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Integrating Interactive Tools using

Concurrent Haskell and Synchronous Events*

Abstract

In this paper we describe how existing interactive tools can be
integrated using Concurrent Haskell and synchronous events. The
base technology is a higher-order approach to concurrency as in
CML extended with a framework for handling external events of
the environment. These events are represented as first class
synchronous events to achieve a uniform, composable approach to
event handling. Adaptors are interposed between the external
event sources and the internal set of listening agents to achieve this
degree of abstraction. A substantially improved integration
framework compared to existing technology (such as for example
the combination of Tcl/Tk with expect) is then provided. With this
basis it is for example possible to wrap a GUI around the hugs
interpreter with very little work required.

1 Introduction
There are several ways in which existing tools can be encapsulated to work in an

integrated environment. The general solution to interoperability is to use component

technologies such as Corba [OMG95] or the Component Object Model [COM95] where

client/server stubs are generated on the basis of Interface Definition Language (IDL)

signatures. Both systems provide interoperability in a heterogeneous language and

platform environment. Haskell programmers may also turn to Green Card [PNR97],

which has a more restricted scope by providing interoperability between existing C

functions and Haskell.

However, there is no adequate way in Haskell to integrate loosely coupled and interactive

tools having a textual interface such as latex, ftp, telnet or hugs. A solution has been

suggested by expect [Lib91], which uses Tcl [Ous94] as scripting language and Tk for

wrapping GUI’s around existing shell tools. expect runs the tool in the background and

communicates with it in terms of “send command/expect response” sequences. Regular

expressions are used to distinguish between different kinds of responses, and expect

statements allow the developer to associate reactive behaviour with response patterns.

There is one inherent drawback with this approach: Tcl doesn’t provide sufficient support
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for large scale tool integration due to its lack of strong typing, modules and concurrency.

Concurrent Haskell [PGF96], extended with synchronous events in the style of CML

[Rep92], provides a better basis. Command scripts are then defined in terms of

computations of type IO according to the imperative functional style [PW93]. Events, on

the other hand, are represented as first class composable values with the non-

deterministic choice and the event-action operator as basic combinators. The overall

reactive system is consequently viewed as a network of executing and communicating

threads. However, using channel events and selective communication directly to

represent external events is not a promising direction to take. Selective communication is

too expensive considering the amount of events to be handled in the context of large

reactive systems such as integrated Software Development Environments.

The solution is to be found in architectures such as the ToolBus [BK94] or Java Beans

[Sun96]. An adaptor is then interposed between event sources (external tools) and the

event listeners (threads of the reactive system). It is the responsibility of the adaptor to

turn external events of the environment into first class synchronous operations. By using

dynamic typing, combined with a dedicated protocol for interaction between the adaptors

and the event listeners, the need for selective communication can efficiently be reduced:

each listener is equipped with exactly one channel for receiving all kinds of external

events.

This basis can in turn be used to provide a functional equivalent to expect, but with

substantial improvements with regard to composability and uniformity. Expecting tool

responses is now defined using first class, composable events featuring abstraction and

information hiding. The functional expect tool is backed up with an equally concurrent

GUI that interacts with the Tk toolkit through a dedicated adaptor. But unlike Tk,

widgets are typed and type classes are used to group different kind of properties. User

interactions are furthermore represented in terms of first class synchronous events to

achieve a completely uniform framework for presentation and control integration that

hides the underlying implementation details.

The remainder of this paper is organized as follows. The next section sets the scene by

introducing first class synchronous events. The third section defines the approach to

handling external events in terms of event sources, adaptors and event listeners. The

fourth section presents the functional expect tool, which supports encapsulation of

interactive tools in Haskell. The fifth section provides a quick overview of Haskell-Tk,

mainly focusing on the aspects relevant for representing user interactions as first class

synchronous events. The sixth section demonstrates the application of this encapsulation

technology on a larger example by wrapping a GUI around the hugs interpreter. The last

section compares the approach to existing technology and discusses the results.



2 Synchronous Events
Concurrent Haskell [PGF96] provides a minimal model to concurrency in terms of

commands for forking off new threads that communicate through MVar’s. More support is

actually required when developing comprehensive reactive systems. We have therefore

developed the UniForM Concurrency Toolkit [KN97] offering shared memory protocols,

message passing models and various thread abstractions. Whereas the shared memory

primitives are quite easily provided on top of MVar’s, the message passing model requires

a completely different setting. Event handling is done the “process algebraic” way by

providing similar basic operations and combinators as CML [Rep92], but in a monadic

(and more uniform) specification framework. A concurrent (reactive) system is then

expressed using two kind of domains. Values of type IO a represent (reactive)

computations that are executed for their effect, whereas values of type EV a represent

events that will return a value of type a (or fail with an error) when triggered.

The following computations, base events and event combinators are provided:

• channel creates a new channel of type Channel a.

• receive ch denotes the event for reading a value over the channel ch. Communica-
tion is by handshake between two threads, which means that a sender and a receiver
must perform a rendezvous in order to exchange values. Another thread must there-
fore synchronize on a

• send ch v event, which denotes the event for sending a value over channel ch.

• inaction denotes the empty set of events corresponding to the null process of proc-
ess algebras.

data Channel a

channel :: IO (Channel a)

receive :: Channel a -> EV a
send :: Channel a -> a -> EV ()

sync :: EV a -> IO a
poll :: EV a -> IO (Maybe a)

(>>>=) :: EV a -> (a -> IO b) -> EV b
(>>>) :: EV a -> IO b -> EV b
e >>> c = e >>>= (\_ -> c)

inaction :: EV a

(+>) :: EV a -> EV a -> EV a

event :: IO (EV a) -> EV a

tryEV :: EV a -> EV (Either IOError a )

Signature 1: Synchronous Events



• e1 +> e2 denotes the non-deterministic choice operator.

• e >>>= c is the event-action combinator that combines an event e with some addi-
tional reactive behaviour given in terms of a continuation function c.

• sync e is the operation that synchronises on the event e. Execution of sync e will
suspend until one of the events denoted by e triggers. The result of the sync com-
mand is the result returned by the triggering event.

• poll e attempts to synchronize on the event e, and immediately returns the result-
ing value wrapped with the constructor Just if synchronisation is possible. Other-
wise, Nothing is returned.

• event c denotes the event computed by c. c is a computation that will, when execut-
ed during a call to sync or poll, yield an event value as result. This event is used for
synchronization.

• tryEV e wraps an error handler around an existing event e, and returns either an
error or a value depending on the outcome of e.

The signature of these operations is defined in Signature 1. The implementation of

selective communication in terms of MVar’s is thoroughly documented in [KN97]. We

shall demonstrate the primitives by defining some derived events to be used throughout

the rest of this paper. The choose combinator turns a list of events into a single event

using non-deterministic choice:

choose :: [EV a] -> EV a
choose = foldr (+>) inaction

Promises are asynchronous procedure calls. A promise takes a command as parameter,

but rather than executing it immediately, it spawns of a server thread to do the job, and

returns an event on which the client may synchronise later on in order to get the result.

promise :: IO a -> IO (EV a)
promise beh = do { ch <- channel;

forkIO (try beh >>= sync. (send ch));
return (receive ch >>>= either fail return)}

Awaiting the result of such an (deferred) RPC is represented by the client synchronising

on a receive event over a reply channel. The server thread will eventually send its result

over this channel.

Timeouts are realised in the concurrent setting by using promises, where the server

thread is set up to delay execution for the specified time interval:

timeout :: Time -> EV ()
timeout = event . promise . delay



3 External Events
There are several ways by which prefabricated tools can be integrated. An approach that

conforms very well with the model of synchronous events has been suggested by the

ToolBus architecture [BK94]. Here a reactive system is viewed as a loosely coupled

network of executing agents communicating with each other by sending messages or by

broadcasting notices. Communication with an external tool goes through an adaptor:

agents of the reactive system send requests to the tool through the adaptor, and receive

events from the external tool - also through the adaptor. The adaptor consequently serves

as a capsule (or encapsulation) of the tool.

A similar approach, but building on objects and method invocations rather than agents

and message passing, can be found in the Java Beans architecture [Sun96]. The Java

Beans architecture uses events for propagating state change notifications between a

source object and one or more target listener objects. A common event registration

mechanism permits the dynamic manipulation of the relationships between event sources

and event listeners. Event sources furthermore identify themselves by providing

particular registration (and de-registration) methods that accept references to particular

event listener interfaces. In circumstances where a listeners cannot directly implement a

particular interface, an instance of a custom adaptor may be interposed between a source

and one or more listeners in order to establish the relationship or to augment behaviour.

The primary role of the adaptor is to conform to a particular event listener interface, and

to decouple the incoming event notifications on the interface from the actual listeners. For

example, it is up to the adaptor whether events are synchronously unicasted to a single

listener or asynchronously multicasted to all listeners.

In a framework of synchronous events, we would like to represent such external events

(being generated by foreign tools) as first class composable values. All a listening thread

should do in order to receive the event from an external source would be to synchronise on

it calling sync. Registration (and de-registration) of the listener with the adaptor should

AdaptornTooln

AdaptormToolm

Adaptor2Tool2

Adaptor1Tool1 Listener1

Listeneri

Listenerj

Haskell Controller

Figure 1: Reactive System Architecture



then happen behind the scene, just as when one synchronises on channel events. Such

external events could then be combined to form new composite events, and one could freely

mix internal and external events (using +>), thus having a uniform and composable

framework for event handling independent of the actual source of the event.

Considering the amount of events in systems like integrated SDE’s, and knowing the cost

of selective communication, it would be quite unrealistic to represent each single external

event (e.g. a button click) directly in terms of a unique channel event. Our solution to the

problem is to require that every adaptor presents, to the set of listeners, a uniform

interface that abstracts over the details (and possible idiosyncrasies) of the encapsulated

event source. Similar to the Java Beans architecture, a decoupling between the listeners

and the adaptors is enforced. All external events of the universe are required to be

uniquely identifiable in terms of values of type EID. The events are passed onwards, from

an adaptor to the registered set of event listeners, in terms of tuples consisting of the EID

and the information associated with the event. Event relevant information is in turn

represented in terms of values of the dynamic type (Dyn).

The need for selective communication can now be reduced since each event listener can

use a single private channel for receiving all kinds of external events independent from

the actual source of the event. We refer to such a listener as an interactor. The event

listeners represent by convention an external event in terms of a quadruple consisting of:

1) the event id, 2) a registration command, 3) a de-registration command and 4) a

continuation function that specifies the reaction to the event. The latter is, for an event of

type EV a, of continuation function of type (Dyn -> IO a). The registration command is

used during synchronization to inform the adaptor about the presence of a new listener.

The adaptor can then delegate an incoming event from the event source onwards to the

event listener. When an external event arrives, the listener identifies the associated

continuation function, passes the received event information to it as an argument and

executes the associated reaction to the event.

The adaptors, on the other hand, act as wiring managers between the sources and the

listeners. A specific adaptor receives events from the associated event source, and

identifies, for each incoming event, the listeners having registered interest in it. The event

is then delegated onwards to the listener(s). By enforcing a loose coupling between event

listeners and event sources, customized adaptors can be interposed that deal with the

idiosyncrasies and peculiarities of the event source.

It is quite interesting to observe that this model does not require more than is already in

the concurrency toolkit (apart of course, from the dynamic types). The communication

between the adaptors of a reactive system and the listeners is fully definable using

synchronous channel events combined with the core features of Haskell.



3.1 Event Listeners

A generic event for listening to external interactions is provided by the function listen.

The predefined reaction associated with this event is to project the dynamic value received

onto its internal type, or to fail with an error should the internal type of the dynamic value

not match the external type expected by listen (Signature 2). Additional reactive

behaviour can be glued onto such an event by using the event-action combinator (>>>=).

Rather than identifying events directly, we let the interface go through the class

ExternalEvent, which provide an injection function into type EID. The injection (toDyn)

and projection (fromDyn) methods of type Dynamic are provided through operations of

class Typeable. This approach to dynamic typing within an otherwise statically typed

language (also to be found in [JP97]), requires explicit instantiations to be given for each

element type.

The semantics of the Register and Deregister arguments are adaptor dependent

(more on this below). The effect of executing the register command is to inform the adaptor

mediating the event that the given event listener is willing to receive the event. The

external events themselves are communicated as tuples (of type Event) consisting of the

event identifier and the value associated with the event in the form of a dynamic value.

When a listener executes the sync e command, it starts out by creating a channel for

receiving external events:

type Event = (EID, Dyn)
type Listener = Channel Request
type Request = (Event,Channel ())

sync :: EV a -> IO a
sync (EV be ial) = do {
ch <- channel; registerEvents ial ch;
syncbe (

receive ch >>>= (\msg -> do{deregisterEvents ial ch;serve msg ial})
+> choose (map ($ (deregisterEvents ial ch)) be)
)}

The external events denoted by e are then registered with the relevant adaptors, and the

listener is subsequently set up to await the occurrence of an event. Registration in this

listen::(ExternalEvent e,Typeable a) => e -> Register -> Deregister -> EV a

class ExternalEvent e where
toEID :: e -> EID

class Typeable a where
typeOf :: a -> TypeTag
toDyn :: a -> Dyn
fromDyn :: Dyn -> Maybe a

Signature 2: Event Listener Interface



context means telling the adaptor that “when this event occurs, please pass it onwards on

my channel”, i.e. the event listener identifies itself to an adaptor in terms of its external

event channel. The events that can be accepted by the listener are either one of the base

channel events denoted by e, or one of the external events just registered. An external

event occurrence has the following effect: first, all registered events are immediately de-

registered, then the event is handled by executing the associated reaction to the event.

Synchronous events are represented in terms of two lists: one denoting base channel

events (BE) and the other denoting external interactions (IA) (we ignore computed events

for the time being):

data EV a = EV [IO () -> BE a] [IA a]
type IA a = (EID, Register, Deregister, Action a)
type Action a = Dyn -> IO a

Base channel events are in turn represented as functions parameterised over the actual

de-registration command: this command is invoked as soon as one of the base events

occurs, but before the associated reaction to the event is computed.

When handling an event coming from an adaptor, an acknowledgement is send back to the

adaptor that generated the event (the adaptor was kind enough to pass on a reply channel

for this purpose). The action associated with the received event is finally executed. The

outcome of this action is the result returned by sync:

serve :: Request -> [IA a] -> IO a
serve ((e,v),ca) ial = do {sync(send ca ()); reaction e ial v}

reaction eid ial v = let(_,_,_,a) = ia in (a v)
where ia = head (filter (\(eid’,_,_,_) -> eid == eid’) ial)

The reaction to an event, specified in terms of a continuation function, takes the role of a

callback, but unlike callbacks, a useful value is returned to the application. Events are

furthermore composable, whereas callbacks are not.

3.2 Standard Adaptor

The role of the adaptor is to delegate events from the event source onwards to any listener

that has registered interest in the event. Different kinds of event sources may require

different kinds of adaptors that map event handling onto the model of synchronous events.

Adaptors can therefore be customised on need. We shall demonstrate the principles of the

architecture by defining a standard adaptor, which is actually used as a basis for setting

up some customized adaptors.

The standard adaptor manages a mapping from event identifiers to the set of listeners

willing to receive the event. This adaptor is identified in terms of a channel for incoming

events, a channel for registration requests, and the current event registration set:



data Adaptor a = A (Channel (EID,a)) (Channel (IO ())) Registrations

The adaptor is in one of three states. In all states it is willing to serve new (de-)registration

requests. The registration request is actually communicated over a channel in the form of

an IO computation, and the reaction to the request is simply to execute the computation:

registration :: Adaptor a -> EV ()
registration (A _ chr _) = receive chr >>>= id

In the first state, the adaptor is set up to accept events from the event source:

adaptor1 adp@(A che _ _) = sync (
registration adp >>> adaptor1 adp

+> receive che >>>= multiplex adp)

Having received an event from the source, the adaptor enters a new state where it

attempts synchronization by multiplexing the event to one of the listeners having

registered interest in the event:

multiplex adp@(A _ _ rs) e@(eid,_) =
getListeners rs eid >>=(adaptor2 adp e)

adaptor2 adp e lst = sync (
registration adp >>> multiplex adp e

+> choose(map(delegate e)lst) >>>= adaptor3 adp)

Delegation to the listener is provided according to a synchronous RPC protocol. A channel

is therefore created so that the adaptor can synchronise on the reply once a listener has

accepted the event:

delegate (eid,v) ls = event (do {
ch <- channel;
return( send ls ((eid,toDyn v),ch) >>> return ch)
})

Having delegated the event to one of the listeners, the adaptor gets into a state where it

is awaiting the reply before it goes on reading new events from the source.

adaptor3 adp ch = sync (
registration adp

+> receive ch >>> adaptor1 adp)

Note that the unicast pattern is a special case of a multicast pattern and as such allows

migration from a unicast to a multicast protocol without breaking existing client code. The

actual implementation supports both communication paradigms.

3.3 Event Registration

The missing link between an adaptor and a set of event listeners is the set of registration

commands. In order for a potential event listener to establish an event flow from a source

to the listener, sync must call the methods for registering and de-registering events with

the associated adaptor.



Each adapter usually provides its own specialization of the listen event that hides the

definition of the register and de-register commands to the application. For example, when

using the standard adaptor, the following event is used by the event listeners:

listen' :: (ExternalEvent e, Typeable a) => Adaptor a -> e -> EV a
listen' a e = listen e (register' a eid) (deregister' a eid)

where eid = toEID e

Concerning the standard adaptor, event registrations are maintained by a mutable

variable (MVar) holding a mapping from event identifications to the set of listeners that

are registered as potential receivers of the event. The registration command is a

computation that takes the identity of a listener. The effect of course is to add the given

listener as a recipient of the event:

type Registrations = MVar(FiniteMap EID (Set Listener))
type Register = Listener -> IO ()

register' (A _ chr rs) eid ls = sync (send chr c)
where c = updVar rs (addListener eid ls)

registerEvents ial ls = sequence [reg ls | (_,reg,_,_) <- ial ]

We omit the function addListener - it is trivial. The definition of the de-registration

command follows the same pattern.

3.4 Event Source

Events generated by the event source are communicated to the adaptor by sending the

event over the adaptors event channel. The emit function defines this behaviour:

emit :: ExternalEvent e => Adaptor a -> e -> a -> IO ()
emit (A che _ _) e v = sync(send che (toEID e,v))

The communication with a loosely coupled tool is frequently established using pipes. A low

level reader thread is then interposed between the event source and the adaptor that waits

for a message to arrive over the pipe (calling threadWaitRead). The event at this stage

is actually represented as a plain string. The string is consequently parsed (using show)

before it is forwarded to the adaptor for further delegation.

3.5 Iterative Choice

Calling sync e suspends the execution of the calling thread until one of the communi-

cations denoted by the event e triggers. Synchronisation happens at most once. For many

reactive systems an iterative choice is more applicable and less expensive. An iterative

listener can be created by spawning off a new interactor that repeatedly listens to a

number of events:

interactor:: EV () -> IO ()
interactor e = forkIO (do {iterate e})



iterate e = sequence (map sync (repeat e))

become :: EV () -> IO ()
become e = do {forkIO (iterate e); suicide}

In the presence of iterative choice, it makes sense to provide a command by which an

interactor may change its event registration set sometime during its lifetime. This is

achieved by the become command, similar to the become command of the Actors model.

An interactor has many similarities with the Actor [Agh86] model, but unlike Actors we

use synchronous communication and hide the actual message dispatching by representing

external interactions in terms of composable first class events. The concrete

implementation is slightly more complicated than described above. An iterative server

does not re-register the (external) events at each iteration, rather it keeps a record of the

registrations made at the last iteration. Each iteration therefore has to deal with changes

with respect to the last iteration only, thus speeding up the handling of (external) events

significantly.

4 A Concurrent Expect Tool
A problem with many interactive shell tools, such as for example ftp, is that they cannot

be run without a user interactively supplying the input. A large number of application

programs are written with the same fault of demanding user input: su, telnet, passwd

etc. expect [Lib91] is a tool designed to control interactive programs. An expect script,

based on the Tcl language, defines the dialogue with the interactive tool in terms of send/

expect sequences: the expect tool sends commands to the interactive tool, and receives

responses in the form of strings. expect supports regular expressions and can wait for

multiple strings at the same time, executing a different action for each kind of string.

Expect may therefore be used to set up new non-interactive versions of existing interactive

tools that can be called within programs because they no longer require user interaction.

We have developed a functional tool solving the same set of problems, which uses Haskell

and first class synchronous events for matching responses. The functional Expect tool

offers in essence, 3 commands and 2 events for encapsulating interactive tools:

• The newExpect command starts a program and returns a handle to the tool. The call
specifies the name of the program as well as additional tool specific parameters.

• The execCmd command sends a request to the tool. The request is represented as a
plain string.

• The match event defines a pattern of interest and thus plays the important part of
receiving and reacting to the responses of the external tool. The pattern is expressed
in terms of a regular expression. The matched string is returned as the result.



• The closeExpect command shuts down the external tool and the corresponding en-
capsulation on the Haskell side.

• The terminated event returns a status value when the Expect tool terminates.

An interactive tool can now be controlled by setting up a listener that synchronises on tool

events using match. The encapsulation in Haskell of archetypical Unix tools such as

latex, mail, ftp and telnet is, in principle, very similar, but also quite lengthy since

we must deal with a number of errors and special cases. We shall therefore demonstrate

the concepts using a smaller example, namely that of setting the user identity (su).

4.1 Set User Command

A Haskell command that allows one to become another user without logging off can be

implemented using the Unix su command. The user name is the first argument passed to

the setUser function, the password the second:

setUser:: String -> String -> IO ()
setUser user pwd = do {
su <- newExpect "su" [arguments [user]];
sync ( match "^su: Unknown.*$\n" su >>> fail unknownUser

+> match "^Password.*" su >>> execCmd (pwd ++ “\n”) su);
sync ( match "^su: Sorry.*$\n" su >>> fail illegalPassword

+> timeout (secs 1) >>> done);
}

The command for performing background su emulates the typical dialogue between a user

and su. Requests from su are matched by appropriate match events, and the responses

are forwarded to su in the form of strings. First, a new su process is spawned off to run in

the background. The first call to sync looks for a password prompt (or an error). The

listener responds by sending the password to su (or by failing with an error). The second

call to sync checks whether the password was ok or not. If so, su doesn’t respond. In

situations where there is no prompt from the external tool, a timeout can be used: or

better, one may attempt to detect that the tool has terminated.

data Expect

newExpect :: FilePath -> [Config OSProcess] -> IO Expect

closeExpect :: Expect -> IO ()

execCmd :: String -> Expect -> IO ()

match :: String -> Expect -> EV String

terminated :: Time -> Expect -> EV Status

Signature 3: Functional Expect Tool



4.2 Termination Events

Process termination can be captured in Unix by calling the getProcessStatus

command. In a concurrent setting we must take care that this call does not block the

thread scheduler. This requires in turn that a polling “jacket” is written which

investigates, at regular intervals, whether the process is running or not. The termination

event is defined by wrapping a promise around an active polling loop. The jacket

command actually takes the role of a customized adaptor turning a operating system

event into a first class synchronous event:

terminated :: Time -> Expect -> EV Status
terminated t =
event . promise . (jacket t) . (getProcessStatus False True) . getProcessID

jacket :: Time -> IO (Maybe a) -> IO a
jacket d c = do { s <- c;

case s of
Nothing -> do {delay d;jacket d c}
(Just s) -> return s}

4.3 Composite Events

In general, it cannot be assumed that a response coming from a interactive tool is

terminated by a newline (prompts usually aren’t). The Expect tool therefore reads in

chunks of text from the tool, and attempts the registered set of patterns to see if anything

matches. The more frequently a match is found, the less the number of characters buffered

and the less the time needed to match a response. In the presence of long input lines, it

therefore makes sense to split the line into small fragments until an end-of-line character

finally occurs. The following composite event expresses such a line matching pattern:

matchline:: Expect -> EV String
matchline exp = match "^.*" exp >>>= sync . (remainder exp)

remainder :: Expect -> String -> EV String
remainder exp l =

match ".*" exp >>>= sync.(remainder exp).(l++)
+> match "$\n" exp >>> return (l++"\n")

4.4 Advantages over Tcl/expect

Expect has been fully implemented in Haskell in terms of approximately 100 LOC on top

of the UniForM Concurrency Toolkit and the regular expression utility of GHC. The

Expect adaptor is a slightly customized version of the standard adaptor. First, characters

read by the reader thread must now be buffered until a prefix of the buffer matches one of

the registered patterns. A rematch should furthermore be initiated every time a new

pattern is registered with Expect to see if it matches the contents of the buffer.

Compared to Tcl/expect [Lib91], the Haskell variant provides an improved integration



framework by being type-safe and concurrent. However, the major argument in favour of

a functional approach is its support for abstraction. Events are fully composable: giving a

set of predefined building blocks one may define more derived abstractions, such as

timeout, terminated and matchline. Using Tcl/expect, such commands are either

built in (timeout) or not supported at all (matchline). There exist work-arounds to event

composition such as the specializations expect_before (and expect_after) where

pattern-action pairs from the most recent expect_before are implicitly added to the

beginning of any following expect command. The choice operator of Expect (+>) provides

a much more general and functional solution for composing events.

5 Graphical User Interface
Once an interactive tool has been encapsulated using Expect, one may be tempted to go

one step further. Numerous programs are interactive but non-graphic. A prominent

example is the hugs interpreter. In many cases, converting these to use graphic user

interfaces would be beneficial [Lib94]. Using Haskell, it is actually possible to wrap GUI’s

around existing tools. The concurrent Expect tool is complemented with an (equally

concurrent) encapsulation of Tk. Wrapping a functional interface around Tk is not a new

direction of research [VST96,LWW96,FGPS96]. HTk (acronym for Haskell-Tk) [Kar97] is

distinguished by being a strongly typed, concurrent encapsulation of Tk. It has been

designed to support abstraction and composability, for what concerns dynamic as well as

static aspects of a user interface. Event handling is therefore done by synchronising on

first class, composable events making the handling of user interactions uniform to all

other kind of events generated within the system. Another advantage is that it eases the

development of composite and customised widgets whose events may now be defined by

appropriate compositions over the base events of the constituent widgets. An extensive

class hierarchy has furthermore been set up, which defines the general commands and

configuration options of the GUI. This class hierarchy has been instantiated to provide

most of the functionality of the build in widgets offered by Tk as well as composite widgets

developed directly in HTk.

In principle, the encapsulation of Tk follows the pattern suggested by the Expect tool:

commands are forwarded to Tk in the form of strings, and responses are caught and

handled by a pattern matching listener. The encapsulation of wish is, however,

significantly more complicated than that, since a local cache is needed to record

information about the widgets and their associated properties. A detailed presentation of

these issues (or the overall features provided by HTk) is clearly beyond the scope of this

paper. We shall briefly introduce some of the salient concepts of HTk by wrapping a GUI

around the su command, and then go on with a larger integration case study, namely that



of wrapping a graphical user interface around hugs.

5.1 Set User (Continued)

A minimal solution for wrapping a GUI around su (see fig. 2) is to use one and the same

entry widget to enter the user identity and the password. The entry is packed into a

labelbox - a customized packer for associating a label with an arbitrary widget. The

window is then opened and the user is queried for the user identity. Having entered the

identity, the window is reconfigured to prompt for the password. Finally, the setUser

command is called, with passes control to an Expect tool. Errors are caught and displayed

by a dialogue box.

A number of comments may be in order regarding the GUI commands. Each object is

identified by a unique and typed handle rather than by name, e.g. the type Entry a

denotes entries displaying text of type a. The handle is returned when invoking the

command for creating a new widget of the kind (entry). Initial configuration options may

be specified at creation time. Later on, the configuration options can be changed by

applying the configure command.

5.2 User Interaction

Interaction with the user is expressed in terms of first class, synchronous events. The base

operation for handling user interaction is the interaction event:

interaction ::(GUIObject o,GUIEvent e) => o -> e -> EV GUIEventInfo
interaction w e = listen e’ (bind w e’) (unbind w e’)

where e’ = toEID (w,e)

Specializations of this event, such as for example those needed to capture key presses or

button clicks, are easily provided:

Figure 2: GUI Wrapper for set user

setUserGUI = do {
e <- entry [];
l <- labelbox e [text "User:"];
win <- openWin l [title "Set User"];
usr <- awaitInput e;
configure l[text "Password"];
configure e [showText '*', value ""];
pwd <- awaitInput e;
catch (setUser usr pwd)

(\e -> openErrorWin e []);
destroy win

} where awaitInput e =
sync (keyPressed e "Return" >>> getVar e)



clicked :: Button () -> EV ()
clicked w = interaction w Clicked >>> return ()

keyPressed :: GUIObject o=> o -> String -> EV Position
keyPressed w key = interaction w p >>>= selPos where p = KeyPress (Just key)

Each interaction is uniquely defined in terms of its origin (an interactive object) and its

event pattern. The class GUIEvent defines the class of values that can be used to

designate Tk event patterns (e.g. a key press, optionally preceded by a list of modifiers).

The type GUIEventInfo represents the type of information returned when a Tk event

occurs, which amounts, among others, to positioning information.

The registration command is a refinement of the standard adaptor command that has the

additional effect of passing a bind request to Tk should the registration set associated

with the event be empty. The bind request instructs Tk to report the event when it occurs.

Should the set of listeners associated with this event become empty again, then a similar

unbind command is send to Tk. The nice side effect of such a scheme is that Tk can only

generate events for which there are registered listeners.

A subset of the widgets are equipped with a single standard event, i.e. buttons. These

events are defined through the class Trigger. Active widgets are polymorphic, a solution

that has been inspired by Haggis [FP95]. A base clickbutton is of type (Button ()),

meaning that the unit value is returned when the button event triggers. Buttons are

functors however, and can be mapped to return a value more suitable for the application

at hand.

class Trigger t where
triggered :: t a -> EV a

data Button a = Button GUIOBJECT (() -> IO a)

instance Functor Button where
map f (Button b g) = Button b ((map f) . g)

instance Trigger Button where
triggered (Button b f) = clicked (Button b return) >>>= f

Notice that every object has an associated untyped representation in terms of a value of

type GUIOBJECT (basically an MVar providing MT-safe access to the object’s attributes).

A menu is an example of a composite widget that consists of a number of menu items.

Similar to buttons, menus are parameterised over the type of the value returned when a

menu item is invoked:

data Menu a = Menu GUIOBJECT (MVar [Button a])

The current set of menu items of the menu is associated with the Menu handle. A

composite trigger matching the selection of one of the menu items is therefore given by the

following instantiation:



instance Trigger Menu where
triggered (Menu _ v) = event ( do {

bts <- getVar v;
return (choose ((map triggered) bts))

})

6 Hugs Interpreter
The Haskell Users Gofer System (hugs) is running as a shell tool. Hugs for windows

(winhugs) [JP97] offers a GUI front-end for Microsoft Windows. A more portable solution

can be achieved by encapsulating the existing hugs interpreter using Expect and HTk.

The Expect tool plays a central role in controlling the dialogue between the user and hugs

running in the background. HTk is used to provide an interface featuring a scrolling

console window that looks like the normal hugs interface.

A simplified listener for hugs is presented below, in terms of an interactor that repeatedly

listens to the events generated by either the user, by hugs or by the operating system. The

newHugs command creates a new instance of the hugs interpreter and returns a handle

to the tool. It starts up a new expect tool to interact with hugs (model), creates the window

(view) and turns the control of the system over to an interactor (controller). The interactor

handles user interactions, fetches responses from hugs and listens to termination events.

newHugs :: IO Hugs
newHugs = do {

exp <- newExpect "hugs" [];
(win,tp,mns) <- mkHugsWin exp;
interactor (

match "^? " exp >>>= (appendText tp)
+> keyPressed tp "Return" >>> do {

cmd <- getInput tp;execCmd (cmd++"\n") exp}
+> matchline exp >>>= (appendText tp)
+> choose (map triggered mns) >>> done
+> closed exp win >>> do {closeTool exp;suicide}
);

return (Hugs exp win tp)
}

The user interface consists of a console window equipped with scrollbars, a menubar of

hugs command and a number of torn-off menus. The mkHugsWin command sets up the

window and the associated menus and returns a handle to the window, the text widget

and the list of menus making up the menubar. The various commands and options of hugs

are all available as menu items. Dialogue windows are in turn used for entering user input

such as the repeat string should the command require interaction with the user.

Expression evaluation and command execution is taken into account by the first 3 events.

The match event catches the prompts generated by hugs (Version 1.0). The keyPressed

event is triggered when the user wants an expression to be evaluated pressing the Return



key. The controller reads the expression entered by the user and forwards it to hugs for

evaluation. The matchline event matches the result generated by hugs in response to

such a request. Menu invocations are in turn handled by the choose event. Given the list

of menus, map is applied to generate a list of events, each awaiting menu invocations

within a single menu.

The last event of relevance is the event signalling that the session with hugs has ended.

The closed event is actually a composite event since there are at least 3 ways to

terminate hugs: by destroying the window, by executing a Unix kill command, or by

submitting the “:q” command to hugs. Hugs responds to the last request by printing

“[Leaving Hugs]”. The event triggered by hugs being terminated is therefore defined as:

closed exp win =
destroyed win

 +> terminated (secs 2) exp >>> done
 +> match "^[Leaving Hugs]$\n" exp >>> done

In all three cases, the reaction to the event is the same. The example is interesting because

it demonstrates the uniformity and advantage of having events as first class values.

Figure 3: GUI interface to the hugs interpreter



7 Conclusion
Starting with synchronous events in the style of CML, it is possible to provide an adequate

approach to the handling of external events in a reactive system architecture by

introducing a concept of adaptors and interactors. The advantage of this approach is that

all kind of events of a reactive system can be given a representation as first class,

synchronous and composable values, independent of the actual source of the event. A

uniform framework for presentation, control and platform integration is consequently

achieved. However, for some tools (such as for example Tk), quite an amount of re-

engineering is necessary in order to hide the idiosyncrasies of the tool behind more

friendly (and safe) abstractions.

We are currently using the technology as a basis for the UniForM WorkBench [KPO+96],

which offers a framework for developing integrated Software Development Environments

given existing off-the-shelf tools. Haskell plays a major role in this context by being the

central integration language. The WorkBench has been established by reusing existing

tools such as Tk, the graph visualization system daVinci [FW97], and the Portable

Common Tool Environment [ECM93]. Adaptors have been wrapped around the tools, and

synchronous events are therefore used to represent operating system signals, database

notifications and user interactions, among others.

The generic UniForM WorkBench is currently being instantiated to develop a SDE for

specification and proof [KSW96,KLMW97] of Z specifications. This SDE will soon be

extended with another track supporting specification and proof of CSP specifications. The

Expect utility has proven to be extremely useful in this context to develop Haskell

wrappers for existing Z tools such as the Z type-checker, configuration manager,

prettyprinter and proof tool. The encapsulation of the transformation and proof tool (HOL-

Z, a structure preserving encoding of Z in Isabelle [Paul95]) is an interesting case study

in itself since it demonstrates how Expect can be used to control an application normally

running within an SML session.

The encapsulation of hugs is more a side-track - the first prototype was developed within

one afternoon just for the fun of it. It has demonstrated to us that using Haskell with the

right kind of abstractions is a viable approach to tool integration. The experience would

be even more positive with multiple parameter type classes, support for orthogonal

persistence and a more general approach to dynamic typing.
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