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MCPC: ANOTHER APPROACH TO CROSSOVER IN GENETIC ALGORITHMS 
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Genetic algorithms (GAs) are stochastic adaptive algorithms whose search 
method is based on simulation of natural genetic inheritance and Darwinian strive for 
survival. They can be used to find approximate solutions to numerical optimization 
problems in cases where finding the exact optimum is prohibitively expensive, or where . 
no algorithm is known. 
The main operator, which is the driving force of genetic algorithms, IS crossover. It 
combines the features of two parents and produces two offspring. 
This paper propases a Multiple Crossover Per Couple (MCPC) approach as an altemate 
method for crossover operators. 
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1. INTRQOUCTION 

The crossover operator provides a major contribution to the process of 
exchanging genetic material during the execution of a GA. Crossover combines the 
eatures of two parent chromosomes to form two similar offspring by swapping 
corresponding segments of the parents. For example, if the parents are represented 
by five-dimensional vectors <a1,b1,c1,d1,el> and <a2,b2,c2,d2,e2> (with each element 
called a gene), then crossing the chromosomes after the second gene would 
produce the offspring <a1,b1,C:!,d2,e2> and <a2,b2,c1,d1,e1>. 

The intuition behind the applicability of the crossover operator is information 
exchange between different potential solutions. Starting with the aboye basic idea of 
one-point crossover, many researchers studied the effect of different types of 
crossovers to improve GA performance (accuracy and speed). This research 
included various types of crossovers (two-point crossover, multi-point crossover, 
uniform crossover, etc.), and specialized crossovers, which depend on particular 
data structure used for a chromosome representing a potential solution to the 
problem. For example, Davis [2], Goldberg and Lingle [9] and Smith [13] were 
looking tor diverse variants of crossover (PMX, OX and CX) when approaching the 

SP problem using GAs. Frantz [7], Syswerda [151 and Davis [3] proposad multi­
point, uniform and guaranteed-uniform crossover, respectively. More recently 
Eshelman and Schaffer [5] studied differentiating features ot GAs testing diverse 
crossover variants. 

The common approach to crossover is to operate once on each mating pair 
after selection. We devised a different approach: to allow multiple offspring per 
couple, as often happens in nature. Sorne results and perspectives are discussed 
below. 

2. A GENERAL OUTLOOK TO GENETIC ALGORITHMS 

GAs implement an eiementary form of the natural selection mechanism to 
search a problem space using the Darwinian principie of natural selection and 
survival of the fittest. They were first devised by John Holland [11] and his co-

orkers at the University of Michigan in the 1970s and have been studied by other 
research groups since. GAs are today considered as a robust technique, effective 
across a spectrum of problems even in the presence of difficulties such as noise, 
multimodality, high-dimensionality and discontinuity (De Jong [4]). GAs have been 
applied to a wide variety of problems from pipeline engineering (Goldberg [8]), VLSI 
circuit layout (Davis [1]), resource scheduling (Syswerda and Palmuccr [14]), 
machine learning (Goldberg [8]), and distributed systems allocation strategies 
(Esquivel et al,[6]). 

Basically, GAs simulate the evolution (natural adaptation) of a population of 
5OIutions for a given problem. After the initial population is created, the evolution loop of 
a genetic algorithm consists of (1) evaluating all individuals in the population, (2) 
selecting a new, intermediate population (batter individuals have better chances to be 
selected), and (3) altemating their genetic code. These three steps are repaated unti! 
some termination condition is satisfied. 

A modeling assumption that is made with GAs is that each point in the 
problem space can be represented by a fixed length string of symbols. Thus each 
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string (chromosome, or individual) represents orie possible solution to the problem 
and serves as a genetic material on which the genetic operations will be peñormed. 

An interesting property that distinguish GAs from other search algorithms is' that 
they maintain a population of potential solutions, which allow a highly parallel search, 
instead of working out on a single point of the searching space during each iteration 
(Michalewicz [12]). 

Reproduction, crossover and mutation are basic operators in GAs. In 
reproduction, strings whose fitness value .indicate that they are good solutions to the 
given problem will have a greater probab¡J¡ty to be selected for mating and, thus, 
contributing offspring. Reproduced strings are copied into the next generation pool 
of members where they await the action of the other two operators, narnely 
crossover and mutation. 

Crossover is a mechanism by which chosen strings can be partly exchanged 
creating new strings (interchange of genetic material). Thus it can be seen that the 
two new strings 'inherit' some elements of their parents. Crossover when combined 
with reproduction provides an effective means of exchanging information and of 
contributing high quality solutions. This combination of operators gives GAs mostof 
their search power. . 

Finally, the third basic operator, mutation, prevides a GA with the ability to 
search cifferent parts of the problem space thus increasing its aptitude to find near 
optimal solutions. This operator simply changes a symbol in some randomly chosen 
string at some random position, thus creating a new individual. This ensures that, in 
theory at least, every position in the string can take any of the alphabet values. The 
following scheme describes how a GA is carried out: 

begin 

end. 

t :=0 
initialise population P(t) 
evaluate population P(t) 
repeat 

t := t + 1 
select population P(t) from P(t-1) 
modify population applying genetic operators 
evaluate new population P(t) 

until termination_ condition 

3. THE MUL TIPLE CROSSOVER PER COUPLE APPROACH 

Conventional approaches to crossover, independently of the method being 
applied, involves to apply the operator only once on the selected pair of parents to 
create, precisely, two children. As an example, 1-pt crossover, 2-pt crossover, uniform 
crossover and other variations produce a pair of offspring per couple. From now on 
we cal! such procedure, the Single Crossover Per Couple (SCPC) approach. 

Inspired by nature, we decided to conduct several experiments in which more 
than one crossover operation for each mating pair is allowed. This set of initial 
experiments were designed in such a way that for each mating pair, the Multiple 
Crossover Per Couple (MCPC) approach would allow a variable number of children 
(from zero up to some predefined maximum number). 
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Diverse scenarios can be conceived using the MCPC approach; fixed or variable 
population sizes with use of some "reasonable" criteria to allocate children to parent 
couples (outstanding couples could have more children than ordinary couples), or to 
allocate them by random, etc. 

To start we chose one scenario where the first selected pairs are lucky and 
allowed to reproduce, while some other pairs can not reproduce due to a Iimits on 
population size. 
A number of experimental runs, using elemental evolutionary computing techniques, 
were implemented in such a way that the number of children per couple is granted as 
a maximum number and the process of producing offsprings is controlled, tor each 
mating pair, in order not to exceed the population size. We describe them now. 

4. EMPIRlCAL TESTS 

The idea of multiple children par couple was implemented as multiple crossover 
operations once the pair was selected. Then, GAs allowing multiple crossover per 
(selected) couple were run tor searching maximum1 global values on functions F1, 
F2,F3, F4, F5, F6 and F7 where: 

F 1: f ( X " X .) = 21. 5 + X , . sin (4 7r X ,) + Xl' sin (20 7r X .) , for 

- 3. O:s; X 1 s: 12 .1, 4.1 S X 1 S 5.8 

estimated maxlmum value: 38 . 827553 

F2: f(xl,x.,X.) = XI'+X,'+X,' .for 

-5.12 S X I S 5.12 • i = 1,2,3 (De Jong Function F 1 ) 

estimated maximum vallUl . : 78 . 6432 

F3:f(Xl,X,) 100 (X l' - X 2) 2 + (1 - X,') ,for; 

- 2 . 048 S X f S 2. 048 ,i = 1, 2 (De Jong Function F 2 ) 

estimated maximum value: 3905 .9213 

F 4: f ( Xl) = 2. O + X,, sin (10 7r Xl) , for; 

Bstimated maxlmum va/ue : 3.850272 

F5:f(xl,x.) = O. 5 + sin 1.J X 12 + Xl' - O. 5 
( • ,)1 

1.0 + O .001 X 1 + X 2 

, for 

- 100 :s; X I S 100 , i = 1, 2 ( Schaffer Function F 6) 

estima/ed maximum vallUl : O . 972 

F 6: f ( X" X 1) = (X,· sgn (X 1) ) . ( X 1 . sgn (X 1) ) ,for 

-lS X. s2 • i=I,2 

estimated maxlmum value: 4 . O 

5 
F 7: f (Xl,X.,X.) = 30 - ~ int (X.) ,for 

i = 1 
- 5 .12 S X f S 5 .12 , i = 1, 2 (De Jong Function F 3) 

atimated maIClmum value : SS . O 

Functions F1,F3,F5,F6 and F7 are usually known as minimization problems and were also tested as 
at. 
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A set of experiments consisting of 24 series of 10 runs each, were performed on each 
fundion, [run 1 allowed one crossover, run i (for 2 s; i s 10) allowed at most i crossovers 
par couple]. We make reference here only to 10 of them. 

In experiments E1 to E9, initial population for each series remained constant 
during the corresponding ten runs, in order tocompare results under the same ¡nitial 
conditions, for different number of crossovers allowed. In experiment E10, a variable 
initial population for each run (randomized with diverse seeds) was created to observe to 
what extents results are independent of initial canditions 1 . 

A simple GA, with binary coded chromosomes, elitism, one point crossover, bit­
swap mutation and proportlonal selection was the basis for the initial experiments 
(advanced operators and complex evolutionary techniques are being implementad for 
future testing). The experiments were run, playing with parameters as follows and 
restrided to vary only population size, probability of crossover and probability of 
mutation : 

Population Numberof Probability of Probability of 
Experiment Size Generations Crossover Mutation 

E1 100 200 0.7 0.001 
E2 100 200 0.3 0.001 
E3 100 200 0.4 0.003 
E4 100 200 0.5 0.005 
ES 70 200 0.7 0.001 
ES 70 200 0.5 0.005 
E7 70 400 0.5 0.001 
Ea 50 200 0.7 0.001 
E9 50 200 0.5 0.005 
E10 70 200 0.5 0.005 

The values in the table aboye were selected for subsequent result comparisons 
and as part of a global study. For example E4, E6, E9 and E10 were thought to 
counterbalance expected population homogeneity introduced by MCPC by means of a 
relatively greater mutation probability, and to be compared for looking at the effect of 
population size. E7 with 400 generations, was run to be comparad with similar previous 
experlments2 • In general they were designed with changas in soma parameters values 
to isolate the sida effects of MCPC. 

During preliminary runs of MCPC approach it was observed that an improvement 
on running time was found as long as the number of crossovers per couple increased. 
This effect is a consequence of an economy in computational effort, because lesser 
selections of mating pairs are done. On the other side of the cain this time reduction is 
paid by being more distant from known or estimated maximum valúe. In consequence, 
the foIlowing peñormance variables were analyzed: 

1 Comparison of experiments, effectively showed that influence of Initlal conditions is minlmal. 
Discussion on this tople is out of the extent of thls papero 
2 These and other studles are out of the scope of thls presentation. 
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best (Eb) = (max_val- best value/max_val) 1 00 
1 is the percentual error of the best found individual When compared with max_ vaP . It 
9 ve us a measure of how far are we from that max_ val . 

. . pop (Ep) = «max_val- mean pop \(a I ue)/max_val) 1 00 
1 is the percentual error of the populátion mean When compared with max_ val. It tell us 

w far the mean fitness is from thatmax_ val. 

best (Gb) : Identifies the generation Wheré the best value (retained by elitism) was 
~ und. 

ime (Dt) = «T1 - T1)1T1)100, Where 
1 = running time of run 1 (SCPC) 
1= running time of run i (MCPC) 
unning time difference, it is the percentual of time reduction when compared with 
assic crossover (single crossover per couple). 

atioblc (R) = Dtime/Ebest 
1 is a benefitlcost ratio, Where thebenefit is seen as a reduction on running timeand the 

st is seen as being fartherfrom the max_val. 
11 the values analysad were mean values obtained from the 24 series for each 
aximum number of crossovers allowed, on each functíon. . 

After the experimental runs were aCCOníplished, two approaches to buíld statistics 
ere carried out: 

Minimum and maximum mean values for each of the aboye mentioned performance 
variable, on every functíon and experiment, were found for MCPC and thereafter, 
when appropríate, contrastad with the'corresponding SCPC values. 

I . A general overview of the MCPC effect on the performance variables was completed, 
also for mínimum and maximum mean values. 

an example for statistical approach 1, figures 1. t05summarize results for fun~ion F3. 
Flg.1: 

Functlon F3 
Ebest 

"~ 
1.4 
1.Z 

1 . 
0..8 ' 

q . 
E1 EZ E3 E4 E5 ES 

.~. 
E7 Ea ES 

1 ....... ·cPc ___ Mln. MCPC ...... Max, MCPC I 

1 max_val is the known, or estimated, maxlmum value 

• E10 

" ~ 
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In Fig. 1 we can observe that mlnlmum Ebest mean values for MCPC are quite 
coincident with Ebest mean value for SCPC and better for experiments E6 (0.10% vs 
0.13%), E7(0.12% vs 0.16%) and E10 (0.07% vs 0.15%), while maximum Ebest mean 
values for MCPC do not exceeds 1.5% on E8. 

PI8·2: 
Punc:tlon F3 

Epop 

I ....... «:pc ...... In •• epl: .......... efel 

In Fig. 2 we can observe that minimum Epop mean values for MCPC are quite similar to 
Epop mean value for SCPC and better for experiments E3 (3.5% vs 4.2%), E5(0.8S% vs 
1.1%), E6 (6.38% vs 6.80%), E7 (0.71% vs 0.95%) and E9 (4.49% vs 5.67%), whiJe 
maximum Epop mean values for MCPC do not exceeds 12% on E4. 

Fil. 3: 
Punctlon F3 

Dtlm. 

¡iE: : === : ~ 
11 12 E3 14 ES ti 11 II I!I E10 

I ...... 'n .• CPC .......... epc I 

In Fig. 3 we can see that time reduction, Dtime, using MCPC goes from a minimum 
mean value of 8.5% for E9 to a maximum mean value of 32.7 for E2. 

FI8·4; 
Func:tlon F3 

Rb/c: 

¡!t~~ 
11 E2 13 14 es ES E1 EC I!t 1!10 

1 ....... ln. Mcpe ___ M ... MCPC 1 

Figure 4 shows that the benefitlcost ratio, RatiOt.tc, goes from 13.4 for E8 to 371.8 tor 
E10. 
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l-+-scPC 

Flg.6: 
Functlon F3 

# Generatlons 

___ Min. MCPC ....... Mu. MCPC 1 

inally, fig. 5 shows that the minimum mean values for the number generation to find the 
st value, Gbest, under MCPC are quite similar to the mean values for SCPC, while 

t e maximum mean values exceeded SCPC mean values in about 15% to 55%. 

Now, as an example for statistical approach 11, figures 6 and 7 summarize results 
~ r the most relevant performance variables. Here the graphs represent the effect of 

pplying MCPC on every functíon, and the values are mean values obtained throughout 
11 the experiments performed. 

5 
'.5 , 

FIII·6: 
Ebest 

3.5 
3 

2.5 
2 

1.5 
1 

o.~ C~~~:::;~*;::;;;::=:::::::::::::::::~~~~~~=-..... 
F2 F3 F' f8 '7 

I-+-scpc ___ Mln. Mepc ............. MCPC 1 

I Fig. 6 we confirm that the same previous behaviour is shown for minimum mean 
verall Ebest values; they are quite similar to mean Ebest, SCPC values. On the other 
and, maximum mean overa" Ebest values do not surpass 5%. 

35 

30 
25 

20 

15 

10 1 -----

Fl F2 

FI". 7: 
Dtlme 

F3 " F5 F6 F7 

I-+-Mln. MCPC ___ Mu. MCPC I 

n Fig. 7 we can see that overall time reduction, Otime; using MCPC goes from a 
inimum mean value of 9% for F7 to maximum mean value of 34% for F4. 
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5. CONCLUSIONS 

When confronting MCPC with SMPC the following observations are remarkable: 

• In sorne isolated cases the MCPC method finds results that are better than these 
found by the SCPC method. 

• A dispersion factor defined as the ratio standard deviation over mean was 
calculated on each run; the results ¡ndicatea low dispersion on the mast relevant 
studied variables, Ebest and Dtime. 

• In sorne on-line applications low time complexity of an algorithm may have higher 
priority than the accuracy of the results; our experiments indicate that the MCPC 
approach might be advantageous in cases of this nature. For this reason a set of 
new experiments (with new strategies described briefly in seetion 3) is being 
conducted. 
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