
A SUPPORT FOR'REMOTE PROCESS EXECUTION IN A LOAD-BALANCED

DISTRIBUTED SYSl'EM

ABSTRACT

. . .

ARREDONDO D.,ERRECALDE M

GALLAlIDR. ..

Grupo de Interés en Sistemas de Computación·· ...

Departamento de Informática

Universidad Nacional de San Luis

Ejército de los Andes 950 .. Local 106

5700 - San Luis

Argentina

E-mail: rgallard@inter2.unsl.edu.ar

merreca@uilsl.edu.ar

darred@unsl.edu.ar

Phone: 54++ 652 20823

Fax. : 54++ 652 30224

Load distribution and balancing in a workstation-based network includes a number of intricate

tasks. Among them, transparent remote process execution is an essential one. This work describes

the main problems to be considered when implementing remote process execution and propose a

design for an alternative system attempting to solve these problems.

KEYWORDS: Remote execution, load balancing, load distribution, distributed systems .

•

Members offhe UNSL 338403 proJert.

FuD Professor at fhe Infonnatics Department. Head ofthe Researeh Group.

The Researeh Group lB IUpported by the Universidad Nacional de San Luis. the CONICET (Sdenu ami
'fedmololl)' Reaeareh Councll) ami the SSID (Suhseeretary 01 Informatics and Development).

121
2do. Congreso Argentino de Ciencias de la Computación

t. INTRODUCTION

Nowadays most organisations use workstations as computing pla~fomis~ . typically

interconnected to form a local area network. Usually sorne of this workstations have a heavy

load, with degraded performance, whíleothers remain under-utilised or even idle.

The rational and equitable use of this available computational power have been subject of study

for many research groups interested on load distribution and balancing [2], [8], [12], [16].

Even though, intuitívely, these topics: do not seem to present a meaningful complexity their

implementation is not a trivial task. Sl.lbjects such as management of information related to the

load in each node of the network, load metrics to be adopted, decision making mechanisms for

choosing a site where to execute a process, support for transparent remote process execution

and process rnigration are sorne of the relevant aspects that, even by themselves, constitute

important research matters.

Within this framework, this paper desGribes the design of a remote execution subsystem as part

of a balanced distributed system [1], attempting to provide reasonable solution to sorne of

these problems.

We begin with a brief description of the components of the load balancing system, then we

analyse sorne of the important proble:ms related to remote execution of processes and finally

we show thé design of the remote execution subsystem proposed.

2. LOAD BALANCING SYSTEM

For each workstation the load balancing system provides an Information Subsystem.a;

Decis;oll Subsystem and an Execution Sub~ystem (See Fig. 1).

The Information Subsystem isin charge óf collecting and maintaining global'infonnationabout ~

each available node in the network and its load condition.

The Decision Subsystem, by usingthe outpút of the information subsystem and data from other

sources1 , is responsible to evaluate which is the most convenient node for the execution

requested by the user.

1 Related to job rcqueriments and attributes, and emanating from user specification, inserted in the object code,
or automatical1y detennincd.

122
~. Congreso Argentino de Ciencias de la Cotnpfflac;ón

The Execution Subsystem is in charge of executing the user requested" p~ográm on tlle

workstation designated by the deeision subsystem. Also, it must provide a facility to initiate a

process in a remote maebine. Tbis remote process could interaet with the user and aeeess to

data files as if it would be executing on its local machine.

r"-'-' -,._._. _ .. _.- _. _. _._._. _. -'-' _. _ _. _ .. -¡
I

User interface

Ded Sub.,.._

t_._._._._._._._ _._._._._._._._._._._._._._.

Fig. 1: Arc:hitecture of tbe Load Balandng Subsystem

The user interface is restricted to receive execution requests and to retum results. Details such

as system load state and selected site for execution are entirely transparent to the user.

In addition, in its first stage, tbis design is directed to eollect statistical data associa,ted to too

different alternatives ehosen for distribution, in order to determine if the strategies used by the

decision subsystem were either adequate or noto

3. JSSUES TO BE CONSIDERED IN REMOTE PROCESS EXECUTION

These topies are,directly or indirectIy, related to the fact of configuring the remote process in

sueh 'a way that its vision of the environment be the same as that of tbe workstation where

initially resided (the source machine). In tbis case we are referring not only to the problem of

moving the code but also to the faet tbat the proeess have to preserve the same vision of the

123
200. Congreso Argentino de Cienci(ll de la Computación

file system, working directory and environment variables .. Furthermor~, during its. ~~e(;UtiQn

the system c;alls must behave as in the original site.

Tbis later observation deserves spec~a1 attention .because it happens :lhat sorne system, c~s

could be executed in remote machines wbile others could not, and should be redirected to the

source machine. For example, sy,tem calls requjring information about the state of the sit~

where the process is executing (CPU and meq¡ory usage, IP address, etc.) could be ~tisfied by

that remote node but those closely related to the original site, such as those involved with user

interaction or access to own de~ces, ought to be accomplish by,the .source machine.

In the case of acces~g user,files (READ, WRITE, Op'EN, etc., system calls), sorne systems

solve the problem by working with shared file. systems (NFS, AFS, etc.) wbile others do it,by .. ,

redirecting the system call to the machine where the files are resident [2], [15].

Eventually,; migration of active processes is an additional problem to be considered. There

exists sorne distributed op~ating systcms, such as Sprite and Vkemel, wbich have finely solved

tbis problelO, but implementing migration on top of a conventional operating system is

cumb~rson.te and benefits obtained do not, sometimes, justify their implementation cost.

Sorne trade-off .solutions allowedactiye processes migration subjected to forbid the use of
. ,., ~

interprocess communication mechani&ms (sockets, pipes, etc.) or process creation system cal1s

(fork, exec, etc.) [2].

4. REMOTE EXECUTION SUBSYSTEM

In this section we delineate an implementation to providesimple and c~ solutions to the

problems aboye mentioned. Also a U!ier interface for specification of tasks to be executed by

the system, is proposed.

4.1 PROPOSED IMPLEMENTA nON

The following restrictions are imposecl to the systern:

• Processes to be executed are non . migrating processes. Once a process is initiated in a

rnachine it remains there until completion (it is not a110wed to move the process to another

site).

124
2do. Congreso Argentino de Ciencias de la Computación

• pio~~sses créated by remote tasks execute in the same machlne as'their parents.

• The network nodes are homogeneous in hardware and operating system.

• Nodes in the network are arranged as a computing pool. Many users, with equal privileges,

can be logged to a single node and nobody is the workstation owner.

Previously we referred to the need of a process common vision for file system, working
.; . ~

directory and other resources. In our case we decided to face the problem by using NFS,

provided by SUN Microsystems, because it allows system fIle sharing among many

workstations [4],[15].

In this way a user accessing to the system facilities wiIl always see thesam~ files and

directories independentIy of the machine where he is working. The effect is similar as being

logged into a diskless workstation connected to a unique file server [15].

By maintaining a single copy of user executable files and data files, costs related to transfer and

store data and those problems associated to data consistency are considerably reduced.

Furthermore in our design, to minimise the network load. disks tbat are local to workstations

are devoted to paging and allocation of temporary and binary files.

In this stage, two are the main components of the remote execution subsystem;

• demon cl(_exee residing in the requesting machine

• demon serv ___ exee residing in the target (request executing) machine.

The next section describes how these components interact to facilitate the remote execution of

a process.

4.2 INTERACTION BETWEEN SUBSYSTEM COMPONENTS

The Deeision Subsystem retrieves request specifications from a queue where user requests

were stored. (See figure 2). Once decided the fittest node for execution, ask to eli exee remote . ._.

execution for this jobo Then cli"exee creates a child process known as the shadow process (so

called because it acts, in the source machine, as a sbadow of the remote executed process).

125
2do. Congreso Argentino de Ciencias de la Computación

The shadow process supplies the information needed for execution (program name, arguments,'

et.:.) to serv __ exec.

_--,--1 ·1------<1 11----l1~
DedsioD

Subsystem

Request
Queue

•••• -.- •••••••.••••••••••• __ ••••••••••••••••••• __ •••••••••• 0_- ••••••••• __ ••••••••••••••••••• ____ •••••• ___ ••••••••••••••••• ______ •••••• __ •••••••••••••••• _ ••

sbadow sockfdl

process

sockfd2

Remote
Execution
Subsystem

stdin

stdout

stderr

fdO
fdl user

process

fd2 ..

• • • • o ••• • • _... • ••••••••••••• _ ••• , •••••• _ ••••••••••••••••• - ••••• _ •• ~ ••• _ •• _' ••••••• - _ •••• - _ •••••••••••••••••••••••••••••••••••• o· •••••••• , •• _ •••••••••••••••••••••••••••• - •••• :

Local Machine Remote Machine

Fig. 2:Interaction between Components ofthe Remote Execution
Subsystem for Interactive Processing

At the other end, serv~ei~b, crea tes : a': child for executing the requested process. Two are the
': . ~ ~ , . ".~:,

pO:isibilities contemplated by the system here:, interactive and non interactive processing,

In the case of interactive processing the standard inputloutput and standard error is redirected

to sockets for communication with the corresponding shadow pr()(Jes~< in the so~~,:~clieIlt) ..

ma,chine. The shadow process is attached to a window which is used by the user as a means to

COlllIJlunicate with the remote process (via this socket) in the same w~Y' as when it is executed

loc:al1y;

126
200. CoNgreso Arge,.;no de Ciencias de la ComptIkIció.

In the case of non interactive processíng cornmunication is not established via sockets, instead

of that the standard input/output and standard error is performed via the user specified files o

These files can be directIy accessed by the process because it is running in a shared file system

environment (NFS, See figure 3)

Process completion is informed to the user through a mail originated by serv .. _exec at the

moment it receives the corresponding signal from the exítO system call of the terminating

processo

.. -~ "

Local Machine

IIhadow
process

o' ..
_0- .. -. -.

........... -_
stdin stdout
tile file

strurrr
file

Remote Machine

~l_

.o _-

user
process

'o,
",

" ' .
", .

~ " ," · · · , . .
; ~ ..

".
"

~' ...
NFS

#" •• ", "-"" . .. -... - _oo. ---_ _---_ --
Fig. 3: Inter.action between RemoteExe~u~on Subsyst~

Components and Network File System.
(non interactive proeesses) .'

4.3 REMOTE EXECUTION USER INTERFACE

,o' ,,'
,,-

. . .
, . .
,
I .

This section describes how a user can deliver to the system oile or more requests for remote

execution of his jobso The simplest way to do it is by entering at cornmand interpreter level:

127
2doo . Congreso Argentino de Cienciav de la Computación

remote <program name.> <arguments.>

In tbis case a unique request of tbe interactive type for remote execution is created (standard

inputlouput and error tbrough terminal). When tbis request is processed tbe system creates a

window in the local macbine, on behalf of the remote process, intended for tbe managern.ent of

its inputloutput and error.

'Ibis kind of interaction could be satisfactory for certain type of users. But in a network. also

conceived for intensive CPU tasks it is usual, for long duration tasks, to lea ve to the system

tbe responsibility of inputting data and collecting results instead of entering data on line and

waiting for .completion.

In these cases it is appropriate tbatstandard inputloutput and error be performed by means of

user specified files tbat are defined and analysed separately.

Additionally, it is common to executl3 a program witb different standard files and arguments.

This type of more complex requests are performed in tbis system by providing tothe remote

command a request specification file, wbere diverse execution modes for the jobs can be

described:

remote <request spec.ificat.ion file>

A request specitication file is an ordinary text file wbich contains tbe following directives:

program == <name>
[arguments = <argument list>l

{
terminal

standard files =
user fLles

[priority = <prioritY>l
add_request

[input = <pathname>1
[output = <pathname>1
[error = <pathname> 1

Tbe program directive, wbicb is mandatory and specified only once inside the request

specificatioIl file, identifies tbe executable file.

Tbe optional arguments directive, specifies tbe arguments used wben invoking tbe program

determined by tbe program directive.

128
2do. Congreso Argentino de CietfCfas de la Computación

The standard files directive, establishes if the standard inputloutput and error are perfórmed

tbr'ough the terminal (interactive processing) or by means ofuser specified files (if any is

omitted, then./dev/null is assumed).

The priórity>directive specifies wbich is the priority (from -100 to 100, and O by default)for

the task to be executed. A bigher priority value means higher priority.

The add. tequest directive, according to the previously· specified directives, creates a request

for remote executionand add it to the request queue. Tbis request will be thereafter processed

by the remote execution subsystem.

A single program can be repeatedly executed with diverse sets of arguments, standard files and

priorities iby· altemating the adJ(.request directive with those before mentioned (arguments,

standard files and priority).

S. CONCLUSIONS·

Transparent remote process execution constitute by itself a research area in distributed systems

which is intimately related to those systems supporting load balancing.

The design of the remote execution subsystem proposed here is . an initial step tbat in a

straightforward and· simple :manner permits, too tmderstand and face most of the relevapt

problems aboye mentioned.

Even though restrlcted, tbis subsystem will assist to evaluate the remaining load balancing

system components on their capability for solving concrete problems.

Once the whole system be integrated and tested it will be contrasted against systems adopting

other policies seeking. for performance improvements.

6. ACKNOWLEDGEMENTS

We acknowledge the cooperation of the project group for providing new ideas and constructive

criticistns. Also to the UNSL, the CONlCET and the Subsecretary ofInformatics and Development

from which we receive continuous support.

129
2do. Congreso Argentino de Ciencías de la Computación

7.)lImLIOGRAPHY

[1] Aguirre G., Arredondo D., Errecalde M., Piccoli F., Printista M., Gallard R. - Load

Distribution and Balancing Support in a Local Area Network Based Distributed System;.

UNSL, COJ,nputer Systems Interest Group, Internal Report may 1.996.

[2] Bricker A., Litzkow M. 1. and Livny M., Condor Technical Summary, Version 4.lb,

Technical Report 1069, Computer Sciences Department, University of Wisconsin­

Madison, Wisconsin, USA (1992).

[3] Colouris G., Dollimore 1., Kindberg T. -Distributed Systems: Concept and Design -

Addison-Wesley, 1994.

[4] Comer Douglas E., Stevens David L. - Intemetworking with TCP/IP - Vol. III - Prentice

Hall.

[5] Crichlow Joel M. - An introduction to Distributed and Parallel Computing - Prentice

Ha11- 1988.

[6] Chu W., Holloway L., Lan M., Efe K. - Task Allocation in Distributed Data Processing­

Distrlbuted Computing: Concepts and Implementations, pp 109-119, Addison Wesley-

1984.

[7] Foster lan T. - Designing and Building Parallel Programs - Addison Wesley 1995.

[8] Johnson 1. D., Harget Alan -On The Performance OfLoad Balancing Algorithms- PhD

Thesis, Aston University, Birmingham, u.K., 1991.

[9] Lewis T.G. , EI-Rewini H. - Introduction to Parallel Computing - Prentice Hall- 1992.

[10] Lewis T.G. - Foundations ofPara11el Programming. A Machine-Independent Approach­

IEEE Computer Society Press - 1993.

[11] McEntire P. L. - O'Reilly J. G. - Larson R. E. - (Editors): Distributed Computing:

Concepts and Implementations - Addison Wesley - 1984

[12] Pankaj M. - Automated Leaming of Lo~d Balancing Strategies for a Distributed

Computer System -, PhD. Thesis, University oflllinois at Urbana, Chapaign, 1993.

[13] Stevens W. Richard - UNIX Network Programing - Prentice Hall.

130
2do. Congreso Argentino de Ciencias de la Computación

[14] Stone H., Bokhari S. - Control of Distributed Processes - Distributed. Computing: . o". .

Concepts and lmplementations, pp 109-119, Addison Wesley - 1984.

[15] Tanenbaum Andrew S. - Sistemas Operativos Modernos - ,Prentic~ Hall.

[16] Theimer Marvii1 M.,Lantz Keith A. "and Cheriton David R. - Preemptable Remote

Execution Facilities for the V-System - ACM - 1985.

131
ido. Co.e~o-Al'geIIIilfo. .de·Ci8lJC.iQS de lo C9111J111/QCjIM

