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Abstract. We present a new approach for iris recognition based on sto-
chastic autoregressive models with exogenous input (ARX). Iris recogni-
tion is a method to identify persons, based on the analysis of the eye iris.
A typical iris recognition system is composed of four phases: image ac-
quisition and preprocessing, iris localization and extraction, iris features
characterization, and comparison and matching. The main contribution
in this work is given in the step of characterization of iris features by
using ARX models. In our work every iris in database is represented
by an ARX model learned from data. In the comparison and matching
step, data taken from iris sample are substituted into every ARX model
and residuals are generated. A decision of accept or reject is taken based
on residuals and on a threshold calculated experimentally. We conduct
experiments with two different databases. Under certain conditions, we
found a rate of successful identifications in the order of 99.7 % for one
database and 100 % for the other.

1 Introduction

Iris recognition is related to the area of biometrics. The main intention of bio-
metrics is to provide reliable automatic recognition of individuals based on the
measuring of a physical or behavioral characteristic of persons. Biometrics can
be used for access control to restricted areas, such as airports or military instal-
lations, access to personal equipments such as laptops and cellular phones, and
public applications, such as banking operations [13]. A wide variety of biomet-
rics systems have been deployed and resulting systems include different human
features such as: face, fingerprint, hand shape, palmprint, signature, voice and
iris [8]. The last one may provide the best solution by offering a much more dis-
criminating power than the others biometrics. Specific characteristics of iris such
as a data-rich structure, genetic independence, stability over time and physical
protection, makes the use of iris as biometric well recognized.
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In last years, there have been different implementations of iris recognition sys-
tems. Daugman’s system [2] used multiscale quadrature wavelets (Gabor filters)
to extract texture phase structure information of the iris to generate a 2,048-bit
iris code and compared the difference between a pair of iris representations by
their Hamming distance. In [11] iris features are extracted by applying a dyadic
wavelet transform with null intersections. To characterize the texture of the iris,
Boles and Boashash [1] calculated a one dimension wavelet transform at various
resolution levels of a concentric circle on an iris image. In this case the iris match-
ing step was based on two dissimilarity functions. Wildes [15] represented the
iris texture with a Laplacian pyramid constructed with four different resolution
levels and used the normalized correlation to determine whether the input image
and the model image are from the same class. A Similar method to Daugman’s
is reported in [10], but using edge detection approach to localize the iris, and
techniques to deal with illumination variations, such as histogram equalization
and feature characterization by average absolute deviation. In [7] a new method
is presented to remove noise in iris images, such as eyelashes, pupil, eyelids and
reflections. The approach is based on the fusion of edge and region information.
In [3] an iris recognition approach based on mutual information is developed. In
that work, couples of iris samples are geometrically aligned by maximizing their
mutual information and subsequently recognized.
In our work we apply standard techniques as integro-differential operators to
locate the iris, and histogram equalization over extracted iris area to compen-
sate for illumination variations. The main contribution in this work is given in
the step of characterization of iris features by using stochastic ARX models,
commonly used by the automatic control community. In our work every iris in
database is represented by an ARX model learned from data. In the comparison
and matching step, data taken from an arriving iris sample are substituted in
every ARX model and residuals are generated. A decision to accept or reject the
sample is taken based on the residuals and on a threshold calculated experimen-
tally. The architecture of the proposed method is shown in Fig. 1.
We conduct experiments with UBIRIS database [14] and MILES database [12].
Under certain conditions we found a rate of successful identifications in the order
of 99.7 % and 100 % respectively.

2 THE PROPOSED APPROACH

The implementation of our approach relies on the use of colored eyes images
from UBIRIS and MILES databases. Eyes images include samples where iris
is free from any occlusion, and others with moderate obstruction from eyelids
and eyelashes. Noisy samples from UBIRIS database are shown in Fig. 2. We
transform the images color representation to just grey level pixels, because this
process is sufficient to reveal the relevant features of iris.
Our iris recognition system consists of four steps: iris localization and extraction,
iris features characterization, and comparison and matching.
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Fig. 1. Architecture of the iris recognition system based on ARX models

Fig. 2. Eyes samples with noise (moderate obstruction)
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2.1 Iris Localization

The search of limbic and pupilar limits is achieved with the use of the integro-
differential operator shown in eqn 1.

max

(r, x0, y0)=
∣∣∣∣

∂

∂r
G(r) ∗

∮

r,xc,yc

I(x, y)
2πr

ds

∣∣∣∣ (1)

where I(x, y) is an image containing an eye.
The operator behaves as an iterative circular edge detector, and searches over
the image domain (x, y) for the maximum in the partial derivative with respect
to an increasing radius r, of the normalized contour integral of I(x, y) along a
circular arc ds of radius r and center coordinates (x0, y0). The symbol ∗ denotes
convolution and Gσ(r) is a smoothimg function, tipically a Gaussian of scale σ.
The result of this localization operator is shown in Fig. 3.

Fig. 3. localization of limbic and pupilar limits with integro-differential operators

This operator behaves well in most cases with moderate noise conditions, but
requires some fine tuning of parameters, in order to deal with pupil reflections,
obscure eyes and excess of illumination. Heavy occlusion of iris by eyelashes or
eyelids needs to be handled by other methods. In our work, eye images with
heavy occlusion were discarded.
The extracted iris image has to be normalized to compensate for pupil dilation
and contraction under illumination variations. This process is achieved by a
transformation from cartesian to polar coordinates, using equations 2 and 3.
The output of this transformation is a rectangular image strip , shown in Fig. 4.

x(r, θ) = (1− r)xp(θ) + rxs(θ) (2)

y(r, θ) = (1− r)yp(θ) + rys(θ) (3)

where x(r, θ) and y(r, θ) are defined as a linear combination of pupil limits
(xp(θ), yp(θ)) and limbic limits (xs(θ), ys(θ)). r is defined in the interval [0, 1],
and θ in the interval [0, 2π].
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Fig. 4. iris strip image

2.2 Feature Characterization by ARX Models

We propose the representation of iris image by an stochastic ARX model. An
ARX model represents the behavior of a dynamic system in discrete time [5],
where the output Vk depends on the input Uk and past values of both variables.
To represent iris image by an ARX model, we first divide the iris strip image in
a rectangular grid, and define output Vk as the mean grey level value of every
subarea in the grid. The input Uk is defined as the corresponding row number
of subarea on the grid.
In discrete time the ARX model is defined as follows:

vk = a1vk−1 + a2vk−2 + · · ·+ anavk−na + b1uk−1−nd + · · ·+ bnbuk−nb−nd (4)

Where a1, a2, · · · ana and b1, b2, · · · bnb are the model coefficients to be learned
by a least squares (LS) algorithm, nd is an integer number representing the
number of times steps that output Vk takes to show the effect of a given input
Uk. This term usually is called dead time. In our case we assume nd = 0. Former
model can be represented as a discrete transfer function in the complex z domain,
and is expressed as:

V (z)
U(z)

=
b1z

−1 + b2z
−2 + · · ·+ bnbz

−nb

1− a1z−1 − a2z−2 − · · · − anaz−na
z−nd (5)

The coefficients a1, a2, · · · ana and b1, b2, · · · bnb are learned by a least squares
(LS) algorithm. This method minimizes an index based on differences between
the real data and the model. We define first the following vectors:

ΨT = [vk−1 vk−2 · · · vk−na uk−1−nd · · · uk−nb−nd] (6)
θN = [a1 a2 · · · ana b1 · · · bnb] (7)

and then we can rewrite eqn. 4 as follows:

vk = ΨT
k θ (8)

LS algorithm find the coefficients vector θ that makes the best estimate of
output vk, defined as:
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v̂k = ΨT
k θ + ek (9)

where k = nm,nm + a, ..., N and nm = max(na, nb + nd).
difference between real data and model is given by:

eN = VN − ΨNθN (10)

The performance index that LS algorithm minimizes is given by:

J =
N∑

k=nm

e2
k = eT

NeN (11)

Iris database then is composed by an ARX model for every iris. When an iris
arrives for recognition, the comparison is made by using eqn. (11), and obtaining
the error in eqn. (10), where VN and θN belong to iris in database (IT ) and
matrix ΨN belongs to iris simple (IS), this lead us to following equations:

eN = V IT

N − Ψ IS

N θIT

N (12)

where eN , V IT

N , Ψ IS

N y θIT

N are defined as:

eN =




enm

enm+1

...
eN


 , V IT

N =




vIT

nm

vIT

nm+1
...

vIT

N




,
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vIS

nm−1 · · · vIS

nm−na uIS

nm−1−nd · · · uIS

nm−nb−nd

vIS

nm · · · vIS

nm−na+1 uIS

nm−nd · · · uIS

nm−nb−nd+1
...

. . .
...

...
. . .

...
vIS

N−1 · · · vIS

N−na uIS

N−1−nd · · · uIT

N−nb−nd




, θIT

N =




aIT

1

aIT

2
...

aIT

na

bIT

1
...

bIT

nb




3 Experiments

Experiments were ran for UBIRIS and MILES databases. Images with too much
occlusion and noise were discarded, because the difficulty to locate the iris region
with integro-differential operators. Then, our UBIRIS experimental database was
built with 1013 samples coming from 173 users, and MILES database consists of
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DB Size (%) # of iris # Threshold samples # Test samples

100 1013 52 788

90 912 46 693

80 811 42 596

70 710 36 501

50 507 26 308

Table 1. UBIRIS Databases used for experiments with 173 users. First column refers
to the percent of database used. For instance, 90 % means that 10 % of worst user
samples were discarded. Second column refers to total number of iris samples, third
column refers to the number of samples used to calculate the decision threshold, and
fourth column refers to the total number of samples used for testing.

DB Size (%) # of iris # Threshold samples # Test samples

100 36 10 167

75 36 8 116

Table 2. MILES Databases used for experiments with 119 users.

100 % 90 % 80 % 70 % 60 % 50 %
grid size DB DB DB DB DB DB

4 × 4 84.64 85.39 93.42 96.65 97.93 99.7

5 × 5 86.31 87.82 91.69 94.23 97.93 98.8

8 × 8 83.21 84.98 86.68 92.36 94.25 95.51

10 × 10 80.12 80.38 83.54 88.64 86.67 90.12

Table 3. Results of experiments for UBIRIS database (in % of accuracy) with different
grid size. Best results are highlighted

100 % 75 %
grid size DB DB

4 × 4 91.53 100.0

5 × 5 94.35 100.0

8 × 8 93.41 99.19

10 × 10 93.79 99.19

Table 4. Results of experiments for MILES database (in % of accuracy) with different
grid size. Best results are highlighted
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213 samples from 199 users. With these databases, we perform some experiments
with 100 % of samples and others experiments where worst user samples were
discarded. Tables 1 and 2 shows the different databases used.

The order of ARX model (number of coeffficients ai,bi) was determined em-
pirically by doing differents experiments, and best results were obtained for
na = 5 and nb = 5 in both, UBIRIS and MILES databases. In tables 3 and 4
these results are shown. We can see that best results were obtained for cleaner
databases.
In Fig.5 we can see the ROC curves for UBIRIS databases used in experiments.
Databases with cleaner iris samples reflects better results. In Fig. 6 we can see
the authentic-impostor distribution curves for two UBIRIS databases used. The
Overlapping between distribution curves in Fig. 6 (a) leads to worst results.
Similar ROC and authentic-impostor curves were obtained for MILES database
experiments and are not shown.

Fig. 5. Receiver operating characteristic (ROC) curve for experiments with different
databases.

4 Comparison to Previous Work

Daugman’s system [2] has been tested thoroughly with databases containing
thousands of samples, and reports of 100 % of accuracy have been given. In [11],
the experimental results given are in the order of 97.9 %, by working with a
database of 100 samples from 10 persons. Boles and Boashash [1] report best
results in the order of 100 % but working with very small sets of images. Wildes
[15] report results in the order of 100 % by working with a database of 600 sam-
ples coming from 40 individuals. In [10], a report is given about a performance
of 99.09 % in experiments with a database of 500 iris images from 25 individuals.
In [7] the results are between 98 % and 99 % by working with CASIA database



9

(a) (b)

Fig. 6. authentic-impostor distribution for ARX based system. (a) database with 100%
of data. (b) database with 50% of data.

(2255 samples from 213 subjects). In [3] best results are in the order of 99.05 %
with a database of 384 images from 64 persons.
None of these works specify the quality of databases, so a direct comparison is
not possible. What we can say is that we are competitive with most methods
when our method work with clean databases, which means eye images with no
obstruction and noise. Our best results were 99.7 % for UBIRIS database and
100 % for MILES database obtained with cleanest databases.

5 Conclusions and Future Works

A new approach for iris recognition has been presented. The novel contribution
relies on the feature characterization of iris by the use of stochastic ARX models.
Although experimental results show better results for databases with cleaner
eyes images, we are looking forward to improve the methodology by combining
statistical sampling methods and stochastic models. We believe the combination
of best aspects of both approaches will lead us to a more robust and accurate
iris identification system.
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