
STRON(j PROPERTIES OF C~IRCUMSCRIPTIVE

LOGIC PROGRA.MMINC:

Pablo R. Fillottrani* G uillcrrno R. Sünari

Grupo de InvestigaeÍón en Inteligeneia Artificial
Instituto de Ciencias e Ingeniería de Computaeión

Departalucnto de Ciendas de la Gornputación
Universidad Nacional del Sur

Av. Alcln 1253
(8000) Bahía Blanca __ o Argentina

c-nmil: ccfillo(Qcriba.edu.ar

Abstract

Dix [7, !J, 61 introduced a method for dasRifying semantirA'i of normal logic
programs. Some of these propertiE',s, calle<! strong properties, are adaptatioIlS
of propertif'~'i from general nomnonotonic theories. We apply this techniqll(~ to
circumsc:fipth'e logic: progrmuB [8, 9J, an cxtensiou of l.raditional 10gi<: prograII~­
ming tha.t illGOrporates circ:uDlRcriptive policies in the programs. Wf~ Rhow this
!1pproaeh preHel'YeS cmn'Ulatívity, although it is not rational and sttpmclassícal.
This suggests drcumsc:riptivc logÍ<! programs have a (',orrect hehavior, mantaining
properties [mm nonnallogic programs.

*Beeltrio de Perfeccionamiento del CONICET.

386
2do. Congreso Argentino de Ciencias de la Computación

STRONG PROPERT~ES OF CIRCUMSCRIPTIVE
LOGIe PROGRAMMING

1 Introduction

Declarative semantics for negation in logic programming has been an area of active
research during last years. It started with the extension of pure 'PROLOG by an
operator of negation as failur'e, which admits a negative literal in the absence of a proof
fnr its complemento This definition relies on the procedura.l semantics provided by SLD
resolution, and therefore lacks of a dedarative formalization. Several proposalslike the
closed world assumption [28) or Clark's predicate completion [4] and íts three-valued
counterparts [10, 16], attempted a solution to the problem, but they were not fully
s8,tisfactory [24] due to the fact they did not match exactly the pretended intuitions.
After this negation was recogIl;ized as ~ne of the first nonmonotonic operators, .. sorne
conections with nonmonotonic 'reasoning systems Were established [19, 25, 27). 'I'hese
results motivated the definition of new semantics, like perfect models [19, 2], stable.
models [12], well-foUnded models [29, 26], etc., that provide suitable solutions. See
[3, 24] for an overview. .

Additionally, another negation operator for representing explicit negativc informa­
tion wasproposed [1;3, 14·, 30]. This operator, called strong negation (also "classical
negation" in [13]), handles negative literals in asymmetric way as positive literals: in
order to be true both have to be proved. Therefore this semantics is monotonic and can
be regarded as if negative literals were syntactic variants of atoms, with the addition
of a simple mechanism for consistency preservation.

Neither of these tw,o· general types of negation can be' ignored. They correspond
to rather different intuitions, so problems suitable to be solved with on.e of them do
not have satisfactory solutions with the other. In general, this prob:em is handled
al10wing two different syntactic connectives [13, 30]. In [8, 9] Circumscriptive Logic
Pmgmrns were defined to allow the programmer specify the pretended semantics for
each negative literal using a single negation connective. These programs incorporate
clauses t.hat define a circumscriptive policy, specifying whether. to apply negation a.s
failure or strong negation to each literal. Thus the meaning of an occurrenceof a
negative literal depends on this policy, affecting the semantics of the whole programo
Lifschitz's pointwise circ'umscriptioIl [18] provides the formal backgrOlmd fOI these
programs.

In view of the different semantics proposed for negation as failure, each one sup-
ported by different intuitions, Dix developed in [7, 5, 6] a framework for classifying and
characterizing them. This work, following the research of Kraus, Lehmann, Magidor
and Makinson in general nonmonotonic theories [15, 21], presents a series of properties
and shows whether each of the semantics satisfies them. These properties can be di-

387
2do. Congreso Argentino de Ciencias de la Computación

vidcd iuto two typcs:, ~t1"Qng pT'Opertip-s which are adapt~tJ.<>:ns ok, t,hose intro.d1;lccd foI'
noh~n6I~otOl¡k theori~~;, a¡ld wp"ak propcrües which are spe~iÍically ddlued rOl: negatioll
in logic programmiug. libllowiug this idea, geueral desirod principIes fol' scmalltics can
be idclltified, providillg formal reafions for an irregular behaviour in somc of thcm.

Tu this paper we stlldy thc behaviour of circumseriptivc logic progtams byapplyil1g
Dix's fl'amework, in particular regarding strong propertics. F'irst wc give a hrief illtro­
dudion 1.<,> the 8yutax ami semallt.ics of thcse progI'l-tms, ami a statCtntlllt of t.hc strong
propcrtiesconsideI'(:~d. 'rhen, w*:' prese.nt positi Vt~ results, i. e. those properties that
(lfC satisfied by thc semantics, Sllggcsting it bchavcs regularly. Next.,wc show some
,propert.ies t.his scmaut.ics fails to verify, which do HOt. also hoId for well established
semantícs for negation as failure sudl as stahle and well-follIlded Inodels. This work
will be complemeuted by a fortll(~omiIlg paper cOIlsidering how t.his scmallticfi behavcs
rcgardillg the a[orementioued weak properties ..

2 Circumscriptive Logic Programs

Iu thia sedíon we rcvi(~w the bl-tsic concepts of Circumscriptivc Logic Programs [81,
starting with sylltactie eOllsidera1.iows.

Definition 2.1 Lct e he a firs1. order lallguagc) whose alphabet indlldes a lUlary
predicat.e symbol mi¡¡ aud one n 'al'y function symbol Jtl assodatcd with each n,-ary
predicate p. Witb Lit.c Wt~ denote the set of all ground literal s in C. A ci1·cum.ljcripti't)(~
da'lLse in t:. is a dause of thc form:

Lo +-- Lll ... 1 fin (1)

where an IJi, O ~ i ~ 11. are literalA in C. Ifn ":- O the eireumseriptivc dause is called a
faet.

A CirC'lLm.scr·iptive Jjo,qic PT'Ogram P in a langllage e is a set of dreulIlseriptive
dauses in e that. indudcs thc facl.

min(fmin(X)) +-. (2)

~ol1owing PROLOG's llotation, we will write in t.his paper predi<~at.e and flmction
symbols startillg wi1.h a lowcrcase lett.er alld variable symbols with an uppcrcasc letter.
Thc ouly differellce bctwecIl cil'cumscriptivc logic programs and nOJ'mallogic programs
1201 is the possihle occurrence of uegative literals ill the head of the dauses, together
with tlle requiremellts in the lauguage. Predicatc min aud fllUctiou.8 lp will he llscd
for speeifying the drc1L'In.'lCriptivf' policy in a logie progI'l-tIIl, 80 aH to avoid Ult~ use of
sccond order logic.

In order to define t.his cireulllscript.ive policy, wc first need to introduce an op­
crat.iOll that eliminates ccrtain negative lit(~rals in a programo This operation is the
relat.ivization of thc Gelfond-Lifsdlitz operator 1 VlJ to a given set of ground literals:

388
2do. Congreso Argentino de.Cienc:ias de la Computación

DE3finition 2.2. Let e be a language. Then if L E Lit.c: and.S .~ Lit.c, L+s is the
literal:

+S {no.:p(t1 ' ... ,tn) if ~ = "'p(t1 , . •• ,tn) and.p(t:,., .. , tn) E S,
L = bemg no_p a new n-ary p:r€dlCa~e.

L otherwise. .

This operation can be extended to clauses and programs. If e is ~ ground circum­
scriptive program clause of the form (1) then C+s is the clause Lcis +- Lis, . .. ,L~s;
and if P = {Ci , i E I} is a circumscriptive l~gic prqgr~ then P+sis t~e progr~~Il
p+s = {C+s : e is a ground instance of a clause Cd ..

\Ve can now define the circumscriptíve policy as the definite program resulting from
the elimination a11 negative !iteraIs in a circumscriptive logic progr~in. .

Definition 2.3 If P is a circumscumscriptive lógic program in e, then we define
POL(P), the circumscriptive policy of P, as the definite program p+Lit.c. .

If P is a definiteprogram, then M p denotes its minimal Herbrand model. Thus
aspLitc is definite, it has a minimal Herbrand model MpLltc. When we mention a
circumscriptive logic program P without any reference to a language, w{~ will.consider
the underlying language formed with a11 the symbols appearing in P together with
those required. by definition 2.1. Also,. if ti, 1 :c::; i :c::; n are terms in the language we wiU
note the term fp(t¡, . .. , tn) as p(t¡, ... , tn) when its; usageis elear from the context,
in a similar way as meta-programming in logic programs.

The semantics of circumscripti ve logic programs is defined from a preference re­
lation between three-valued models, which are called answer set~., This prefereqce is,
originated in a classification of !iterals accordillg tothe circtimscriptive' pbli~y ofa' pro-';
gramo First we present this classification of literals and the definition of answer sets,
and "then we define the preference relation.

Definition 2.4 Let P be a circumscriptive program in alanguage e, Th(~n ir L E Lite,
Lis called:

• a defau,lt literal if L = ..,A and min(A) E MpOL(p).

• a variable literal if L ,= A or L = ..,A and min(A) fI. MpOL(p).

Definition 2.5 Let P be a circumscriptive logic program in a language e. Then a set
of literals S ~ Lit.c is called an answer 8et of P if and only if it satisfies:

• if Lo +- L1 , •• , , Ln is in P such that {Ltl1 :C::;i :c::; n} ~ S, thell Lo E S.

• if there exists in e an atom A such til~t {A,..,A} .~ S the~ S = Lit.c.
. . ,

)89
2do, Congreso A..rg~ntino de Ciencias de la Computación

If 8 is an answer set ofP then def p(8) = {L E 8 : Lis a default litenil in P} and
varp(S) = {L E S : Lis a variable literal in P}.

Preference among answer sets of a crrcumscriptive program will be established from
the following pre-order relation.

Definition 2.6 Let P be a circumscriptive logic program in a language e, and 81, 82 ~
Lite two answer sets of P. In p..;-varp(Litt) we can consider the dynamic stratification
[26] {Sa}ad, being Ó its depth. We define the relation 81 ~p 82 if and OIi1y if 81 ~ 82

or for each L E def p(82) - del p(81) thete exists L' E def(81) - def(82) such that if
LESa and L' E Sf3 then (3 ~ o.

Definition2.7 Let P be a circumscriptive logic program in a language e, and L E

Lit.c. Then we say that L is a conseque1we of P, and write P~circ L, if and only if it
belongs to all-<p-minimalanswer sets of P. M p will denote the set of all consequences
of P, i.e., M p = {L E e : P~Circ L}.

The pre-order relation ~p defined over the· answer sets of P is similar to the relation
$.p.z between models of a theory that serves as the basis for the definition of circum­
scription [22, 17J. It prefers an answer set 81 over 82 if 81 has more default literals
than 82 , Ol' if the default literals in 81 but not in 82 are preferible t~ those in 82 but
not in 8 1. The consecuence relation ~Circ corresponds to the definition of a priotized
circumscriptive theory whose priority is determined by the dynamic stratification of P
restricted to default literals.

3 General Properties

This section introduces the abstract properties applied to different semantics for logic
p'rograms. These properties are defined [5, 6] for closure operations dependent on each
semantics. We first present the general description of this operator.

Definition 3.1 Let P be a logic program in a language e, and ~Sem an entailment
relation of a semantics 8em defined for all logic programs. We define the clo8ure
operatot'for P according to 8em as the mapping Cp : 2Lit~ 1---+ 2Lit~ where if U S;; Lit.c
then:

Cp(U) = {L E Lit.c : PU U~sem L} (3)

In (3) P U U must be understood as if literals in U were facts, i.e., clauses with
empty bodies. In order to keep a logical terminology in the presentation of proper­
ties, if U, V ~ Lit.c we will write U /\ V for U U V and -, V for the set {L : L =
-,A if A E V, or L = A if -,A E V}, i.e., the complements of allliterals in V.

390
2do. Congreso Argentino de Ciencias de la Computación

The main différence with the work of Kraus, Lehman y Magidor [15] on n()monotc;mic,
theories is that~lús operator is only defined; for sets of 1iter~s, in~tead of.8o set ci
a:rbitrary forÍnuhl.',This' i8 j1J.stiñed by the fact that program clauses are better, Wlder­
stood as infétence' rules than first order formula. AIso, according to this definitionthe
operator C p(.) accepts infinite sets of literals (like in [21]), whiist the relation in [15]
deals only with nnite sets. '

The technique presented by Dix [7] for classifying and characterizing the various
semailtics for normal logic programs in eludes two types of abstract properties. The
strong properlies are adaptations of those for nonmonotonic theories. ' Weak proper~
ties reflect the spedfic behaviour of negation as failure in logic progra.mming. Now
we present ihe mrun strong properties, applied in this work to cITcumscriptive iogic'"
programs.

;. ,. '. ", ",~'.,. . ~ r·

Definition 3.2 Let Cp (·) be a dósure operation 'for ~ seriíahtics S'é~í; for aIllogicJ -

programs P. If U, V, IV ~ Lite are arbitrary sets of literals then we define the follo;Wi!lg .
properties: ",' " "" '

Illclusion if U ~ Cp(U).

Cut if V ~ Cp(U) and W ~ Cp(U 1\ V) then W ~ Cp(U).

Cau~iolls 'Monotony if V ~ Cp(U) and lV ~ Cp(U) then W ~ Cp(U 1\ V).

R.ationality if -,V n Cp(lJ) = 0 and W ~ Cp(U) then W ~ Cp(U /\ V).

Distributivity if Cp(U) n Cp(V) ~ Cp(U n V).

Supraclassicality if Cn(U) ~ Cp(lJ), where CnO denotes the classicalconsequence
operator.

Inclusion.is the weaker property, and the one a logic programming senlantics should
satisfy. Cut is one of the most natur~l conditions desirable fol' any semanticsj it says
that by joining consequences to its premises we get no extra infarences. ! Cautíous
monotony i~ a kind of converse,of cutj it expresses that by joi~g\ consequences' to
its premises we Jose no inferences~ In classicallogic this condition 1s ~'Qb~1:Wledunder
monotony. If a consequence operation satisfies both cut and catdious mon'Qtonyjt is
said to be a cumulative operatíon, because if we accumulate conclusions. to OllÍ':premises
we do not change inferent~l power. Rationality may be seen in any skeptícal semantics
(not both of.A:and¡,."...¡A:b~lo~gs to Cp(U» as a generalization of.cautious monotony;
we may addany sét of formula to our premises without. loss of inference, as long as iti! ;
is not contradictory to the consequenCe8. A consequence operation is supraclass¡'calif ..
it includes dassical inferencej most logic programming semantics are not suprassical.,
b{~ause of the fact they are not closed under logical connectives. The condition

391 ,
2do. Congreso Argentino de Ciencias de la Computación

of distributivity does not have an inmediate intuitive justification, besides of "its
inmense power and its appealing instances" (see Makinson [21)). Note that most of
these properties establish' conditi~ns that a consequence operator must satisfy after
the addition of new data to an existing theory. Therefore, they are also elosely related
to the logic ofTheory Itevision [1, '11].

In view of the several approaches to negation as failure, it is important to study how
these semantics behave. Sometimes, a new semantics defined to improve an existing one
has more serious shortcomings than the original [51. Most I;!emantics are introduced
motivated by an ''irregular'' behaviour of a previous semantics on a single program
[24], being this irre~ilarity justified by the intuitions of the researchers. See [7] for an
overview of the properties satisfied by different logic programming semantics.

4 Cumulativity of this Semantics

This section contains our main result, showing circumscriptive logic programs satisfy
cumulativity. We begin by giving the characterization of the operator Circp : 2Lit.c ~
2Lit.c as a result of applying definition 3.1 to the inference ~Circ for the semantics
defined in section 2.

The following results will be useful in the demonstration of cut and cautious
monotony applied to Circp. The first proposition states that when considering answer
sets semantics, it is poasible to add or remove facts from the program as long as they
belong to the same answer seto

Proposition 4.1 Let U, S ~ Lite be two sets 01 literals such that U e S. Then lor
all circumscriptive logic programs P, S is an answer set 01 P il and only il Sisan
answer set 01 P 1\ U.

Prueba First we note that P and P 1\ U have both the same underlying language,
so any answer set of one of them can be an answer set of the other. Suppose now S is
an answer set of P. Then, we must prove S aatisfies both conditions in definition 2.5
for P 1\ U. For the' first condition, let Lo ~ L1 , ••• ,Ln be a circumscriptive elause in
P 1\ U such that {L i , 1 ~ i ~ n} ~ S. If Lo ~ Lb'" ,Ln E P, then Lo E S because
Sisan answer set of P; otherwise if Lo ~ E U (n = O as U only ineludes facts) then
Lo E S as U ~ S. The second condition is inmediate as it does not depend on a
particular circumscriptive logic programo

Suppose now Sisan answer set of P 1\ U. We must prove that S satisfies both
conditions in definition 2.5 for P. Again, the second condition is inmediate. Suppose
there exists in P a circumscriptive clause Lo ~ L¡, ... ,Ln satifying {L¡, 1 ~ i ~ n} ~
S. As Lo ~ Lb ... ,Ln belongs to P 1\ U and S is an answer set of P 1\ U then Lo E S,
so S satisfies the first condition of the definition. Then S is also an answer set of
P. I

392
2do. Congreso Argentino de Ciencias de la Computación

The second resüIt is a theorem proved in [8, chapter 7] saying that the set of
conseqtiences of the semantics for circumscriptive logic programs may be consid~red 'as
an answer seto This is eqllivalent to saying that the partial order ~p has a minimun
answer set for aU programs P.

l'heorem 4.2 JI P is a circumscriptive logic progmmin ~á' language i.:~ tke'n; the set
{L E Lite : P~Ci1'C L} is an answer set 01 P.

We are now able to pl'Ove that circumscriptive logic programs satisfy ,cut andcau­
tio'us monotony under the given semantics.

'I'heorem 4.3 Circp is a cumulative operntor 101' all circumscriptive I.ogic programs
P.

Prueba First we prove Circp satisfies cut. Suppose U, V, W ~ Lite sllch that V ~
Círcp(U) and W ~ Circp(U A V). Theorem 4.2 says that Circp(U) is an answer
set of P A U. We can apply the "if" part of prop~ition 4.1, so Circp(U)- is an
answer set of P /\ U 1\ V. This m~ans that Circp(U A V) ~'pI\UI\V Circp(U)~ Suppose
there exjst L E Circp(U) '-:- Circp(U A V), then L is a default literal and eXists
L' E Circp(U A V) - Cirp(U) such that if L E SQ and L' E SfJ then f3 $ a. But,
then, using the "only if" part of proposition 4.1, Circp(U A V) would be an answer
S€t of P Al! such that Circp(U A V) ~p"u Circp(U), contradicting the minimality of
Gircp(U). 'Then Circp(U A V) ~ Circp(U), aud W ~ Circp(U).

We uow~ showthat'Circp'satisfies cautious monotony. Let U, V, W ~ Litesuch
that'V;'W ~ Circp{U). By theorem 4.2 Circp(U A V) is auanswef set of P A U A V.
It is obvious that V ~ Circp(U AV), so applying proposition 4.1 Ci7'Cp(U A V) i8
an answer set of P A U. This means that Circp(U) ~PI\U Circp(U A V). Again,
if there e;ost L E Circp(rJ /\ V) - Qircp(U), then L ~, a default Íiteral and exists
L" E Circp(U) - Cirp(U A V) such that if L E SQ and L i E Sp then f3 ~ a. But this
would imply, by proposit.ion 4.1, t.hat Circp(U) ~p"u"v Circp(U A V) which ia not
possible because Circp(U A V) is ~p"ul\v-minimum. Then Circp(U) ~ Circp(U A V)
and W CCir.<1p(U A V). ' •

Cut is a reasonable property for the purpose of forrnalizing negation in logic program-'
ming. This is also supported by the fact almost aIl semantics presented satisfies Cut,
sugge,sting 'this condition foUow the intuitions behind the idea of negabon as failure.
Cautio1J;S ;monotony is also a nice property. However, there exist sorne proposals [5] in
which:it fails. The fact that circumscriptive logic programshave a cumulative conse­
quence operator allow us to affirm it behaves very regularly. The syrnmetry between
these two properties expresses answer sets are stable: our conclusions may be added
Ol removed fromthe premises with no change in the inference process. Investigation
in nonmmiotonic' formalization shows a natural sirnilaríty: Makinson [2] 1 discerns be.:.
tvreen two ~lusters of conditions a nonrnoilotonic logic should satisfy. Jnclusion, cut

393
2do~ Congreso Argentino de Ciencias de la Computación

and cautious monotony precisly form the stronger cluster. These are precisely the
properties' most logic progr_am~j.llg semantic~, s~t~fy, including circumscriptive logic

,". : '." ~ .
programs.

5 Negative,ltesults

In next example we show that rationality do not hold in the semantics for circumscrip­
tive logic programs.

Example 5.1 Let H be the following program:

p +--'q

q +- r
min(q) +-

It is cIear that Circp! (0) = {p, -'q}. But {'-ir} n CircPl (0) = 0 and Circ?! ({r}) =
{r,q}. Then p E CircPt({r}) does not hold as rationality would require. This il­
lustrates that the incorporation of a variable literal to our premises may abort the
inference of a default literal previously presento

Rationality holds in well-founded semantics and most of its variants, supported model
and the three-valued completion semantics. This suggest it is a desirable property.
Answer set preferred by Circp are much weaker three-valued models due to the pres­
ence of variable literals. In fact it is possible to define a restricted form of rationality,
in which we are only allowed to add default literala, that holds for Circp.

DefiIiition 5.2 Let P be a circumscriptive logic program in c" and U, V, W e Lit,e.
Then we say that P satisfies Restricted Rationality if de! p(-, V) = -, V, -, vnC p(U) ~0
and W ~ Cp(U) then W ~ Cp(U 1\ V). ' ,

Thus we define 1'estricted rationality as rationality applied to a set V containing only
default literals. Recall that if defp(-'V) = -,V then -,V only contains default literals.

Proposition 5.8 Circp satisfies Restricted Rationality.

Prueba Suppos~ U, V ~ Lit,e in the conditions given in the definition of the prop­
erty. If there exis.t a literal L E Circp(U) such that L rt Circp(U 1\ V), then it is
possible to build ,a new answer set S such that S ::::;PI\V Circp(U 1\ V) contradicting
its minimality. •

Another property Circp does not satisfy is supraclassicality. Again, program PI
from example 5.1 illustrates this fad: nor p neither -'p belongs to Circ?! (0) so we get
p V -'p rt CircPt(0). In the framework of logic programs this property only holds in the

394
2do. C9~p'eso Arge','tino deqencit:lS dflla ComputaciQ!I

semantics W F S+ [5J., Most logic programming setharitics 'fail to satisfy,it because they
Gonsider threec. valued' sernantics oi' becaúse the semahtics' is; not 'closed under 'logiéal '
connectives, notably -. '

Dist'-ributivity is another property that does nbthold under tlris semantics as 'it is , '

shown in the following example:

E::xample 5.4 Let Pz be the following circurnscriptivelogic prograrn:

p - a, -,b
p -b, -'a
lIlin(a) -min(b) -

Clearly CircP2 ({a}) = {a¡ p, -,b} and Circ~ ({b}) = {b, p, -,a}, so literal p ;b~lp~t8 ;.~
the intersection but it is not in Circ~ ({a, b}) = {a, b}.

6 Conclusions

S1;rong prq~e!ties, for logic prograrnming are conditions over its consequence relation,
inherit~~Afomthe theory ofnonmonotonic,logic. They afeintroduced in ofde~ to pro­
vide a IuethódJor charactf:rizing and comparing different logic progratnming semaI,ltics.
In this paper we have applied 'this technique to the semantics of circumscriptive'logic
programs;

The main result we have proved is that this semantics has a cumulative inference
relation, i.e. satilles cut a!ld c..autio'Us monotony. Therefore this approach has a regular
behaviour in the sense we can modify any set of' premiSes by tidding or removing
consequences with no change in the conclusions. On the oth~~'hand we haveshown this
semantics f~U~ rationality. In general, as several logic programs semanti9!' satisfy this
pl:~perty, thi~' could be considered aIl inhenrent condition .of nonmonot()nic negatio~.
As rnoIlotoIly of negation in circumscriptive logic prograrnming depends on its policy, it
is not, surprinsing, rntionality does not hold in an extension that incorporates both types
of negation, Nevertheless, we introduced a new property, called te!Jtricted mtionality,
which only <!OIlsiders negation as failure, and we proved it is verified in circumscriptive
lógic programs. ';)J,

AmoIlg the existing nonmonotonic fórmalizations, circUlllscription has' pla:yed an
important role in the definition of logic programming semantics and forms the basis
f~r the characteriZation oí the considered approach., As a nonmonotonic theory' cl.r­
cumscription is al~o.. ,a cumulaÚve"but not'rational no:d.monotonlc logic. This süggests
the intuitions behlnd dréumscription have been succesfully translated tó the context
of logic programming. This situation is IlOt common in logic programming semantics,

''395
2do . .congreso Argenljno de Ciencias de la' Computación

as long as the only cumulative but not rati9nalapproach iE,! the O-SEM semantics pre­
sented in [23]. We11-founded semantics and most of its versions, a11 satisfy cU11J,ulativity
and rationality.

Other abstract properties this semantics does not verify are supraclassicality and
distributivity. This is not strange in logic programming as a consequence of the fact
most semantics are closed under none of the logical connectives (1\, V, +-, and not even
-,) and then the inference relation has a weaker definition than in a first order theory.

This work will be complemented with the application to this semantics of the weak
properties, which treats specmcally with negation as failure. The ultimate aim of both
types of conditions is to give an abstract characterization of each semantics, and we
share this objective for circumscriptive logic programs.

References

[1] C. E. Alchourrón, P. Gardenfors, and D. Makinson. On the Iogic of theory change:
contraction functions and their associated revision functions. Joumal 01 Symbolic
Logic, 50, 1985.

[2] K. R. Apt, H. A. BIair, and A. Walker. Towards a theory of declarative knowIedge.
In J. Minker, editor, Foundations 01 Deduclive Databases and Logic Programs,
pages 89-148. Morgan Kaufmann Publishers, Los Angeles, CA, 1988.

[3] K. R. Apt and R. Bol. Logic programming and negation: a survey. Journal 01
Logic Programming, 30, 1993.

[4] K. L. Clark. N:egation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322. PIenum Press, New York, NY, 1978.

[5] J. Dix. A clássificatiori theory of semantics of normal logic programs: 1. strong
properties. FUndamenta Informaticae, 1994.

[6] J. Dix. A classification theory of semantics of normal logic programs: n. weak
properties. FUndamenta Informaticae, 1994 .

•
[7] J. Dix. Semantics of logic programs: Their intuitions and formal properties. In

Logic, Action and Information. de Gruyter, 1995.

[8} P. R. Fillottrani. Sistemas de razonamiento no monótono y su relación con la
semántica de las bases de datos deductivas. Tesis de Magister en Ciencias de la
Computación. Universidad Nacional del Sur, Bahía Blanca, Argentina., 1995.

396
240. Cl?ngreso Argentino de Ciencias de la Computación

[9] P. R. Fillottrani and G. R. Simari. Circumscriptive logic programming. In Pro­
ceedíngs of the XIV Intemational Conlerence 01 the Chílean Cornputer Science
Society, Concepción, Chile, 1994.

[101 M. C. Fitting. A kripke-kleene semantics for generallogic programs. Journal of
Logic Prograrnming, 2, 1985.

[JI) P. Gardenfors. Belief revision and nonmonotonic logic: two sides of t,he same coin?
In Proceedíngs 01 ECA1'90, Stockholm, Sweden, 1990.

[12] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings 01 ICLP'88, Seattle, WA, 1988.

,

[13J M. Gelfond and V. Lifschitz. Classicalnegation in logic programming .and dis­
junctive databases. New Generation Computing, 9, 1991.

[14] R. Kowalski and F. Sadri. Logic programs with exceptiQns. In Proceedíngs (ji
ICLP'90, Jerusalem, Israel, 1990.

[15] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence, 44, 1990.

[16J K. Kunen~ Negation in logic programming. JoufflOtI oi Logic Progromming, 4,.
1987.

[17) V. Lifschitz. On the satisfiability of circumscription. ArtíficiOJ Intelligénce, 28,
1986,.

[18] V. Lifschitz. Pointwise circumscription. In M. 1. Girisberg, editor, Readings in
Nonmonotonic Reaso ning, pages 179-193. Morgan Kaufmann Publishers, 1987.

[19J V. Lifschitz. On the declarative semantics of logic programs with negation. In
J. Minker, editor, Foundations 01 Deductive Databases and Logic Programs, pages
177-192. Morgan Kaufmann Publishers, Los Angeles, CA, 1988.

[20] J. W. Lloyd. Foundations 01 Logic Programming. Springer-Verlag, Berlin, second,
extended edition, 1987.

[21] D. Makinson. General patterns in nonmonotonic reasoning. In D. Gabbay, editor,
Handbook 01 Logic in Artificial Intelligence and Logic Programming, volume IlI,
pages 35-110. Oxford University Press, 1990.

[22] J. McCarthy. Applications of circumscription to formalizing common-sense rea­
soning. A1tificial Intelligence, 28, 1986.

397
2do. Congreso Argentino de Ciencias de la·.Computación

[23] L. M. Pereira, J. J. Alferes, and J. N. Aparício. Contradiction removal within well
founded semantics. In Procel'.dings 01 IWLPNR '91, Washington, DC, 1991.

[24] H. Przymusinska and T. C. Przymusinski. Semantic issues in deductive databases
and logic programs. In A. Banerji, editor, Formal techniques in artificial intelli­
gence, pages 321-367. North Holland, Amsterdan, 1990.

[25] T. C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, editor, Foundations 01 Deductive Databases and
Logic Programs, pages 193-216. Morgan Kaufmann Pllblishers, Los Angeles, CA,
1988.

(26] T. C. Przymllsinski. Every logic program has a natural stratification and an
iterated fixed point model. In Proceedings 01 the 8th. Symposium on Principles 01
Database Systems. ACM SIGACT-SIGMOD, 1989.

[27] T. C; Przymusinski. Three-valued nonmonotonic formalisms and semantics of
logic programs. Artificial Intelligence, 49, 1991.

128] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editora,
Logic and Data Bases, pages 55-76. Plenum Presa, New York, NY, 1978.

(29] A. van Geldet, K.Ross, and J. Schlipf. Unfounded sets and well-founded semantics
for generallogic programa. In Proceedings 01 the 8th. Symposium on Principies 01
Database Systems. ACM SIGACT-SIGMOD, 1989.

[30] G. Wagner. Logic programming with strong negation and inexact predicatea.
Journal 01 Lo~ic Computation, 1(6), 1991.

398
·2do. Cnngreso Argenti1UJ de Ciencio,s de la Computación

