A--tB 
• B . 

Notice that the first five axioms are the S5 classical modallogic for the graded necessity and possibility 
operators. GC and GN axioms provide the centered and nested properties, respectively. 

Since the theorems of a system are just the sentences in it, we usually write "I-OS5 A" to mean that 
A is a theorem of GS5, this is I-OS5 A iff A E GS5. 

Theorem 4.1 The system GS5 has the following rules of inference and theorems. 

: for all a in G and a =1 O .. 

GTO. A ~ Oo:A. 

GD. Do:A ~ Oo:A. 

GT'. 0o:D,8A ~ Oo:A. 

GE. OlA +-+ OlA. 

GB. A. ~ D,800:A : with f3 ;:;: a and f31= O. 

G4. 0ctA ~ D,8Do:A : with {3 ;:;: a. 

Proof: 
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GRM. If A - B E GS5 then, by appling the GRN rule, it results that oa(A - B) E GS5 (Cor 
a11 o: in G and o: "1 O) and cornbiníng it with the GK scherne vía the MP rule, we obtain that 
OaA - oaB E GS5. 

GTO. Since oa-.A - -.A E GS5 (GT scherne), then A. - -.Oo<-.A E GS5, and using the GDF schema, 
we get the proof. 

GD. Trivial. By cornbination of the GT scherne and the previous theorern. 

GT'. For all f3 E G, the GN scherna gives the following result: OpA - OlA. Now, applying the RM 
rule, we obtain OaO,8A - Oo<olA. Furthermore, by cornbination of the GT axiorn as OlA - A, 
and the RM rule, it results oaol - 00<A. Finally, by chaining of irnplications we obtain the 
desired resulto 

GE. Left to right is obtained by combining the GT scherne and the GTO theorem. For the reverse, 
consider the dual of the GC scherne and then chaining OlA - A and A - OlA. 

GB. 'frivial. By cornbination of aboye the GTO theorem and the G5 scheme. 

G4. Since O O< Oo<A - Oo<A is the contrareciprocaI of the G5 scheme, then applying the RM rule it results 
oo<Oo<oaA - 00<00<A. Furthermore, by the GB theorem, oo<A - oo<<>aDaA. Thus, combiníng 
the last two formulas it results Oo<A - OaOo<A and using the GN axiom and MP rule. 

In terms of theorernhood we can characterize notions of deducibility and consistency. A sentence A 
is deducible from a set of sentences r in the system GS5, written r 1-085 A, if and only if GS5 contains 
a theorem of the form 

Al /\ ... /\ An - A 

where the conjuncts Ai (i = 1, ... ,11,) of the antecedent are sentences in r. A set of sentences r is 
consistent in GS5, written Con085r, just in case the sentence .1 is not GS5-deductible from r. Thus r 
is inconsistent in GS5 just when r 1-085 .1. \Ve reca11 these definitions formally. 

Deflnition 4.2 r 1-085 A iff there are Al, ... , An E r(n ~ O) such that 1-085 Al/\ : .. /\ An - A 

Definition 4.3 Con085f iff not r 1-085 .1 

Before continuing, we comrnent about the modal degree and the GS5 reduction theorems. The modal 
degree of a modal formula is the number ofnested modal operators (do not confuse nested with iterated). 
For instance, in the classical S5 system of modal logic there exists a disjunctive normal formo However 
in this logic the reduction laws are only valid when the grade of the left-hand side operator is greater 
or equal to the grade of the right-hand side operator. Therefore, there does not exist a normal formo 
Morever, in the worst case, the modal degree of one formula can be equal to the cardinality of G. 

Now, we prove the soundness of GS5 system with respect to the class of models Cm already defined. 

Theorem 4.2 The schernes P L, G D F, G K, GT, G5, GC and G N are valid in the dass Cm and the rules 
preserve validity in this cIass. 

Proof: 

PL. 'frivíal. 

GDF. Bydefinition Ftt DaA if and only ifV'w'(S(w, w') ~ o: then F~ A) andequivalentlyV'w'(w' ~ A 
then S(w,w') < 0:). Thus V'w'(w' ~= ....,A then S(w,w') < 0:) if and only if ....,(3w'(w' F ....,A and 
S(w,w') ~ 0:), it is equal to Ftt -.Oa-.A. 

GK. Suppose t=tt Do«A- B). Thus, for allw' if S(w,w') ~ o: and F~ A then it results that F~ B. 
On the other hand, if Ftt DacA occurs then V'w'(S(w,w') ~ o: then F~ A) and combining the two 
implications results that Ftt Do<B. 

GT. If t=tt Do<A then for every world w' such that "S(w,w') ~ o: implies F~ A". In particular, if w' 
= w then S(w,w) = 1 ~ o: and thus Ftt A. 
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G5. We know that F~vt 0a<>oA iff for every world w' such that S(w,w') ~ a then there exists a world 
w" with S(w,w") ~ a and such that F~ A. Now, suppose that F~1 <>aA and hence there 
exists a world w# sl!ch that S(w, w#) ~ Q and 1=t1 A. For any world w', if S(w, w') ~ a, then 
S(w', w#) ~ a (by min-transitivity of S), and since F~ A we have F~ Oa<>",A. 

GC. If I=~ A then, for every world w' such that S(w,w!) ~ 1, it holds Ft1 OlA. As by definition 
S(w, w') 2: 1 if and only if w = w', then f==t1 OlA holds. 

GN. If I=~ O",A then, for every world w' such that S(w,w') ~ a, it holds 1=t1 A. So if (3 ~ a then, for 
every world w" such that S(w,w") ~ [3, we have S(w,w") ~ a too. Thus F~ A, as desired. 

GRN. Suppose that for every world w F~ A. So for any world w' and anya in [O,lJ, if S(w',w) ~ a 
then Ft1 A, that is equivalent to say that for every world w, F~ OQ<A. 

MP. Trivial. 

Corollary 4.3 The GS5 system is sound with re.~pect to the clas8 of models Cm. 

Next, we define the idea of a canonical model for a GS5 system and prove sorne fundamental theorerns 
about completeness. Before of introducing the concept of canonical model, we need to define the concept 
of maximality. Intuitively, a set of formulas is maximal if it is consistent and contains as many formulas 
as it can without becoming inconsistent. We write Max085r to mean that r is GS5-maximal, and we 
state the definition as follows. 

Definition 4.4 Max08Sr iff (i) Cons085r, and (ii) for every A, if Cons085(rU{A}) then A E r. 

Theorem 4.4 Let r be a GS5-maximal .,et of formulas. Then: 

1. A E r iffr 1-085 A. 

2. GS5~r. 

3. -,A E r iff A f/ r. 

Proof: As usual. \7 

In terms of maximality we can define what we shall call the proof set of a formula. Relative to system 
GS5, the proof set of a formula A (denoted by 1 A 1085) is the set of GS5-maximal sets of formulas 
containing A: 

Definition 4.5 1 A 1085 = {Max085r : A E n· 
We can state that a sentence is deducible from a set of sentences if and only if it belongs to every maximal 
extension of the seto 

Theorem 4.5 Let r and A be a set of sentences and a sentence repectively, then 

r 1-085 A iff A E .ó. for every .ó. El r 1085 

Proof: It follows from the Lindenbaum's Lemma. 

Definition 4.6 Let M· = (W·, R·, 11 11·) be a structure of model for G85. M· is the proper canonical 
standard model for GS5 iff: 

1. w· = {r : Max085I'}. 

2. Por every w and w' in W, wR<¿w' iff {A : 0aA E w} ~ w'. 

3. IlFiII+ = 1 Fi 1085 for i ~ O. 

Next lernma shows that the proper canonical model for GS5 is like another model M# with W# and 
IIFill# equal aboye, and R# defined so that a w~rld collects all the possibilitations of sentences ocurring 
in its accessibles. ~ 
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Lemma 4.6 M# = (W#, R#, 11 11#) is the proper canonical standard model for G85 iff W# and 11 11# 
are as in definition 4.7, and for every w and w' in M#, 

wR'!;w' iff {OaA : A E w'} ~ w. 

Proof: From left to right, suppose wR'!;w' and DaA in w, then A in w' and so...,A is not in w', implying 
that ...,Da...,A is not in w and then by maximality OaA in w. 
In the other direction, suppose that 0aA is in w, since w is consistent, Da...,A is not in w, hence ...,A is 
not in w' and then A belongs to w'. V 

Theorem 4.1 Let M* be the proper canonical standard model for G85. Then for every w in M* and 
for every formula A in G85: 

I=tt* A iff A E w 

Proof: The proof is by induction on the complexity of A. It suffices to give it for the case in which A 
is (1) an atom Fn ,(2) a negation ...,B, (3) a conditional B -+ e and (4) a necessitation, DaB. For (1). 
By the definition 3.2, Ftt* Fn iff w E IlFnll* and by definition 4.6 this occurs iff w El Fn IG85. But by 
definition 4.6 this holds iff Fn E w. So the result holds when A is atomic. For the inductive cases we 
make the hypothesis that the result holds for all formula shorter than A. 
For(2) , Ftt* ...,B iff (def.3.2) not Ftt B iff (inductive hypothesis) B ~ w iff...,B E w. So the result holds 
when A is a negation. 
For (3). I=tt* B -+ e iff (def. 3.2) if I=~* B then I=tt* e and this iff (inductive hypothesis) if BE w 
then e E w iff B -+ e E w. So the result holds when A is a conditional. 
For (4). I=tt* DaB iff (def.3.2), for every world w' in M* such that wR7:.w', F~f B, iff (inductive 
hypothesis), for every world w' in M* such that wR7:.w', B E w', iff (def.4.7) for every world w' such 
that {A: Do:A E w} ~ w' then B E w'. Now consider separataly both implicatoions: 
i) If DaB E w, then it is easy since by definition 4.6 B belongs to every G85-maximal extension of the 
set {A: DaA E w}. 
ii) The other direction is the most interesting. If B belongs to every G85-maximal extension of the set 
{A : Do:A E w} then, by theorem 4.4 {A : Do:A E w} ~GS5 B. This in tum means that there are sentences 
Al 1\ ... 1\ An in this set, such that ~GS5 (Al 1\ ... 1\ An) -+ B. Because G85 contains the necesitation 
rule, we may infer, by the GK scheme, that ~GS5 (Do:Al 1\ ... 1\ Do:An) -+ DQB. But w contains ea.ch 
Do:Al, ... , D",An so D",B E w. V 

Corollary 4.8 Let M* be the proper canonical standard model for G85. Then for every w in M* and 
for every formula A in G85: 

FM * A iff ~GS5 A 

Proo/: This is easy to prove from last theorem. 

Before the completeness theorem, it is necessary to present the following resulto It is similar to the 
classical case. 

Proposition 4.9 The accesibility relation R~ in the family R* of the proper canonical standard model 
for G85, M', is an equivalence relation for each O! in [O,lJ. 

Proof: 
1) R~ is reflexive. Trivial by definition and the fact that axiom GT is in G85. 
2) R;' is symmetric. Already, we proved that Theorem GB is in G85. Let us prove that for all G85-
maximal set of sentences Wl and W2, 

if {A: DaA E w} ~ w' then {OaA : A E w} ~ w'. 

By definition 4.6 and lemma 4.6, this means that R~ is symmetric, i.e. th9.t for every w and w' in M* , 

if wR7:.w' then w' R;'w 

Assume that {A: DQA E w} ~ w', and aIso that A E W. It remains only to be shown that OA E w'. But 
if w contains A and the theorem A -+ Do:OaA too, then DQOo:A is in W. Hence O",A E w'. 
3) R~ is transitive. \Ve lmow that G85 contains the theorem G4: DQA -+ OQ,oo:A. \Ve express the 
transivity of R;' by saying that for every G85-ma."<imal set of sentences W¡'W2 and Wa, 
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If {A : DaA E W1} ~ W2 and {B : DaB E W2} ~ W3 then {C : DaC E w¡} ~ W3 

Suppose that {A: DaA E W1} ~ w2, {B : DaB E W2} ~ W3 and that DaA E W1. The presence of G4 in 
W1 and the last assumption imply that DaDaA is in W1. By the first assumption, then, DA is in 1112, and 
by the second, A is in W3. V' 

Notice that the proper canonical standard model for GS5, above defined, is not a model in the sense 
presented at section 3, because W .. is not a set of interpretations of propositional language. We obtain 
the appropriate model for our goal via the collapsation through r F of the model M" and where r F is 
the set of atomic formulas. 

Definition 4.7 Let M· be the proper canonical standard model for GS5 and let f F be the 8et of atomic 
formulas (Fo,F¡,F2, ..... ). Then a collapsation ofM· throughfF is the model}vl"c = (W;,R~,,, ,,~) 
such that: 

1. w; = [W')rF' 

2. For every [w1J and [w2] in W;: 
[11I1)R~a[W2) iff there exists w in [w¡J and w' in [W2) such that wR;"w'. 

where [X]rF denote the set of equivalence class of worlds in X with respect to rF. 

Since collapsation is a particular case of filtration, we are able to apply the theorems 3.19 and 3.20 in 
[CHE80]. Thus the following result is immediate. 

Proposition 4.10 Each accesibility relation R~a in the family R~ 01 the collapsation of proper canonical 
standard model for GS5, M· c, is an equivalence relation for any a in [0,1}. 

Now, we must prove that M· e belongs to the class of models Cm' For this, first we analyse the case 
where the set of atomic formulas and the set of numbers O are finite and then the set of OS5-maximal 
sets in M· and the set of possible worlds of each M in Cm too. This will serve to guaratee that all 
subsets of the family R~ have maximum. Before, we present a lemma from [ZAD71] that will be useful 
in the posterior theorem. 

Lemma 4.11 A funct'ion S : W X W t---4 [0,1] is a min-tmnsitive símilarity functíon if and only if 
there exists a nested family ol equivelence relations Ha on tite set of posible worlds such that: 

Vw,w' E W(S(w,w') = max{a I Ra(w,w')}) 

Thus we are just prepared to present our main result of completeness. 

Theorem 4.12 If the set 01 atomic formulas of L and the set of numbcrs O are finite, then the collap­
sation of the proper canonical standard model for OS5 belongs to the cla.9S 01 models Cm. 

Proof: Let M· e = (W;, R~, 11 ,,~) be the collapsation of the proper canonical standard model for OS5. 
First, we define a binary relation S· via the family of accesibility relations R~ as follows: 

V[w], [w'] E W;(S·([w], [w']) = max{a I [w}R~a[w']}). 
By proposition 4.10, R~a are equivalenee relations, therefore, by lemma 4.11,S· to defined a min-transitive 
similarity relation. Furthermore, let us see that S· is discriminality and universal. 
1) S· is discriminality if and only if for all [wJ[w'J E W;, S·([w}, [w']) = 1 implies [w} = [w']. This holds 
if and only if [W)R~tfW/]. But is so, since by definition 4.6 [w]R~dw/) iff there exists w in [w) and w' in 
[w'J such that [w)R·dw'). Since the axiom OC is in w then it must be w=wl • 

2) S" is universal if and only if for all [w] and [w'] in W; results that S·([w], [w'J) ;? O. It is equivalent 
to requíre that for all [w} and [w'] in W;, [w]R;o[wl ]. By definition 4.6, this occurs if and only if there 
exists W1 in [w] and W2 in [w'] such that {A : DoA E w¡} ~ W2 (for all[w], [w l ]). But sinse DoA iff A = T 
by definition 2.1, and since T is in all worlds' we may consider the proof completed. V 

Corollary 4.13 The system OS5 is complete with respect to the class of models Cm' 
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5 Relations with Graded Entailment 
As we already mentioned, different consequence relations that make sense in similarity-based reasoning 
are presented in [DEG+95]. Here, we characterize them in the framework of similarity-based graded 
modallogic. Before, we give sorne useful definitions and propositions. We have also to notice that the 
different graded entailments are defined from a similarity relation and not from a class of them. Thus, 
given a similarity relation S we extend the modal system GS5 , in such a way that the extension represents 
the class of modeIs that has as a unique element, Ms = (W, Rs, 11 11). Since we are con.'lidering a finite 
set of atomic formula, then for each world w we can build the formula w such that w F w and w' I;l: w 
for all w' #- w. Furthermore since G is also taken finite, we can enumerate its elements. Let E be the 
mapping from G to [O,n]. So on, we write El¡ instead of Ro: with i = E(a). 
Now, we can consider a set of formulas corresponding a similarity S: 

Definition 5.1 Given a similarity function S the set of formulas that it represent is: 

:Fs = {w -+ 0i-1W' 1\ OiW' I w and w'e W and E(S(w, w'» = i}. 

This set of formula capture the similarity S in the sense that o formula w -+ 0i-1W' 1\ OiW' is valid in 
Ms if and only if E(S(w,w'» = i} 
Now, we can extend the system GS5 adding the formulas of :Fs. Forma1ly: 

Definition 5.2 Let S be a similarity function, the extension of GS5 by S, noted SOS51 is the smallest 
set o/ formulas containing the axioms of SG5 plus those of:Fs and closed under GRN and MP rules. 

For our purpose, we want to see that when the similarity function is back built through the system SOS5 
via the collapsation of the proper canonical standard model for SOS5, this function is recovered. This is 
established by the following theorem. 

Theorem 5.1 Let S and SOS5 be a similarity function and the extension of GS5 from S respectively, 
and let M· e = (W;, R~, IIII~) be the collapso.tion of the proper canonical standard model for SOS5. Then 

V[w], [w'] e W;(S([w], [w']) = max{a I [w]R~o:[w']}). 

Proo/: Trivial from theorem 4.11. v 
Having defined the system SOS5 from a similarity S, we can present the relation between this system 

and the different entailments with respect to S. Following the presentation from [DEG+95], where 
w F~ B means there exists a B-world w' such that S(w,w') ~ a, it is easy to check that this entailment 
is directy related to the possibility operator O o: in the following sense: 

w F~ B iff I-SCS6 W -+ 0o:B 

It is easy to see that the right-hand side of the equivelence represents that any world w satisfying w must 
aIsO satisfy Oo:B, i.e. there must exist a B-world w' such that S(w, w') ~ a. 
The idea of the aboye graded satisfaction in a world can be extended over to a more general graded 
semantic entailment relation. According to [DEG+95] , a proposition A entalls a proposition B to the 
degree a, written A F~ B, if and only if each A-world makes B at least a-true, i.e. Vw3w'(w FA -+ 

(w' F B 1\ S(w, w') ~ a)). 
Using the modallogic setting this can be expressed as: 

According the notion of deducibility, this means that 0o:B follows from A in SOS5' 

As it is pointed out in [DEG+95], a natural question about the entailment is how to deal with sorne 
prior information which is available under the form of a set K of formulas. In this paper, the authors 
propose three extensions of A F~ B that taIte into account the background information K. 
The first and direct option is just to take the set K as a restriction on the set of A-worlds, and thus. 
considering the entallment F~ K defined as follows: 

I 

A F~,K B iff K 1\ A F~ B 

In our modal opproach, this can also be expressed as: 
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K 1\ A I-Sas5 O"B 

A second option (in [DEG+95]) to take into account prior knowledge into the entailment relation, and 
related to Ruspini's proposal of what he calls "conditional necessity functions" ([RUS91]), is to define 
the following entailment: 

A I=~,K B iff Is,K(B I A) ~ a 

where Is,K(B I A) = IJtf (Is,w(A) ®---+ Is,w(B)). 
To represent the last entailment in our logical system SCS5, first we need to define a new family of 

modal operators O" with a in G. A sentence O"A is to be true at a world w if and only if the A-worlds 
that are closest to w are, at most, a-similar to w. At the syntactic level O" is defined as follows: 

Now, the previous entailment can be writen as: 

Finally, the third consequence operator that is presented in [DEG+95] corresponds to a modified version 
of the conditional measure Is,K(B lA), that is proposed in [EGG94b], and it is defined as: 

A FS,K B iff IlK(B I A) = IS,K(B 1\ A lA) 

Again, we can characterize this entailment via the following expresion: 

6 Conclusions and Open Problems 

We have presented the axiomatization of a similarity-based graded multi-modal system GS5, indicating 
how several entailments proposed in [DEG+95] can be characterized inside this system whenever the 
propositionallanguage, as well as the ranges of grades of similarity, are finite. Furthermore, the axioma­
tization has been proved to be correct and complete with respect to the classes of Kripke models whose 
accesibility relations are based in finite min-transitive similarity relations. 

The extension to the infinite case is not direct, because we can not be sure about the fact that the 
nested family of accesibility relations in theorem 4.11 can be recovered by the a-cut of similarity relatiol1s 
which is constructed there, using supreme instead of maximun. We think that a solution is to incorporate 
the following rule in GS5: 

<>a- A . h t o=:-x- Wit aí a 

where aí t a express as an ascendent succession with limit a. The proof of the usefulness of this rule 
remains. 

Another remark is the limitation of the language in definition 2.1 due to the requerement that any 
pair of worlds have to be at least O-similar. For this we impose the restriction that the formula OoA does 
not belong to the language if A #- T. Other conditions should be studied too. 

In [EGG95b] a semantical interpretation of possibilistic deduction via another similarity-based graded 
modal logic is established, called it "multi-modal logic". This logic has four kind of graded operators, 
namely, 0 0 ", 000., OC" and OC". The difference between 0oo.q and Oc"q is that the first is true in a 
world w if there exists a q-world w' such that S(w, w') > a, and the second is true in w if S(w, w') ~ a. 
An extension of our axiomatization with this operator is being studied. 

Further interesting topies for future research are, among others: 
1) To provide an aximatization for the case when the similarity relations are transitive with respect to a 
t-norm different from mínimum, 
2) To define inference mechanisms for SCS5. 
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