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Abstract 

Dix [7, !J, 61 introduced a method for dasRifying semantirA'i of normal logic 
programs. Some of these propertiE',s, calle<! strong properties, are adaptatioIlS 
of propertif'~'i from general nomnonotonic theories. We apply this techniqll(~ to 
circumsc:fipth'e logic: progrmuB [8, 9J, an cxtensiou of l.raditional 10gi<: prograII~­
ming tha.t illGOrporates circ:uDlRcriptive policies in the programs. Wf~ Rhow this 
!1pproaeh preHel'YeS cmn'Ulatívity, although it is not rational and sttpmclassícal. 
This suggests drcumsc:riptivc logÍ<! programs have a (',orrect hehavior, mantaining 
properties [mm nonnallogic programs. 

*Beeltrio de Perfeccionamiento del CONICET. 
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STRONG PROPERT~ES OF CIRCUMSCRIPTIVE 
LOGIe PROGRAMMING 

1 Introduction 

Declarative semantics for negation in logic programming has been an area of active 
research during last years. It started with the extension of pure 'PROLOG by an 
operator of negation as failur'e, which admits a negative literal in the absence of a proof 
fnr its complemento This definition relies on the procedura.l semantics provided by SLD 
resolution, and therefore lacks of a dedarative formalization. Several proposalslike the 
closed world assumption [28) or Clark's predicate completion [4] and íts three-valued 
counterparts [10, 16], attempted a solution to the problem, but they were not fully 
s8,tisfactory [24] due to the fact they did not match exactly the pretended intuitions. 
After this negation was recogIl;ized as ~ne of the first nonmonotonic operators, .. sorne 
conections with nonmonotonic 'reasoning systems Were established [19, 25, 27). 'I'hese 
results motivated the definition of new semantics, like perfect models [19, 2], stable. 
models [12], well-foUnded models [29, 26], etc., that provide suitable solutions. See 
[3, 24] for an overview. . 

Additionally, another negation operator for representing explicit negativc informa­
tion wasproposed [1;3, 14·, 30]. This operator, called strong negation (also "classical 
negation" in [13]), handles negative literals in asymmetric way as positive literals: in 
order to be true both have to be proved. Therefore this semantics is monotonic and can 
be regarded as if negative literals were syntactic variants of atoms, with the addition 
of a simple mechanism for consistency preservation. 

Neither of these tw,o· general types of negation can be' ignored. They correspond 
to rather different intuitions, so problems suitable to be solved with on.e of them do 
not have satisfactory solutions with the other. In general, this prob:em is handled 
al10wing two different syntactic connectives [13, 30]. In [8, 9] Circumscriptive Logic 
Pmgmrns were defined to allow the programmer specify the pretended semantics for 
each negative literal using a single negation connective. These programs incorporate 
clauses t.hat define a circumscriptive policy, specifying whether. to apply negation a.s 
failure or strong negation to each literal. Thus the meaning of an occurrenceof a 
negative literal depends on this policy, affecting the semantics of the whole programo 
Lifschitz's pointwise circ'umscriptioIl [18] provides the formal backgrOlmd fOI these 
programs. 

In view of the different semantics proposed for negation as failure, each one sup-
ported by different intuitions, Dix developed in [7, 5, 6] a framework for classifying and 
characterizing them. This work, following the research of Kraus, Lehmann, Magidor 
and Makinson in general nonmonotonic theories [15, 21], presents a series of properties 
and shows whether each of the semantics satisfies them. These properties can be di-
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vidcd iuto two typcs:, ~t1"Qng pT'Opertip-s which are adapt~tJ.<>:ns ok, t,hose intro.d1;lccd foI' 
noh~n6I~otOl¡k theori~~;, a¡ld wp"ak propcrües which are spe~iÍically ddlued rOl: negatioll 
in logic programmiug. libllowiug this idea, geueral desirod principIes fol' scmalltics can 
be idclltified, providillg formal reafions for an irregular behaviour in somc of thcm. 

Tu this paper we stlldy thc behaviour of circumseriptivc logic progtams byapplyil1g 
Dix's fl'amework, in particular regarding strong propertics. F'irst wc give a hrief illtro­
dudion 1.<,> the 8yutax ami semallt.ics of thcse progI'l-tms, ami a statCtntlllt of t.hc strong 
propcrtiesconsideI'(:~d. 'rhen, w*:' prese.nt positi Vt~ results, i. e. those properties that 
(lfC satisfied by thc semantics, Sllggcsting it bchavcs regularly. Next.,wc show some 
,propert.ies t.his scmaut.ics fails to verify, which do HOt. also hoId for well established 
semantícs for negation as failure sudl as stahle and well-follIlded Inodels. This work 
will be complemeuted by a fortll(~omiIlg paper cOIlsidering how t.his scmallticfi behavcs 
rcgardillg the a[orementioued weak properties .. 

2 Circumscriptive Logic Programs 

Iu thia sedíon we rcvi(~w the bl-tsic concepts of Circumscriptivc Logic Programs [81, 
starting with sylltactie eOllsidera1.iows. 

Definition 2.1 Lct e he a firs1. order lallguagc) whose alphabet indlldes a lUlary 
predicat.e symbol mi¡¡ aud one n 'al'y function symbol Jtl assodatcd with each n,-ary 
predicate p. Witb Lit.c Wt~ denote the set of all ground literal s in C. A ci1·cum.ljcripti't)(~ 
da'lLse in t:. is a dause of thc form: 

Lo +-- Lll ... 1 fin (1) 

where an IJi, O ~ i ~ 11. are literalA in C. Ifn ":- O the eireumseriptivc dause is called a 
faet. 

A CirC'lLm.scr·iptive Jjo,qic PT'Ogram P in a langllage e is a set of dreulIlseriptive 
dauses in e that. indudcs thc facl. 

min(fmin(X)) +-. (2) 

~ol1owing PROLOG's llotation, we will write in t.his paper predi<~at.e and flmction 
symbols startillg wi1.h a lowcrcase lett.er alld variable symbols with an uppcrcasc letter. 
Thc ouly differellce bctwecIl cil'cumscriptivc logic programs and nOJ'mallogic programs 
1201 is the possihle occurrence of uegative literals ill the head of the dauses, together 
with tlle requiremellts in the lauguage. Predicatc min aud fllUctiou.8 lp will he llscd 
for speeifying the drc1L'In.'lCriptivf' policy in a logie progI'l-tIIl, 80 aH to avoid Ult~ use of 
sccond order logic. 

In order to define t.his cireulllscript.ive policy, wc first need to introduce an op­
crat.iOll that eliminates ccrtain negative lit(~rals in a programo This operation is the 
relat.ivization of thc Gelfond-Lifsdlitz operator 1 VlJ to a given set of ground literals: 
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DE3finition 2.2. Let e be a language. Then if L E Lit.c: and.S .~ Lit.c, L+s is the 
literal: 

+S {no.:p(t1 ' ... ,tn ) if ~ = "'p(t1 , . •• ,tn ) and.p(t:,., .. , tn ) E S, 
L = bemg no_p a new n-ary p:r€dlCa~e. 

L otherwise. . 

This operation can be extended to clauses and programs. If e is ~ ground circum­
scriptive program clause of the form (1) then C+s is the clause Lcis +- Lis, . .. ,L~s; 
and if P = {Ci , i E I} is a circumscriptive l~gic prqgr~ then P+sis t~e progr~~Il 
p+s = {C+s : e is a ground instance of a clause Cd .. 

\Ve can now define the circumscriptíve policy as the definite program resulting from 
the elimination a11 negative !iteraIs in a circumscriptive logic progr~in. . 

Definition 2.3 If P is a circumscumscriptive lógic program in e, then we define 
POL(P), the circumscriptive policy of P, as the definite program p+Lit.c. . 

If P is a definiteprogram, then M p denotes its minimal Herbrand model. Thus 
aspLitc is definite, it has a minimal Herbrand model MpLltc. When we mention a 
circumscriptive logic program P without any reference to a language, w{~ will.consider 
the underlying language formed with a11 the symbols appearing in P together with 
those required. by definition 2.1. Also,. if ti, 1 :c::; i :c::; n are terms in the language we wiU 
note the term fp(t¡, . .. , tn ) as p(t¡, ... , tn ) when its; usageis elear from the context, 
in a similar way as meta-programming in logic programs. 

The semantics of circumscripti ve logic programs is defined from a preference re­
lation between three-valued models, which are called answer set~., This prefereqce is, 
originated in a classification of !iterals accordillg tothe circtimscriptive' pbli~y ofa' pro-'; 
gramo First we present this classification of literals and the definition of answer sets, 
and "then we define the preference relation. 

Definition 2.4 Let P be a circumscriptive program in alanguage e, Th(~n ir L E Lite, 
Lis called: 

• a defau,lt literal if L = ..,A and min(A) E MpOL(p). 

• a variable literal if L ,= A or L = ..,A and min(A) fI. MpOL(p). 

Definition 2.5 Let P be a circumscriptive logic program in a language e. Then a set 
of literals S ~ Lit.c is called an answer 8et of P if and only if it satisfies: 

• if Lo +- L1 , •• , , Ln is in P such that {Ltl1 :C::;i :c::; n} ~ S, thell Lo E S. 

• if there exists in e an atom A such til~t {A,..,A} .~ S the~ S = Lit.c. 
. . , 
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If 8 is an answer set ofP then def p(8) = {L E 8 : Lis a default litenil in P} and 
varp(S) = {L E S : Lis a variable literal in P}. 

Preference among answer sets of a crrcumscriptive program will be established from 
the following pre-order relation. 

Definition 2.6 Let P be a circumscriptive logic program in a language e, and 81, 82 ~ 
Lite two answer sets of P. In p..;-varp(Litt) we can consider the dynamic stratification 
[26] {Sa}ad, being Ó its depth. We define the relation 81 ~p 82 if and OIi1y if 81 ~ 82 

or for each L E def p(82) - del p(81) thete exists L' E def(81) - def(82) such that if 
LESa and L' E Sf3 then (3 ~ o. 

Definition2.7 Let P be a circumscriptive logic program in a language e, and L E 

Lit.c. Then we say that L is a conseque1we of P, and write P~circ L, if and only if it 
belongs to all-<p-minimalanswer sets of P. M p will denote the set of all consequences 
of P, i.e., M p = {L E e : P~Circ L}. 

The pre-order relation ~p defined over the· answer sets of P is similar to the relation 
$.p.z between models of a theory that serves as the basis for the definition of circum­
scription [22, 17J. It prefers an answer set 81 over 82 if 81 has more default literals 
than 82 , Ol' if the default literals in 81 but not in 82 are preferible t~ those in 82 but 
not in 8 1. The consecuence relation ~Circ corresponds to the definition of a priotized 
circumscriptive theory whose priority is determined by the dynamic stratification of P 
restricted to default literals. 

3 General Properties 

This section introduces the abstract properties applied to different semantics for logic 
p'rograms. These properties are defined [5, 6] for closure operations dependent on each 
semantics. We first present the general description of this operator. 

Definition 3.1 Let P be a logic program in a language e, and ~Sem an entailment 
relation of a semantics 8em defined for all logic programs. We define the clo8ure 
operatot'for P according to 8em as the mapping Cp : 2Lit~ 1---+ 2Lit~ where if U S;; Lit.c 
then: 

Cp(U) = {L E Lit.c : PU U~sem L} (3) 

In (3) P U U must be understood as if literals in U were facts, i.e., clauses with 
empty bodies. In order to keep a logical terminology in the presentation of proper­
ties, if U, V ~ Lit.c we will write U /\ V for U U V and -, V for the set {L : L = 
-,A if A E V, or L = A if -,A E V}, i.e., the complements of allliterals in V. 
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The main différence with the work of Kraus, Lehman y Magidor [15] on n()monotc;mic, 
theories is that~lús operator is only defined; for sets of 1iter~s, in~tead of.8o set ci 
a:rbitrary forÍnuhl.',This' i8 j1J.stiñed by the fact that program clauses are better, Wlder­
stood as infétence' rules than first order formula. AIso, according to this definitionthe 
operator C p(.) accepts infinite sets of literals (like in [21]), whiist the relation in [15] 
deals only with nnite sets. ' 

The technique presented by Dix [7] for classifying and characterizing the various 
semailtics for normal logic programs in eludes two types of abstract properties. The 
strong properlies are adaptations of those for nonmonotonic theories. ' Weak proper~ 
ties reflect the spedfic behaviour of negation as failure in logic progra.mming. Now 
we present ihe mrun strong properties, applied in this work to cITcumscriptive iogic'" 
programs. 

;. ,. '. ", ",~'.,. . ~ r· 

Definition 3.2 Let Cp (·) be a dósure operation 'for ~ seriíahtics S'é~í; for aIllogicJ -

programs P. If U, V, IV ~ Lite are arbitrary sets of literals then we define the follo;Wi!lg . 
properties: ",' " "" ' 

Illclusion if U ~ Cp(U). 

Cut if V ~ Cp(U) and W ~ Cp(U 1\ V) then W ~ Cp(U). 

Cau~iolls 'Monotony if V ~ Cp(U) and lV ~ Cp(U) then W ~ Cp(U 1\ V). 

R.ationality if -,V n Cp(lJ) = 0 and W ~ Cp(U) then W ~ Cp(U /\ V). 

Distributivity if Cp(U) n Cp(V) ~ Cp(U n V). 

Supraclassicality if Cn(U) ~ Cp(lJ), where CnO denotes the classicalconsequence 
operator. 

Inclusion.is the weaker property, and the one a logic programming senlantics should 
satisfy. Cut is one of the most natur~l conditions desirable fol' any semanticsj it says 
that by joining consequences to its premises we get no extra infarences. ! Cautíous 
monotony i~ a kind of converse,of cutj it expresses that by joi~g\ consequences' to 
its premises we Jose no inferences~ In classicallogic this condition 1s ~'Qb~1:Wledunder 
monotony. If a consequence operation satisfies both cut and catdious mon'Qtonyjt is 
said to be a cumulative operatíon, because if we accumulate conclusions. to OllÍ':premises 
we do not change inferent~l power. Rationality may be seen in any skeptícal semantics 
(not both of.A:and¡,."...¡A:b~lo~gs to Cp(U» as a generalization of.cautious monotony; 
we may addany sét of formula to our premises without. loss of inference, as long as iti! ; 
is not contradictory to the consequenCe8. A consequence operation is supraclass¡'calif .. 
it includes dassical inferencej most logic programming semantics are not suprassical., 
b{~ause of the fact they are not closed under logical connectives. The condition 
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of distributivity does not have an inmediate intuitive justification, besides of "its 
inmense power and its appealing instances" (see Makinson [21)). Note that most of 
these properties establish' conditi~ns that a consequence operator must satisfy after 
the addition of new data to an existing theory. Therefore, they are also elosely related 
to the logic ofTheory Itevision [1, '11]. 

In view of the several approaches to negation as failure, it is important to study how 
these semantics behave. Sometimes, a new semantics defined to improve an existing one 
has more serious shortcomings than the original [51. Most I;!emantics are introduced 
motivated by an ''irregular'' behaviour of a previous semantics on a single program 
[24], being this irre~ilarity justified by the intuitions of the researchers. See [7] for an 
overview of the properties satisfied by different logic programming semantics. 

4 Cumulativity of this Semantics 

This section contains our main result, showing circumscriptive logic programs satisfy 
cumulativity. We begin by giving the characterization of the operator Circp : 2Lit.c ~ 
2Lit.c as a result of applying definition 3.1 to the inference ~Circ for the semantics 
defined in section 2. 

The following results will be useful in the demonstration of cut and cautious 
monotony applied to Circp. The first proposition states that when considering answer 
sets semantics, it is poasible to add or remove facts from the program as long as they 
belong to the same answer seto 

Proposition 4.1 Let U, S ~ Lite be two sets 01 literals such that U e S. Then lor 
all circumscriptive logic programs P, S is an answer set 01 P il and only il Sisan 
answer set 01 P 1\ U. 

Prueba First we note that P and P 1\ U have both the same underlying language, 
so any answer set of one of them can be an answer set of the other. Suppose now S is 
an answer set of P. Then, we must prove S aatisfies both conditions in definition 2.5 
for P 1\ U. For the' first condition, let Lo ~ L1 , ••• ,Ln be a circumscriptive elause in 
P 1\ U such that {L i , 1 ~ i ~ n} ~ S. If Lo ~ Lb'" ,Ln E P, then Lo E S because 
Sisan answer set of P; otherwise if Lo ~ E U (n = O as U only ineludes facts) then 
Lo E S as U ~ S. The second condition is inmediate as it does not depend on a 
particular circumscriptive logic programo 

Suppose now Sisan answer set of P 1\ U. We must prove that S satisfies both 
conditions in definition 2.5 for P. Again, the second condition is inmediate. Suppose 
there exists in P a circumscriptive clause Lo ~ L¡, ... ,Ln satifying {L¡, 1 ~ i ~ n} ~ 
S. As Lo ~ Lb ... ,Ln belongs to P 1\ U and S is an answer set of P 1\ U then Lo E S, 
so S satisfies the first condition of the definition. Then S is also an answer set of 
P. I 
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The second resüIt is a theorem proved in [8, chapter 7] saying that the set of 
conseqtiences of the semantics for circumscriptive logic programs may be consid~red 'as 
an answer seto This is eqllivalent to saying that the partial order ~p has a minimun 
answer set for aU programs P. 

l'heorem 4.2 JI P is a circumscriptive logic progmmin ~á' language i.:~ tke'n; the set 
{L E Lite : P~Ci1'C L} is an answer set 01 P. 

We are now able to pl'Ove that circumscriptive logic programs satisfy ,cut andcau­
tio'us monotony under the given semantics. 

'I'heorem 4.3 Circp is a cumulative operntor 101' all circumscriptive I.ogic programs 
P. 

Prueba First we prove Circp satisfies cut. Suppose U, V, W ~ Lite sllch that V ~ 
Círcp(U) and W ~ Circp(U A V). Theorem 4.2 says that Circp(U) is an answer 
set of P A U. We can apply the "if" part of prop~ition 4.1, so Circp(U)- is an 
answer set of P /\ U 1\ V. This m~ans that Circp(U A V) ~'pI\UI\V Circp(U)~ Suppose 
there exjst L E Circp(U) '-:- Circp(U A V), then L is a default literal and eXists 
L' E Circp(U A V) - Cirp(U) such that if L E SQ and L' E SfJ then f3 $ a. But, 
then, using the "only if" part of proposition 4.1, Circp(U A V) would be an answer 
S€t of P Al! such that Circp(U A V) ~p"u Circp(U), contradicting the minimality of 
Gircp(U). 'Then Circp(U A V) ~ Circp(U), aud W ~ Circp(U). 

We uow~ showthat'Circp'satisfies cautious monotony. Let U, V, W ~ Litesuch 
that'V;'W ~ Circp{U). By theorem 4.2 Circp(U A V) is auanswef set of P A U A V. 
It is obvious that V ~ Circp(U AV), so applying proposition 4.1 Ci7'Cp(U A V) i8 
an answer set of P A U. This means that Circp(U) ~PI\U Circp(U A V). Again, 
if there e;ost L E Circp(rJ /\ V) - Qircp(U), then L ~, a default Íiteral and exists 
L" E Circp(U) - Cirp(U A V) such that if L E SQ and L i E Sp then f3 ~ a. But this 
would imply, by proposit.ion 4.1, t.hat Circp(U) ~p"u"v Circp(U A V) which ia not 
possible because Circp(U A V) is ~p"ul\v-minimum. Then Circp(U) ~ Circp(U A V) 
and W CCir.<1p(U A V). ' • 

Cut is a reasonable property for the purpose of forrnalizing negation in logic program-' 
ming. This is also supported by the fact almost aIl semantics presented satisfies Cut, 
sugge,sting 'this condition foUow the intuitions behind the idea of negabon as failure. 
Cautio1J;S ;monotony is also a nice property. However, there exist sorne proposals [5] in 
which:it fails. The fact that circumscriptive logic programshave a cumulative conse­
quence operator allow us to affirm it behaves very regularly. The syrnmetry between 
these two properties expresses answer sets are stable: our conclusions may be added 
Ol removed fromthe premises with no change in the inference process. Investigation 
in nonmmiotonic' formalization shows a natural sirnilaríty: Makinson [2] 1 discerns be.:. 
tvreen two ~lusters of conditions a nonrnoilotonic logic should satisfy. Jnclusion, cut 
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and cautious monotony precisly form the stronger cluster. These are precisely the 
properties' most logic progr_am~j.llg semantic~, s~t~fy, including circumscriptive logic 

,". : '." ~ . 
programs. 

5 Negative,ltesults 

In next example we show that rationality do not hold in the semantics for circumscrip­
tive logic programs. 

Example 5.1 Let H be the following program: 

p +--'q 

q +- r 
min(q) +-

It is cIear that Circp! (0) = {p, -'q}. But {'-ir} n CircPl (0) = 0 and Circ?! ({r}) = 
{r,q}. Then p E CircPt({r}) does not hold as rationality would require. This il­
lustrates that the incorporation of a variable literal to our premises may abort the 
inference of a default literal previously presento 

Rationality holds in well-founded semantics and most of its variants, supported model 
and the three-valued completion semantics. This suggest it is a desirable property. 
Answer set preferred by Circp are much weaker three-valued models due to the pres­
ence of variable literals. In fact it is possible to define a restricted form of rationality, 
in which we are only allowed to add default literala, that holds for Circp. 

DefiIiition 5.2 Let P be a circumscriptive logic program in c" and U, V, W e Lit,e. 
Then we say that P satisfies Restricted Rationality if de! p( -, V) = -, V, -, vnC p(U) ~0 
and W ~ Cp(U) then W ~ Cp(U 1\ V). ' , 

Thus we define 1'estricted rationality as rationality applied to a set V containing only 
default literals. Recall that if defp(-'V) = -,V then -,V only contains default literals. 

Proposition 5.8 Circp satisfies Restricted Rationality. 

Prueba Suppos~ U, V ~ Lit,e in the conditions given in the definition of the prop­
erty. If there exis.t a literal L E Circp(U) such that L rt Circp(U 1\ V), then it is 
possible to build ,a new answer set S such that S ::::;PI\V Circp(U 1\ V) contradicting 
its minimality. • 

Another property Circp does not satisfy is supraclassicality. Again, program PI 
from example 5.1 illustrates this fad: nor p neither -'p belongs to Circ?! (0) so we get 
p V -'p rt CircPt(0). In the framework of logic programs this property only holds in the 
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semantics W F S+ [5J., Most logic programming setharitics 'fail to satisfy,it because they 
Gonsider threec. valued' sernantics oi' becaúse the semahtics' is; not 'closed under 'logiéal ' 
connectives, notably -. ' 

Dist'-ributivity is another property that does nbthold under tlris semantics as 'it is , ' 

shown in the following example: 

E::xample 5.4 Let Pz be the following circurnscriptivelogic prograrn: 

p - a, -,b 
p -b, -'a 
lIlin(a) -min(b) -

Clearly CircP2 ( {a}) = {a¡ p, -,b} and Circ~ ( {b}) = {b, p, -,a}, so literal p ;b~lp~t8 ;.~ 
the intersection but it is not in Circ~ ( {a, b}) = {a, b}. 

6 Conclusions 

S1;rong prq~e!ties, for logic prograrnming are conditions over its consequence relation, 
inherit~~Afomthe theory ofnonmonotonic,logic. They afeintroduced in ofde~ to pro­
vide a IuethódJor charactf:rizing and comparing different logic progratnming semaI,ltics. 
In this paper we have applied 'this technique to the semantics of circumscriptive'logic 
programs; 

The main result we have proved is that this semantics has a cumulative inference 
relation, i.e. satilles cut a!ld c..autio'Us monotony. Therefore this approach has a regular 
behaviour in the sense we can modify any set of' premiSes by tidding or removing 
consequences with no change in the conclusions. On the oth~~'hand we haveshown this 
semantics f~U~ rationality. In general, as several logic programs semanti9!' satisfy this 
pl:~perty, thi~' could be considered aIl inhenrent condition .of nonmonot()nic negatio~. 
As rnoIlotoIly of negation in circumscriptive logic prograrnming depends on its policy, it 
is not, surprinsing, rntionality does not hold in an extension that incorporates both types 
of negation, Nevertheless, we introduced a new property, called te!Jtricted mtionality, 
which only <!OIlsiders negation as failure, and we proved it is verified in circumscriptive 
lógic programs. ';)J, 

AmoIlg the existing nonmonotonic fórmalizations, circUlllscription has' pla:yed an 
important role in the definition of logic programming semantics and forms the basis 
f~r the characteriZation oí the considered approach., As a nonmonotonic theory' cl.r­
cumscription is al~o.. ,a cumulaÚve"but not'rational no:d.monotonlc logic. This süggests 
the intuitions behlnd dréumscription have been succesfully translated tó the context 
of logic programming. This situation is IlOt common in logic programming semantics, 
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as long as the only cumulative but not rati9nalapproach iE,! the O-SEM semantics pre­
sented in [23]. We11-founded semantics and most of its versions, a11 satisfy cU11J,ulativity 
and rationality. 

Other abstract properties this semantics does not verify are supraclassicality and 
distributivity. This is not strange in logic programming as a consequence of the fact 
most semantics are closed under none of the logical connectives (1\, V, +-, and not even 
-,) and then the inference relation has a weaker definition than in a first order theory. 

This work will be complemented with the application to this semantics of the weak 
properties, which treats specmcally with negation as failure. The ultimate aim of both 
types of conditions is to give an abstract characterization of each semantics, and we 
share this objective for circumscriptive logic programs. 
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