A SUPPORT FOR REMOTE PROCESS EXECUTION IN A LOAD-BALANCED
DISTRIBUTED SYSTEM

ARREDONDO D.,ERRECALDE M.’
GALLARDR. “

Grupo de Interés en Sistemas de Computacion”
Departamento de Informatica
Universidad Nacional de San Luis
Ejército de los Andes 950 - L.ocal 106
5700 - San Luis
Argentina
E-mail: rgallard@inter2.unsl.edu.ar

merreca@unsl.edu.ar
darred@unsl.edu.ar

Phone: 54++ 652 20823

Fax : 54++ 652 30224
ABSTRACT

Load distribution and balancing in a workstation-based network includes a number of intricate
tasks. Among them, transparent remote process execution is an essential one. This work describes
the main problems to be considered when implementing remote process execution and propose a

design for an alternative system attempting to solve these problems.

KEYWORDS: Remote execution, load balancing, load distribution, distributed systems.

Members of the UNSL 338403 project.
Full Professor at the Informatics Department. Head of the Research Group.

The Research Group is supported by the Universidad Nacional de San Luis, the CONICET (Science and
Technology Research Clouncil) and the SSID (Subsecretary of Informatics and Development).

121
2do. Congreso Argentino de Ciencias de la Computacion

1. INTRODUCTION

Nowadays most organisations use workstations as computing platforms, typical_l_y
interconnected to form a local area network. Usually some of this workstations ﬁave a heavy
load, with degraded performance, while others remain under-utilised or even idle.

The rational and equitable use of this available computational power have been subject of study
for many research groups interested on load distribution and balancing [2], [8], [12], [16].
Even though, intuitively, these topics do not seem to present a meaningful complexity their
implementation is not a trivial task. Subjects such as management of information related to the
load in each node of the network, load metrics to be adopted, decision making mechanisms for
choosing a site where to execute a process, support for transparent remote process execution
and process migration are some of the relevant aspects that, even by themselves, constitute
important research matters.

Within this framework, this paper describes the design of a remote execution subsystem as part
of a balanced distributed system [1], attempting to provide reasonable solution to some of

these problems.

We begin with a brief description of the components of the load balancing system, then we
analyse some of the important problems related to remote execution of processes and finally

we show the design of the remote execution subsystem proposed.

2. LOAD BALANCING SYSTEM

For each workstation the load balancing system provides an Information Subsystem, a'
Decision Subsystem and an Execution Subsystem (See Fig. 1).

The Information Subsystem is in charge of collecting and maintaining global information about
each available node in the network and its load condition.

The Decision Subsystem, by using the output of the information subsystem and data from other
sources’, is responsible to evaluate which is the most convenient node for the execution

requested by the user.

! Related to job requeriments and attributes, and emanating from user specification, inserted in the object code,
or automatically determined.

122
Zd& Congreso Argenti_no de Ciencias de la Compwtacion

The Execution Subsystem is in charge of executing the user requested pfégra‘m on the
workstation designated by the decision subsystem. Also, it must provide a facility to initiate a
process in a remote machine. This remote process could interact with the user and access to

data files as if it would be executing on its local machine.

Information Subsystem v Execution Subsystem

Decision Subsystem

Fig. 1: Architecture of the Load Balancing Subsystem

The user interface is restricted to receive execution requests and to return results. Details such
as system load state and selected site for execution are entirely transparent to the user.

In addition, in its first stage, this design is directed to collect statistical data associated to the
different alternatives chosen for distribution, in order to determine if the strategies used by the

decision subsystem were either adequate or not.

3. ISSUES TO BE CONSIDERED IN REMOTE PROCESS EXECUTION

These topics are, directly or indirectly, related to the fact of configuring the remote process in
such a way that its vision of the environment be the same as that of the workstation where
initially resided (the source machine). In this case we are referring not only to the problem of

moving the code but also to the fact that the process have to preserve the same vision of the

123
2do. Congreso Argentino de Ciencias de la Computacién

file system, working directory and environment variables. Furthermore, during its. execution
the system calls must behave as in the original site.

This later observation deserves special attention because it happens that some system. calls
could be executed in remote machines while others could not, and should be redirected to the
source machine. For example, system calls requiring information about the state of the site
where the process is executing (CPU and memory usage, IP address, etc.) could be satisfied by
that remote node but those closely related to the original site, such as those involved with user
interaction or access to own devices, ought to be accomplish by the source machine.

In the case of accessing us_erv:_ﬁles (READ, WRITE, OPEN, etc., system calls), some systems
solve the problem by working with shared file systems (NFS, AFS, etc.) while others do it-by.. .
redirecting the system call to the machine where the files are resident [2], [15].

Eventually, migration of active processes is an additional problem to be considered. There
exists some distributed operating systems, such as Sprite and Vkernel, which have finely solved
this problem, but implementing migration on top of a conventional operating system is
cumbersome and benefits obtained do not, sometimes, justify their implementation cost.

Some trade-off solutions allowed active processes migration subjected to forbid the use of
interprocess communication mechanisms (sockets, pipes, etc.) or process creation system calls
(fork, exec, etc.) [2].

4. REMOTE EXECUTION SUBSYSTEM

In this section we delineate an implementation to provide simple and clear solutions to the
problems above mentioned. Also a user interface for specification of tasks to be executed by

the system, is proposed.
4.1 PROPOSED IMPLEMENTATION
The following restrictions are imposed to the system:

e Processes to be executed are non migrating processes. Once a process is initiated in a
machine it remains there until completion (it is not allowed to move the process to another

site).

124
2do. Congreso Argentino de Ciencias de la Computacion

o Processes créated by remote tasks execute in the same machine as their parents.
e The network nodes are homogeneous in hardware and operating system.

¢ Nodes in the network are arranged as a computing pool. Many users, with equal privileges,

can be logged to a single node and nobody is the workstation owner.

Previously we referred to the need of a process common vision for file system, working
dii:éctory and other resources. In our case we decided to face the problem by using NFS,
provided by SUN Microsystems, because it allows system file sharing among many
workstations [4],[15].

In this way a user accessing to the system facilities will always see the same files and
directories independently of the machine where he is working. The effect is similar as being
logged into a diskless workstation connected to a unique file server [15].

By maintaining a single copy of user executable files and data files, costs related to transfer and
store data and those problems associated to data consistency are considerably reduced.
Furthermore in our design, to minimise the network load, disks that are local to workstations
are devoted to paging and allocation of temporary and binary files.

In this stage, two are the main components of the remote execution subsystem,

e demon cl/i_exec residing in the requesting machine

e demon serv_exec residing in the target (request executing) machine.

The next section describes how these components interact to facilitate the remote execution of

a process.

4.2 INTERACTION BETWEEN SUBSYSTEM COMPONENTS

The Decision Subsystem retrieves. request specifications from a queue where user requests
were stored. (See ﬁéﬁre 2). Once decided the fittest node for execution, ask to cli_exec remote
execution for this job. Then cli exec creates a child process known as the shadow process (so

called because it acts, in the source machine, as a shadow of the remote executed process).

125
2do. Congreso Argeptino de Ciencias de la Computacion

The shadow process supplies the information needed for execution (program name, arguments, '
ete.) to serv_exec.

Decision
Subsystem
Request
Queue
Remote
Execution
Subsystem

cli_exec ;{ serv_exec

e

stdin S0
shadow sockfd1 stdout _ fd1 user
process process
sockfd2r stderr >Ifd2
Local Machine Remote Machine

Fig. 2:Interaction between Components of the Remote Execution
Subsystem for Interactive Processing

At the other end, serv exec, createsa child for executing the requested process. Two are the

possibilities contemplated by the system here: interactive and non interactive processing.

In the case of interactive processing the standard input/output and standard error is redirected
to sockets for communication with the corresponding shadow process, in the sourqe.,_(glient)ﬂ
machine. The shadow process is attached to a window which is used by the user as a means to
communicate with the remote process (via this socket) in the same way as when it is executed
locally.

126
2do. Congreso Argentino de Ciencias de la Compwacion

In the case of non interactive processing communication is not established via sockets, instead
of that the standard input/output and standard error is performed via the user specified files.
These files can be directly accessed by the process because it is running in a shared file system
environment (NFS, See figure 3)

Process completion is informed to the user through a mail originated by serv exec at the
moment it receives the corresponding signal from the exiz() system call of the terminating

process.

Local Machine Remote Machine
cli_exec serv_exec
1 A _—Y
shadow user
process process
------------------ . stdin stdout stderr f""-"""*---_\
LT + file file file Tl

-
.-
-
-
-
....

~
..
S~

Fig. 3: Interaction between Remote Execution Subsystem
Components and Network File System.
(non interactive processes)

4.3 REMOTE EXECUTION USER INTERFACE

This section describes how a user can deliver to the system one or more requests for remote

execution of his jobs. The simplest way to do it is by entering at command interpreter level:

127
2do. Congreso Argentino. de Ciencias de la Computacion

remote <program name:- <arguments>

In this case a unique request of the interactive type for remote execution is created (standard
input/ouput and error through terminal). When this request is processed the system creates a
window in the local machine, on behalf of the remote process, intended for the management of
its input/output and error.

This kind of interaction could be satisfactory for certain type of users. But in a network also
conceived for intensive CPU tasks it is usual, for long duration tasks, to leave to the system
the responsibility of inputting data and collecting results instead of entering data on line and
waiting for completion.

In these cases it is appropriate that standard input/output and error be performed by means of
user specified files that are defined and analysed separately.

Additionally, it is common to execute a program with different standard files and arguments.
This type of more complex requests are performed in this system by providing to the remote
command a request specification file, where diverse execution modes for the jobs can be

described:

remote <request spec.ification file>

A request specification file is an ordinary text file which contains the following directives:

program = <name>
[argumenis = <argument list>]

terminal
standard files =

user files [input = <pathname>]
[output = <pathname>]
[exrror = <pathname>]

[priority = <priority>]
add request

The program directive, which is mandatory and specified only once inside the request
specification file, identifies the executable file.
The optional arguments directive, specifies the arguments used when invoking the program

determined by the program directive.

128
2do. Congreso Argentino de Ciencias de la Computacion

The standard files directive, establishes if the standard input/output and error are performed
through the terminal (interactive processing) or by means of user specified files (if any is
omitted, then /dev/null is assumed).

The priority-directive specifies which is the priority (from -100 to 100, and O by default) for
the task to be executed. A higher priority value means higher priority.

The add request directive, according io the previously specified directives, creates a request
for remote execution and add it to the request queue. This request will be thereafter processed
by the remote execution subsystem.

A single program can be repeatedly executed with diverse sets of arguments, standard files and
priorities ‘by- alternating the add request directive with those before mentioned (arguments,
standard _files and priority).

S. CONCLUSIONS

Transparent remote process execution constitute by itself a research area in distributed systems
which is intimately related to those systems supporting load balancing.

The design of the remote execution subsystem proposed here is an initial step that in a
straightforward and simplé ‘'manner permits to understand and face most of the relevant
problems above mentioned.

Even though restricted, this subsystem will assist to evaluate the remaining load balancing
system components on their capability for solving concrete problems.

Once the whole system be integrated and tested it will be contrasted against systems adopting

other policies seeking for performance improvements.
6. ACKNOWLEDGEMENTS
We acknowledge the cooperation of the project group for providing new ideas and constructive

criticisms. Also to the UNSL, the CONICET and the Subsecretary of Informatics and Development

from which we receive continuous support.

129
2do. Congreso Argentino de Ciencias de la Computacién

7. BIBLIOGRAPHY |

(1]

[2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

Aguirre G., Arredondo D., Errecalde M., Piccoli F., Printista M., Gallard R. - Load
Distribution and Balancing Support in a Local Area Network Based Distributed System-
UNSL, Computer Systems Interest Group, Internal Report may 1996.

Bricker A., Litzkow M. J. and Livny M., Condor Technical Summary, Version 4.1b,
Technical Report 1069, Computer Sciences Department, University of Wisconsin-
Madison, Wisconsin, USA (1992).

Colouris G., Dollimore J., Kindberg T. -Distributed Systems: Concept and Design -
Addison-Wesley, 1994.

Comer Douglas E., Stevens David L. - Internetworking with TCP/IP - Vol. 1II - Prentice
Hall.

Crichlow Joel M. - An introduction to Distributed and Parallel Computing - Prentice
Hall - 1988.

Chu W., Holloway L., Lan M., Efe K. - Task Allocation in Distributed Data Processing -
Distributed Computing: Concepts and Implementations, pp 109-119, Addison Wesley -
1984.

Foster Ian T. - Designing and Building Parallel Programs - Addison Wesley 1995.

Johnson L. D., Harget Alan -On The Performance Of Load Balancing Algorithms- PhD
Thesis, Aston University, Birmingham, UK., 1991.

Lewis T.G. , El-Rewini H. - Introduction to Parallel Computing - Prentice Hall - 1992.

Lewis T.G. - Foundations of Parallel Programming. A Machine-Independent Approach -
[EEE Computer Society Press - 1993.

McEntire P. L. - O’Reilly J. G. - Larson R. E. - (Editors) : Distributed Computing:
Concepts and Implementations - Addison Wesley - 1984

Pankaj M. - Automated Learning of Load Balancing Strategies for a Distributed
Computer System -, PhD. Thesis, University of Ilinois at Urbana, Chapaign, 1993.

[13] Stevens W. Richard - UNIX Network Programing - Prentice Hall.

130
2do. Congreso Argentino de Ciencias de la Computacion

[14] Stone H., Bokhari S. - Control of Distributed Processes - Distributed Computing:
Concepts and Implementations, pp 109-119, Addison Wesley - 1984.

[15] Tanenbaum Andrew S. - Sistemas Operativos Modernos - Prentice Hall.

[16] Theimer Marvin M., Lantz Keith A. and Cheriton David R. - Preemptable Remote
Execution Facilities for the V-System - ACM - 1985.

131
2do. Congreso Argentino de Ciencias de la Computacion

