STRONG PROPERTIES OF CIRCUMSCRIPTIVE
LoGiICc PROGRAMMING

Pablo R. Fillottrani* tuillermo R. Simnari

Grupo de Investigaciéon en Inteligencia Artificial
Instituto de Ciencias e Ingenieria de Computacion
Departamento de Ciencias de la Computacion
Universidad Nacional del Sur
Av. Alem 1253
(8000) Bahia Blanca — Argentina

e-mail: ccfillo@criba.edu.ar

Abstract

Dix [7, 5, 6] introduced a method for classifying semantics of normal logic
programs. Some of these properties, called strong properties, are adaptations
of properties from general nonmonotonic theories. We apply this technique to
circumscr’ipti"Vé logic programs [8, 9], an extensiou of traditional logic program-
ming that incorporates circumscriptive policies in the programs. We show this
approach preserves cumulativity, although it is not rational and supraclassical.
This suggests circuruscriptive logic programs have a correct behavior, mantaining
properties from normal logic programs.

*Becario de Perfeccionamiento del (5bN ICET.

386
2do. Congreso Argentino de Ciencias de la Computacion



STRONG PROPERTIES OF CIRCUMSCRIPTIVE
LoGcic PROGRAMMING

1 Introduction

Declarative semantics for negation in logic programming has been an area of active
research during last years. It started with the extension of pure PROLOG by an
operator of negation as failure, which admits a negative literal in the absence of a proof
for its complement. This definition relies on the procedural semantics provided by SLD
resolution, and therefore lacks of a declarative formalization. Several proposals like the
closed world assumption [28] or Clark’s predicate completion [4] and its three-valued
counterparts {10, 16|, attempted a solution to the problem, but they were not fully
satisfactory [24] due to the fact they did not match exactly the pretended intuitions.
After this negation was recog,mzed as one of the first nonmonotonic operators,, some
conections with nonmonotonic reasoning systems were established [19, 25, 27]. These
results motivated the definition of new semantics, like perfect models [19 2], stable
models [12], well-founded models [29, 26], etc., that provide suitable solutions. See
[3, 24] for an overview. '

Additionally, another negation operator for representing explicit negative informa-
tion was proposed [13; 14, 30]. This operator, called strong negation (also “classical
negation” in [13]), handles negative literals in a symmetric way as positive literals: in
order to be true both have to be proved. Therefore this semantics is monotonic and can
be regarded as if negative literals were syntactic variants of atoms, with: the addition
of a simple mechanism for consistency preservation.

Neither of these two: general types of negation can be ignored. They correspond
to rather different intuitions, so problems suitable to be solved with one of them do
not have satisfactory solutions with the other. In general, this problem is handled
allowing two different syntactic connectives [13, 30]. In [8, 9] Circumscriptive Logic
Programs were defined to allow the programmer specify the pretended semantics for
each negative literal using a single negation connective. These programs incorporate
clauses that define a circumscriptive policy, specifying whether to apply negation as
failure or strong negation to each literal. Thus the meaning of an occurrence of a
negative literal depends on this policy, affecting the semantics of the whole program.
Lifschitz’s pointwise circumscription [18] provides the formal background for these
programs.

In view of the different semantics proposed for negation as failure, each one sup-
ported by different intuitions, Dix developed in 7, 5, 6] a framework for classifying and
characterizing them. This work, following the research of Kraus, Lehmann, Magidor
and Makinson in general nonmonotonic theories [15, 21], presents a series of properties
and shows whether each of the semantics satisfies them. These properties can be di-

387
2do. Congreso Argentino de Ciencias de la Computacion



vided into two types: strong properties which are adaptations of: those introduced for
nohmonotouic tlwones a,nd weak properties which are specifically defined for negation
i logic programming, I'ollowmg this idea, general desired principles for semantics can
be identified, providing formal reasons for an irregular behaviour in some of them.

Iu this paper we study the behaviour of circumseriptive logic programs by applying
Dix’s framework, in particular regarding strong properties. First we give a brief intro-
duction 10 the syntax and semantics of these programs, and a statement of the strong
properties considered. Then, we present positive results, 7.e. those properties that
are satisfied by the semantics, suggesting it behaves regularly. Next, we show some
.properties this semantics fails to verify, which do not also hold for well established
semantics for negation as failurc such as stable and well-founded models. This work
will be complemented by a forthcoming paper considering how this semantics behaves
regarding the aforementioned weak properties..

2 Circumscriptive Logic Programs

In this section we review the basic concepts of Circumscriplive Logic Programs [8],
starting with syntactic considerations.

Definition 2.1 Let £ be a first order language, whose alphabet includes a unary
predicate symbol min and onc 7 -ary function symbol f, associated with each n-ary
predicate p. With Lit, we denote the set of all ground literals in £. A circumscriptive
clause in L is a clause of the form:

1/0 — Ll, ey [~’n (1)

where all L;,0 < i <n are literals in £. If n = 0 the circumscriptive clause is called a
fact.

A Circumscriptive Logic Program P in a language £ is a set of circumscriptive
clauses in £ that includes the fact

min(fmin(X)) A (2)

Following PROLOG’s notation, we will write in this paper predicate and function
symbols starting with a lowercase letter and variable symbols with an uppercase letter.
The ounly difference between circumscriptive logic programs and normal logic programs
|20] is the possible occurrence of negative literals in the head of the clauses, together
with the requirements in the language. Predicate min and functious f, will be used
for specifying the circumscriptive policy in a logic program, so as to avoid the use of
sccond order logic.

In order to deline this circumscriptive policy, we first need to introduce an op-
cration that eliminates ccrtain negative literals in a program. This operation is the
relativization of the Gelfond-Lifschitz operator 13| to a given set of ground literals:

388
2do. Congreso Argentino de.Ciencias de la Computacion



Definition 2.2 Let £ be a language. Then if L € Lit; and .S C Lit,, L5 is the
literal:

‘ nop(ty, ... ta) if L =-p(ty,... ;) and p(ts,... ,tn) €S,
LS = being no_p a new n-ary predicate.
L otherwise.

This operation can be extended to clauses and programs. If C is a ground circum-
scriptive program clause of the form (1) then C+¥ is the clause Li® — - L%, .. L3S,
and if P = {C;,i € I} is a circumscriptive logic program then PS5 is the program,
FP+5 = {C*% . C is a ground instance of a clause C}.

We can now define the circumscriptive policy as the definite program resulting from
the elimination all negative literals in a circumscriptive logic program

Definition 2.3 If P is a circumscumscriptive logic program in L, then we deﬁne
POL(P), the circumscriptive policy of P, as the definite program P~ L‘tf

If P is a definite program, then Mp denotes its minimal Herbrand model. Thus
as PUt is definite, it has a minimal Herbrand model Mpu«... When we mention a
circumscriptive logic program P without any reference to a language, we will consider
the underlying language formed with all the symbols appearing in P together with
those required.by definition 2.1. Also, if ¢;;1 < ¢ < n are terms in the language we will
note the term fy(t1,... ,t,) as p(t1,... ,tn) when its usage is clear from the context,
in a similar way as meta-programming in logic programs.

The semantics of circumscriptive logic programs is defined from a preference re-
lation between three-valued models, which are called answer sets. This preference is,
originated in a classification of literals according to the cn'cumscnptlve policy of & pro-"
gram. First we present this classification of literals and the definition of answer sets,
and then we define the preference relation.

Definition 2.4 Let P be a circumscriptive program in a language £. Then if L € Lit,,
L is called:

o a default literal if L = —~A and min(A) € Mpor(p)-
e a variable literal if L = A or L = - A and min(A) € Mpor(p).

Definition 2.5 Let P be a circumscriptive logic program in a language £. Then a set
of literals S C Lit, is called an answer set of P if and only if it satisfies:

e if Lg— L1,... ,Ly is in P such that {L;;1 <i<n} C S, then Ly € S.

e if there exists in £ an atom A such that {4,-4} C S then 5 = Lit,.

.389
2do. Congreso Argentino de Ciencias de la Computacion



If S is an answer set of P then defp(S) = {L € S : L is a default literal i P} and
varp(S) = {L € S : L is a variable literal in P}.

Preference among answer sets of a circumscriptive program will be established from
the following pre-order relation.

Definition 2.6 Let P be a circumscriptive logic program in a language £, and 51, S, C
Litz two answer sets of P. In P¥?"P(Litz) we can consider the dynamic stratification
[26] {Sa}a<s, being 8 its depth. We define the relation S; <p S; if and only if $; C S,
or for each L € def p(S;) — def p(S1) there exists L' € def(S;) — def(Sz) such that if
LeS, and L' € Sg then f < a.

Definition 2.7 Let P be a circumscriptive logic program in a language £, and L €
Litz. Then we say that L is a consequence of P, and write PRecir. L, if and only if it
belongs to all <p-minimal answer sets of P. M p will denote the set of all consequences
of P, i.e., Mp={L € L: Prgi. L}

The pre-order relation <p defined over the answer sets of P is similar to the relation
<pz between models of a theory that serves as the basis for the definition of circum-
scription [22, 17|. It prefers an answer set S) over Sy if S; has more default literals
than Sy, or if the default literals in S; but not in S, are preferible to those in Sp but
not in S;. The consecuence relation Rgiy. corresponds to the definition of a priotized
circumscriptive theory whose priority is determined by the dynamic stratification of P
restricted to default literals.

3 General Properties

This section introduces the abstract properties applied to different semantics for logic
programs. These properties are defined [5, 6] for closure operations dependent on each
semantics. We first present the general description of this operator.

Definition 3.1 Let P be a logic program in a language £, and Rs.n, an entailment
relation of a semantics Sem defined for all logic programs. We define the closure
operator for P according to Sem as the mapping Cp : 2Lite — 2Mite where if U C Lit,
then:

Cp(U) = {L € Lit; : PUURgm L} (3)

In (3) P UU must be understood as if literals in U were facts, i.e., clauses with
empty bodies. In order to keep a logical terminology in the presentation of proper-
ties, if U,V C Lit, we will write U AV for U UV and -V for the set {L : L =
-~AifAeV,or L = Aif -A € V}, i.e, the complements of all literals in V.

390
2do. Congreso Argentino de Ciencias de la Computacién



The main difference with the work of Kraus, Lehman y Magidor [15] on nomonotonic,
theories is that this operator is only defined for sets of literals, instead of a set of

arbitrary formula. This is justified by the fact that program clauses are better under-
stood as inféfence rules than first order formula. Also, according to this definition the
operator Cp(:) accepts infinite sets of literals (like in [21]), whilst the relation in [15]
d=als only with finite sets.

The technique presented by Dix [7] for classifying and characterlzmg the various
semantics for normal logic programs includes two types of abstract properties. The
strong properties are adaptations of those for nonmonotonic theories. Weak proper-

ties reflect the spec1flc behaviour of negation as failure in logic programming. Now

we present the main strong properties, applied in this work to circumscriptive logic
programs.

Definition 3.2 Let Cp(-) be a closure operation for 4 semantics Sem for all fl‘oglc'&'

programs P. If U, VW C Lit ¢ are arbitrary sets of literals then we define the following
properties:

Inclusion if U C Cp(U).

Cut if V C Cp(U) and W C Cp(U A V) then W C Cp(U).

Cautious Monotony if V C C Cp(U) and W C Cp(U) then W C Cp(U A V)
Rationality if =V N Cp(U) =0 and W C Cp(U) then W C Cp(U A V).
Distributivity if Cp(U)NCp(V) C Cp(UNV).

Supraclassicality if Cn(U) C Cp(U), where Cn() denotes the classical consequence
operator.

Inclusion is the weaker property, and the one a logic programming semantics should -

satisfy. Cut is one of the most natural conditions desirable for any semantics; it says
that by joining consequences to its premises we get no extra inferences. i Cautious
monotony is a kind of couverse of cut; it expresses that by joining consequences: to
its premises we.lose no inferences: In classical logic this condition is subsumed under
monotony. If a consequence operation satisfies both cut and cautious monotony it is
said to be a cumulative operation, because if we accumulate conclusions. to our premises
we do not change inferential power. Rationality may be seen in any skeptical semantics
(not both of A-and; A belongs to Cp(U)) as a generalization of cautious monotony:

we may add any set of formula to our premises without loss of inference . as long as it;::
is not contradictory to the consequences. A consequence operation is supraclassical if -
it includes classical inference; most logic programming semantics are not suprassical :.

begause of the fact they are not closed under logical connectives. The condition

391 -
2do. Congreso Argentino de Ciencias de la Computacion



of distributivity does not have an inmediate intuitive justification, besides of “its
inmense power and its appealing instances” (see Makinson [21]). Note that most of
these properties establish conditions that a consequence operator must satisfy after
the addition of new data to an existing theory. Therefore, they are also closely related
to the logic of Theory Revision [1, 11].

In view of the several approaches to negation as failure, it is important to study how
these semantics behave. Sometimes, a new semantics defined to improve an existing one
has more serious shortcomings than the original [5]. Most semantics are introduced
motivated by an “irregular” behaviour of a previous semantics on a single program
[24], being this irregularity justified by the intuitions of the researchers. See [7] for an
overview of the properties satisfied by different logic programming semantics.

4 Cumulativity of this Semantics

This section contains our main result, showing circumscriptive logic programs satisfy
cumulativity. We begin by giving the characterization of the operator Circp : 21t —s
2Litc as a result of applying definition 3.1 to the inference Recir. for the semantics
defined in section 2.

The following results will be useful in the demonstration of cut and cautious
monotony applied to Circp. The first proposition states that when considering answer
sets semantics, it is possible to add or remove facts from the program as long as they
belong to the same answer set.

Proposition 4.1 Let U, S C Lit; be two sets of literals such that U C S. Then for
all circumscriptive logic programs P, S is an answer set of P if and only if S is an
answer set of P AU.

Prueba First we note that P and P A U have both the same underlying language,
so any answer set of one of them can be an answer set of the other. Suppose now S is
an answer set of P. Then, we must prove S satisfies both conditions in definition 2.5
for P AU. For the first condition, let Ly «— L,,..., L, be a circumscriptive clause in
P AU such that {L;,1<i¢<n}CS. If Ly« Ly,...,L, € P, then Ly € S because
S is an answer set of P; otherwise if Ly «— € U (n = 0 as U only includes facts) then
Lo € § as U C §. The second condition is inmediate as it does not depend on a
particular circumscriptive logic program.

Suppose now S is an answer set of P A U. We must prove that S satisfies both
conditions in definition 2.5 for P. Again, the second condition is inmediate. Suppose
there exists in P a circumscriptive clause Ly « Ly, ... , L, satifying {L;,1 <i<n} C
S. As Ly — Ly,... ,L, belongs to PAU and S is an answer set of PAU then Ly € S,
so S satisfies the first condition of the definition. Then S is also an answer set of

P. 1

392
2do. Congreso Argentino de Ciencias de la Computacién



The second result is a theorem proved in [8, chapter 7] saying that the set of
consequences of the semantics for circumscriptive logic programs may be con31dered as
an answer set. This is equivalent to saying that the partial order <p has a minimun
answer set for all programs P.

Theorem 4.2 If P is a circumscriptive logic program in @ language L, then the set
{L € Lit; : PRgir. L} is an answer set of P.

We are now able to prove that circumscriptive logic programs satisfv cut and cau-
tious monotony under the given semantics.

Theorem 4.3 Circp is a cumulative operator for all circumscriptive logic programs
F.

Prueba First we prove Circp satisfies cut. Suppose U,V,W C Lit, such that V C
Circp(U) and W C Cirep(U A V). Theorem 4.2 says that Circp(U) is an answer
set of P AU. We can apply the “if” part of proposition 4.1, so Circp(U) is an
answer set of P AU AV. This means that Circp(U A V) 2pavav Circg(U). ‘Suppose
there exist L € Circp(U).— Circp(U A V), then L is a default literal and exists
L' € Circp(U A V) — Cirp(U) such that if L € S, and L' € Ss then 8 < a. But
then, using the “only if” part of proposition 4.1, Cirep(U A V) would be an answer
set of P AU such that Circp(U AV) <pav (‘zrcp(U ), contradicting the minimality of
Circp(U). Then Circp(U A V) C Cirep(U), and W C Cirep(U).

We now show that Circp satisfies cautious monotony. Let U,V,W C Lit, such
thiat' V;W C Circp(U). By theorem 4.2 Circp(U A V) is an answer set of PAU A V.
It is obvious that V' C Circp(U A V), so applying proposition 4.1 Cirep(U A V) is
an answer set of P A U. This means that C'zrcp(U ) <pav Circp(U A V). Again,
if there exist L € Circp(U A V) = Circp(U), then L is a default literal and exists
L' € Circp(U) — Cirp(U A V) such that if L € S, and L' € Sg then 8 < a. But this
would imply, by proposition 4.1, that Circp(U) =<pavav Circp(U A V) which is not
possible because Circp(U A V) is <pauav-minimum. Then Circp(U) C Cirep(U AV)
and W C.Circp(U A V). "

Cut is a reasonable property for the purpose of formalizing negation in logic program-
ming. This is also supported by the fact almost all semantics presented satisfies Cut,
suggesting this condition follow the intuitions behind the idea of negation as failure.
Cautions ‘monotony is also a nice property. However, there exist some proposals [5] in
whiclhi it fails. The fact that circumscriptive logic programs have a cumulative conse-
quence operator allow us to affirm it behaves very regularly. The symmetry between
these two properties expresses answer sets are stable: our conclusions may be added
or removed from the premises with no change in the inferen¢e process. Investigation
in nonmonotonic formalization shows a natural similarity: Makinson [21] discerns be:
tween two clusters of conditions a nonmonotonic logic should satisfy. Inclusion, cut

393
2do. Congreso Argentino de Ciencias de la Computacion



and cautious monotony precisly form the stronger cluster. These are precisely the
propertles most logic programmulg semantics sa,tlsfy, including circumscriptive logic
programs.

5 Negative Results

In next example we show that rationality do not hold in the semantics for circumscrip-
tive logic programs.

Example 5.1 Let P, be the following program:

P «— 7q
q — r
min(q) <

It is clear that Circp, (0) = {p,—~q}. But {-r} N Circp, (@) = O and Circp ({r}) =
{r,q}. Then p € Circp({r}) does not hold as rationality would require. This il-
lustrates that the incorporation of a variable literal to our premises may abort the
inference of a default literal previously present.

Rationality holds in well-founded semantics and most of its variants, supported model
and the three-valued completion semantics. This suggest it is a desirable property.
Answer set preferred by Circp are much weaker three-valued models due to the pres-
ence of variable literals. In fact it is possible to define a restricted form of rationality,
in which we are only allowed to add default literals, that holds for Circp.

Definition 5.2 Let P be a circumscriptive logic program in £, and U,V,W C th[,
Then we say that P satisfies Restricted Rationality if def p(—V) = —'V =VNCp(U) =
and W C Cp(U) then W C Cp(U A V).

Thus we define restricted rationality as rationality applied to a set V containing only
default literals. Recall that if defp(—V) = -~V then —V only contains default literals.

Proposition 5.3 Circp satisfies Restricted Rationality.

Prueba Suppose U,V C Lit, in the conditions given in the definition of the prop-
erty. If there exist a literal L € Circp(U) such that L & Circp(U A V), then it is
possible to build a new answer set S such that S <pay Circp(U A V) contradicting
its minimality. |

Another property Circp does not satisfy is supraclassicality. Again, program P;
from example 5.1 illustrates this fact: nor p neither —p belongs to Circp, (@) so we get
pV-p & Circp, (9). In the framework of logic programs this property only holds in the

394
2do. nggreso Arge_(ltino de Ciencias de la Computacién



semantics W F'S™* [5]. Most logic programming semantlcs fail to satisfy it because they
consider three-valued semantics or because the semantics ‘is not closed under logical
connectives, notably «.

Dzatrzbuthty is another property that does not hold under this semantics, as it is
shown in the following example:

Example 5.4 Let P, be the following circumscriptive logic program:

P — a,7b
P — b,—a
min(a) «
min(b) «

Clearly Circp,({a}) = {a,p, b} and Circp,({b}) = {b,p, ~a}, so literal p belongs to;
the intersection but it is not in Circp,({a,b}) = {a,b}.

6 Conclusions

Strong properties for logic programming are conditions over its consequence relation,
inherited from the theory of nonmonotonic logic. They are introduced in order to pro-
vide a method. for characterizing and comparing different logic programming semantics.
I this paper we have applied this technique to the semantics of circumscriptive logic
programs.

The main result we have proved is that this semantics has a cumulative inference
relation, i.e. satifies cut and cautious monotony. Therefore this approach has a regular
behaviour in the sense we can modify any set of premises by adding or removing
consequences with no change in the conclusions. On the other hand we have shown this
semantics falls rationality. In general, as several logic programs semantics satisfy. this
property, this could be considered an inhenrent condition of nonmonotonic negation.
As monotony of negation in circumscriptive logic programming depends on its policy, it
is not. surprinsing rationality does not hold in an extension that incorporates both types
of negation. Nevertheless, we introduced a new property, called restricted rationality,
which only considers negatlon as failure, and we proved it is verified in circumscriptive
logic programs.

Among the existing nonmonotonic formalizations, circumscription has played an
important role in the definition of logic programming semantics and forms the basis
for the characterization of the considered approach. As a nonmonotonic theory cir-
cumscription is also a cumulatlve but not rational nonmonotonic logic. This suggests
the intuitions behind c1rcumscr1pt1on have been succesfully translated to the context
of logic programming. This situation is not common in logic programming semantics,

395
2do. Congreso Argentino de Ciencias de la' Computacicén



as long as the only cumulative but not rational approach is the O-SEM semantics pre-
sented in [23]. Well-founded semantics and most of its versions, all satisfy cumulativity
and rationality.

Other abstract properties this semantics does not verify are supraclassicality and
distributivity. This is not strange in logic programming as a consequence of the fact
most semantics are closed under none of the logical connectives (A, V, «, and not even
=) and then the inference relation has a weaker definition than in a first order theory.

This work will be complemented with the application to this semantics of the weak
properties, which treats specifically with negation as failure. The ultimate aim of both
types of conditions is to give an abstract characterization of each semantics, and we
share this objective for circumscriptive logic programs.

References

[1] C. E. Alchourrén, P. Gardenfors, and D. Makinson. On the logic of theory change:
contraction functions and their associated revision functions. Journal of Symbolic
Logic, 50, 1985.

[2] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programs,
pages 89-148. Morgan Kaufmann Publishers, Los Angeles, CA, 1988.

[3] K. R. Apt and R. Bol. Logic programming and negation: a survey. Journal of
Logic Programming, 30, 1993.

[4] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322. Plenum Press, New York, NY, 1978.

[5] J. Dix. A classification theory of semantics of normal logic programs: I. strong
properties. Fundamenta Informaticae, 1994.

[6] J. Dix. A classification theory of semantics of normal logic programs: II. weak

properties. Fundamenta Informaticae, 1994.
[}

[7] J. Dix. Semantics of logic programs: Their intuitions and formal properties. In
Logic, Action and Information. de Gruyter, 1995.

[8] P. R. Fillottrani. Sistemas de razonamiento no monétono y su relacién con la
semantica de las bases de datos deductivas. Tesis de Magister en Ciencias de la
Computacién. Universidad Nacional del Sur, Bahia Blanca, Argentina., 1995.

396
2do. Congreso Argentina de Ciencias de la Computacion



[9] P. R. Fillottrani and G. R. Simari. Circumscriptive logic programming. In Pro-
ceedings of the XIV International Conference of the Chilean Computer Science
Society, Concepcién, Chile, 1994,

[10] M. C. Fitting. A kripke-kleene semantics for general logic programs. Journal of
Logic Programming, 2, 1985.

(11] P. Gérdenfors. Belief revision and nonmonotonic logic: two sides of the same coin?
In Proceedings of ECAI’90, Stockholm, Sweden, 1990.

[12] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of ICLP’88, Seattle, WA, 1988.

[13] M. Gelfond and V. Lifschitz. Classical negation in logic programming and dis-
junctive databases. New Generation Computing, 9, 1991.

[14] R. Kowalski and F. Sadri. Logic programs with exceptions. In Proceedings of
ICLP’90, Jerusalem, Israel, 1990.

(15] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence, 44, 1990.

[16] K. Kunen. Negation in logic programming. Journal of Logic Programming, 4,
1987.

(17] V. Lifschitz. On the satisfiability of circumscription. Artificial Intelligence, 28,
1986.

(18] V. Lifschitz. Pointwise circumscription. In M. L. Ginsberg, editor, Readings in
Nonmonotonic Reasoning, pages 179-193. Morgan Kaufmann Publishers, 1987.

[19] V. Lifschitz. On the declarative semantics of logic programs with negation. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programs, pages
177-192. Morgan Kaufmann Publishers, Los Angeles, CA, 1988.

[20] J. W. Lloyd. Foundations of Logic Programming. Springer- Verlag, Berlin, second,
extended edition, 1987.

[21] D. Makinson. General patterns in nonmonotonic reasoning. In D. Gabbay, editor,
Handbook of Logic in Artificial Intelligence and Logic Programming, volume III,
pages 35-110. Oxford University Press, 1990.

[22] J. McCarthy. Applications of circumscription to formalizing common-sense rea-
soning. Artificial Intelligence, 28, 1986.

397
2do. Congreso Argentino de Ciencias de la Computacion



[23] L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Contradiction removal within well
founded semantics. In. Proceedings of IWLPNR’91, Washington, DC, 1991.

[24] H. Przymusinska and T. C. Przymusinski. Semantic issues in deductive databases
and logic programs. In A. Banerji, editor, Formal techniques in artificial intelli-
gence, pages 321-367. North Holland, Amsterdan, 1990.

[25] T. C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programs, pages 193-216. Morgan Kaufmann Publishers, Los Angeles, CA,
1988.

[26] T. C. Przymusinski. Every logic program has a natural stratification and an
iterated fixed point model. In Proceedings of the 8th. Symposium on Principles of
Database Systems. ACM SIGACT-SIGMOD, 1989.

[27] T. C. Przymusinski. Three-valued nonmonotonic formalisms and semantics of
logic programs. Artificial Intelligence, 49, 1991.

|28] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 55-76. Plenum Press, New York, NY, 1978.

[29] A.van Gelder, K. Ross, and J. Schlipf. Unfounded sets and well-founded semantics
for general logic programs. In Proceedings of the 8th. Symposium on Principles of
Database Systems. ACM SIGACT-SIGMOD, 1989.

[30] G. Wagner. Logic programming with strong negation and inexact predicates.
Journal of Logic Computation, 1(6), 1991.

398
--2do. Congreso Argentino de Ciencias de la Computacion





