

Teaching Modern Heuristics in
Combinatorial Optimization

The example of a demonstration and research tool
employing metaheuristics in scheduling

Martin Josef Geiger
Lehrstuhl für Industriebetriebslehre

Universität Hohenheim
D-70593 Stuttgart

Germany
mjgeiger@uni-hohenheim.de

Abstract. The article describes the proposition and implementation of a
demonstration, learning and decision support system for the resolution of
combinatorial optimization problems under multiple objectives. The system
brings together two key aspects of higher education: research and teaching. It
allows the user to define modern metaheuristics and test their resolution
behavior on machine scheduling problems. The software may be used by
students and researcher with even little knowledge in the mentioned field of
research, as the interaction of the user with the system is supported by an
extensive graphical user interface. All functions can be easily parameterized,
and expensive software licenses are not required. In order to address a large
number of users, the system is localizable with little effort. So far, the user
interface is available in seven languages.
The software has been honored in Ronneby (Sweden) with the European
Academic Software Award 2002, a prize for learning and research software
awarded biannually by EKMA, the European Knowledge Media Association
(http://www.easa-award.net/, http://www.bth.se/llab/easa_2002.nsf).

1 Introduction

In numerous areas within computer science, engineering, and operations research,
combinatorial optimization problems can be identified whose resolution are of high
practical importance. Examples are the traveling salesman problem, knapsack
problems, and scheduling and routing problems, to name a few. While the
description and explanation of these problems is comparably easy, their resolution is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Martin Josef Geiger

not, and in many cases is even NP-hard [7]. Algorithms that have been developed
for these problems include heuristics and more recently metaheuristics such as
evolutionary algorithms, tabu search, and simulated annealing. These techniques
solve an underlying problem through successive modification and improvement of
alternatives until a solution is identified which cannot longer be improved.

When teaching the principles of modern heuristics, demonstration tools are
particularly useful as they allow a monitoring of the intensive computations
performed by the algorithm. In addition to theoretical explanations, the progress of
the metaheuristics when solving a problem at hand becomes more visual. For
students having to face the difficulty of understanding both the problem and the
search algorithm, this is of great value in order to quickly progress in this complex
field of science.

Numerous implementations of algorithms for combinatorial optimization
problems have been made available on the World Wide Web. Prominent examples
are:

1. The remote interactive optimization testbed RIOT [10].
2. The GA archives [13].
3. The more specialized EMOO webpage for multi-objective optimization problems

[4].

The first example maintains a collection of software dedicated to the
demonstration of algorithmic approaches for a variety of problems. It consists of
web-based applications that visualize the described problems and allow a basic
interaction of the user with the system. While the structure of the problems and the
general ideas of the algorithm become easily transparent to the user, a further
adaptation of the implemented methods is not possible as this is clearly not the idea
of the testbed.

The other two examples of software collections bring together research oriented
software packages that may be reused by fellow researchers. They comprise highly
specialized as well as more generic programming code in a variety of programming
languages. In order to be reused, a thorough understanding of the implemented
techniques is necessary, and an adaptation of the techniques to particular problems
requires in many cases a close examination of the source code. While this does not
present a problem to rather experienced researchers, it limits its use in higher
education to some extent.

Bringing together research and teaching is especially crucial in this context, as
knowledge progresses at a fast pace. In an ideal setting, a system would be available
that allows the user not only to study predefined algorithms but also to parameterize
own settings and test them on individual problem instances. The current article
describes the proposition and implementation of such a system. It is organized as
follows. In the following Section 2, the general concepts of local search heuristics
are reviewed. A system demonstrating the application of modern metaheuristics to
scheduling problems is presented in Section 3, and conclusions and discussion are
given in Section 4.

Teaching modern heuristics in combinatorial optimization 3

2 Concepts of modern metaheuristics

As sketched above, metaheuristics aim to solve optimization problems through
successive modification/improvement of alternatives. While the general principles
of the metaheuristics are rather simple, complex interactions of the parameter
settings conclude from a variety of operators used within the search algorithms. The
main concepts are here illustrated using the example of a flow shop scheduling
problem with the data given in Table 1.

Table 1. Example of a flow shop scheduling problem

Job Operations Precedence constraints Processing times
J1 {O11, O12} O11 p O12 p11=3, p12=2
J2 {O21, O22} O21 p O22 p21=4, p22=1
J3 {O31, O32} O31 p O32 p31=2, p32=3
J4 {O41, O42} O41 p O42 p41=1, p42=4

The problem consists of four jobs J1, …, J4, each of them comprising two

operations Jj={Oj1, Oj2} with given processing times pjk. It is assumed that all
operations Ojk have to processed on machine Mk. The objective of the scheduling
problem is to find a schedule, assigning starting times Sjk to each operation Ojk such
that a single or a set of objectives is minimized while all side constraints of the
problem, such as the precedence constraints of the operations, are respected. A
prominent example of an optimality criterion in this context is the maximum
completion time (makespan) Cmax=max (Sj2 + pj2).

A closer examination of the problem structure reveals that a schedule may be
represented as a sequence of jobs, which on the other hand can be transformed into a
schedule by assuming earliest possible execution of the operations with respect to the
given job sequence [6]. Figure 1 gives an example of the job sequence 1 → 2 → 3
→ 4 for the problem instance of Table 1. The Gantt chart [16] of the schedule is
produced by decoding the particular sequence.

Figure 1. Representation (permutation) and corresponding alternative (schedule)

M2

M1 O11

O12

O31

O32O21

O22

t50 10

1 2 3

O41

O42

15

4

4 Martin Josef Geiger

Metaheuristics work with representations of alternatives as described above, on
which operators are executed that perform modification steps to generate new
solutions. For the example of representing an alternative as a permutation, operators
are used that modify this permutation in a particular way:

– Simple local search operators/mutation operators [12].

– Forward shift operators, removing a job from position j of the permutation and
reinserting it at position k, k > j.

– Backward shift operators, removing a job from position j of the permutation
and reinserting it at position k, k < j.

– Exchange operators, exchanging the position of two jobs.
– Crossover operators, recombining the information provided by two permutations

and returning two new alternatives on that basis [15].

Due to the limited availability of memory, some of the alternatives generated

during search have to be discarded, leading to the necessity of a selection step in the
process. Most metaheuristics consider in each step of the search either a single
alternative or a set of fixed cardinality, to which sometimes is referred to as a
population. Especially in the case of multi-objective optimization problems the
heuristics need to be able to maintain a set of solutions as due to often conflicting
objectives not a single optimal alternative exists but rather a set of Pareto optimal
ones [5]. Archiving strategies of identified best solutions play here a particular role
and add to the complexity of the search algorithms.

It can be already seen from the brief explanations above, that despite their
simplicity, metaheuristics require an extensive setting of parameters. The correct
choice of operators is crucial for the performance of the search algorithm, and
depends on the problem as such as well as on the particular instance. Experimental
investigations have been performed on almost any optimization problem, and
approximate recommendations of how to configure a particular metaheuristic are
available in the literature. In higher education however, an interactive demonstration
of the resolution behavior is still useful as it allows the students to gather hands-on
experiences with the algorithms. How such a system has been made available will
be the content of the following section.

3 A learning and decision support system for scheduling

3.1 Components

A learning and decision support system for scheduling has been implemented,
allowing the resolution of machine scheduling problems under multiple objectives.
Its main components are given in Figure 2.

Teaching modern heuristics in combinatorial optimization 5

Model
instances

Model
instances

MethodsMethods

SolutionsSolutions

Solver

User Interface

linking

storage

Figure 2. System architecture

The system already includes a database of scheduling benchmark instances taken
from the literature [2, 3] while individual data sets may be created by the user, too.

A range of implemented metaheuristics allows the resolution of the scheduling
problems. Model instances are linked to methods via a solver which also keeps track
of the obtained results. Implemented methods include:

1. Priority rules [9], based on the early work of GIFFLER and THOMPSON [8] for

generating active schedules.
2. Local search neighborhoods [12] within a multi-point hillclimber.
3. Multi-objective evolutionary algorithms [1], incorporating elitist strategies and a

variety of crossover neighborhoods such as uniform order based crossover, order
based crossover, two point order crossover, and partially mapped crossover.

4. The multi-objective simulated annealing algorithm MOSA of TEGHEM et al [14].
5. A module based on the aspiration interactive method AIM [11] for an interactive

search in the obtained results.

The whole functionality is made available to the user through a graphical user
interface.

3.2 Visual user interface

Both the interaction of the user with the models and algorithms, as well as with the
obtained results is possible through a multilingual user interface. Figure 3 shows, on
the left, the window allowing the definition of the problem data and on the right the
window giving access to the functionalities of the metaheuristics. New
configurations of search algorithms may be derived here and tested on the
benchmark instances. Necessary parameter settings of the search algorithms can
easily be parameterized by selecting the corresponding objects in the window and
changing their attribute values.

6 Martin Josef Geiger

Figure 3. User interface allowing the definition of search algorithms

By providing a graphical user interface for the configuration of the underlying
search algorithms, no source code needs to be written nor adapted or recompiled.

3.3 Problem resolution

After the definition of the parameters of the metaheuristics along with the model
data, a solver executes the search algorithm on a problem instance and produces
results that are stored in a database. It is possible to store split results obtained
during search in order to monitor and analyze the progress of the metaheuristic
depending on the amount of computations.

The visualization of the results is supported both in outcome and in alternative
space:

1. A two-dimensional plot in objective space gives the outcomes of the best found

alternatives. On the vertical and on the horizontal axis, one objective of the
problem may be plotted at once. An example of such a visualization is given in
Figure 4 on the left. Each schedule appears as an object in the outcome plot, with
a position depending on its objective function values. The user is enabled to
navigate through the plot by either selecting an alternative with the mouse pointer
or following an interactive procedure based on the aspiration interactive method
AIM [11]. In this procedure, aspiration levels are introduced for each objective
function that narrow down the set of alternatives. Only solutions that fulfill the

Teaching modern heuristics in combinatorial optimization 7

aspiration levels given by the decision maker are considered to be of interest
while the others are successively removed from the decision making procedure.

Figure 4. Monitoring the outcomes of a search run after 100,000, 500,000, and 1,000,000
evaluated alternatives. The different stages of the approximation are visualized in outcome
space by means of different symbols

2. The second visualization gives a Gantt chart of a selected alternative. Figure 5
gives an example of a schedule. Here, the visualization is job-oriented, plotting
the jobs and their corresponding operations in rows, but the orientation may also
be changed to a machine-oriented chart. A detailed monitoring of the starting
times of all operations is possible, and graphical indications of tardy jobs are
given.

The outcome plot may also be used to analyze the progress of the metaheuristics

and compare the results of different search algorithms. Figure 4 gives for a test run
of an evolutionary algorithm the obtained approximations after 100,000, 500,000,
and 1,000,000 evaluations. Each approximation is visualized using some symbol
(e.g., ×) which may be changed by the user.

It can be seen, that the front of the approximation gets closer to the true Pareto
front with increasing number of evaluations. Also, the number of identified
alternatives and their coverage of the Pareto front increases, giving the decision
maker more alternatives from which to choose from.

8 Martin Josef Geiger

Figure 5. User interface visualizing the Gantt chart of a selected alternative

3.4 Educational use

When teaching modern heuristics such as evolutionary algorithms, traditional
educational methods are of limited applicability. While textbooks describing the
approaches are available, a thorough understanding of the methods by means of
theoretical explanations only, e.g. by stating the corresponding pseudo-codes, is
difficult.

Many metaheuristic approaches require an extensive setting of control
parameters, and an important resulting aspect is the fact that their behavior can be
best studied by experimental tests during which different parameter settings are
systematically tested. Consequently, demonstration software is needed that allows
such investigations. Ideally, an available system is equipped with a graphical user
interface for the direct manipulation of the underlying resolution approaches.

By implementing such a system for the problem domain of scheduling, we enable
teachers and students to interactively explore the capabilities of different
metaheuristics for the resolution of corresponding problem instances. The
understanding of the techniques is further supported by the visualization of the
results. Contrary to other class libraries, the output of the results is possible in a
visual way, visualizing the Gantt charts of schedules (see Figure 5) and plotting the
outcomes of the optimality criteria in an outcome plot (see Figure 4).

In addition to the visualizations of the results, teachers and student may easily
modify the data of the investigated problem instances. This includes the data as

Teaching modern heuristics in combinatorial optimization 9

such, e.g. the processing times of the operations, as well as the set of optimality
criteria.

4 Conclusions and discussion

A system for the resolution of scheduling problems under multiple objectives has
been presented. It allows the definition of problem instances and modern heuristics
on the basis of an implemented library. Adaptations are possible by setting
parameter values. Therefore, no source code needs to be recompiled or changed in
order to make the system work. The results may easily be visualized and compared
to each other using different plots in alternative and outcome space.

As the system is aimed at end users in higher education and research, all
interactions of the user with the system are supported by a graphical interface. So
far, seven languages are available for the items of the user interface, namely English,
French, German, Hungarian, Italian, Polish, and Spanish. The presented system is
freely available for educational and research oriented use. It is accompanied by a
103-page printed manual, and a first chapter containing a tutorial of how to use the
system quickly introduces the prospective user into its functionalities.

The presented system is a useful tool for demonstrating the capabilities of
metaheuristics for the resolution of scheduling problems under multiple objectives.
The flexible architecture within the problem domain makes it usable for a wide range
of problem instances with different characteristics. On the other hand however, it is
bound to the problem domain of scheduling, and adaptations to other problems are
not permitted to the end user. We believe however, that this disadvantage is
outweighed by the provided functionalities in the particular problem domain.

The software successfully competed in the finals of the European Academic
Software Award, held in Ronneby (Sweden). It has been evaluated by an
international panel of experts and honored with an award.

Acknowledgements

The author thanks ZSÍROS ÁKOS (University of Szeged, Hungary), PEDRO CAICEDO,
LUCA DI GASPERO (University of Udine, Italy), and SZYMON WILK (Poznan
University of Technology, Poland) for multilingual versions of the software.

References

1. Tapan P. Bagchi. Multiobjective scheduling by genetic algorithms. Kluwer Academic
Publishers, Boston, Dordrecht, London, 1999.

2. Matthieu Basseur, Franck Seynhaeve, and El-ghazali Talbi. Design of multi-objective

evolutionary algorithms: Application to the flow-shop scheduling problem. In Congress

10 Martin Josef Geiger

on Evolutionary Computation (CEC'2002), volume 2, pages 1151–1156, Piscataway, NJ,
May 2002. IEEE Service Center.

3. J. E. Beasley. OR-library: Distributing test problems by electronic mail. Journal of the

Operational Research Society, 41(11):1069–1072, 1990.

4. Carlos A. Coello Coello. List of software on evolutionary multiobjective optimization.

http://www.lania.mx/~ccoello/EMOO/EMOOsoftware.html.

5. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolutionary

Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002.

6. Richard L. Daniels and Joseph B. Mazzola. A tabu-search heuristic for the flexible-

resource flow shop scheduling problem. Annals of Operations Research, 41:207–230,
1993.

7. M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, San Francisco, CA, 1979.

8. B. Giffler and G. L. Thompson. Algorithms for solving production-scheduling problems.

Operations Research, 8:487–503, 1960.

9. R. Haupt. A survey of priority rule-based scheduling. Operations Research Spektrum,

11(1):3–16, 1989.

10. Dorit Hochbaum. The remote interactive optimization testbed RIOT.

http://riot.ieor.berkeley.edu/riot/.

11. V. Lotfi, T. J. Stewart, and S. Zionts. An aspiration-level interactive model for multiple

criteria decision making. Computers & Operations Research, 19(7):671–681, 1992.

12. Colin R. Reeves. Landscapes, operators and heuristic search. Annals of Operations

Research, 86:473–490, 1999.

13. Alan C. Schultz. The GA archives. http://www.aic.nrl.navy.mil/galist/src/.

14. E. L. Ulungu, J. Teghem, P. H. Fortemps, and D. Tuyttens. MOSA method: A tool for

solving multiobjective combinatorial optimization problems. Journal of Multi-Criteria
Decision Making, 8:221–236, 1999.

15. Darrell Whitley. Permutations. In Thomas Bäck, David B. Fogel, and Zbigniew

Michalewicz, editors, Handbook of Evolutionary Computation, chapter C3.3.3, pages
C3.3:14–C3.3.20. Institute of Physics Publishing, Bristol, 1997.

16. James M. Wilson. Gantt charts: A centenary appreciation. European Journal of

Operational Research, 149:430–437, 2003.

