
A Functional Programming Approach to a

Computational Biology Problem

Natalio Krasnogor Pablo E� Mart��nez L�opez Pablo Mocciola David Pelta

LIFIA� Departamento de Inform�atica� Universidad Nacional de La Plata�

C�C���� Correo Central� ����� La Plata� Buenos Aires� Rep�ublica Argentina�

Tel�Fax	
��
�

�
�

E�mail	 fnatk�fidel�pablom�davpg�info�unlp�edu�ar

URL	 http���www�lifia�info�unlp�edu�ar�

Abstract

Protein Folding is an important open problem in the �eld of �Computational Biology�� Due to its com�

binatorial nature� exact polynomial algorithms to solve it could not exist� and so approximation algorithms

and heuristics has to be used�

In this paper� a new heuristic is studied� based on the approach that considers that the folding process

is coded into the protein� One important aspect of this work is that the algorithm was implemented using

functional programming� resulting in advantages for the understanding of the problem� The results obtained

are comparable with the ones obtained for classical algorithms�

Keywords� Protein Folding� Functional Programming�

Combinatorial Optimization

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� Introduction

The Protein Folding problem is one of the most important open problems in Biochemistry due to its theoretical

and pragmatic implications� In the �eld of Computer Science it is positioned in a branch called �Computational

Biology�� that tries to solve problems raised from Biosciences using mathematical and computational tools�

Computational Biology had received a lot of attention and fundings after the Genoma ���� Proyect�

Proteins are amino acid polymers� There are �� aminoacids� each composed of a carbon backbone and

a residue that determines its identity and its chemical properties� There are amino acids wich are neutral

and hydrophobics� other neutral and polar� basic or acidic� While in its native state� each protein presents a

charateristic three dimensional shape� This 	D shape is strongly related to the biological properties of the given

protein and the role it plays in living beings�

The Protein Folding problem can be stated as follows
 given an unfolded aminoacid sequence� �nd the

�right� folding of that sequence� The unfolded state is just the linear arrangement of amino acids� In nature�

the proteins fold to their �native� state� which determines its functionality� Also� the common believe is that

this native state is minimizing
 maximizing � some yet unknown criteria�

Some lattice�based computational models of the Protein Folding were shown NP�Complete� others remain

NP�hard �Fra�	� UM�	a�� but some approximation algorithms exist �HI����

However its theoretical and practical relevance �SSK��� UM�	a� makes worthwhile spending resources and

time in modeling the folding process� Usually� strong emphasis is put in the results obtained� rather that in the

way they are generated� enlarging the gap between researchers from Computer Science and Biology� The claim

of this paper is that� using the right tools� both communities can colaborate much closer� enhancing the results

at the same time�

Historically� �Functional Programming� �BW��� has been associated with a small scope of applications�

mainly academic� Computer Science community did not pay enough attention to its potential� perhaps due

to the lack of e�ciency of functional languages� Now� new theoretical developments in the �eld of Functional

Programming �JM��� are emerging� and better languages
e�g� Haskell �PH����� Concurrent Haskell �JGF����

have been de�ned and implemented� Also� the gap between theory and practice is smaller in this paradigm

than that of other paradigms� making Functional Programming a good choice for developing simulation and

optimization programs �Wad���� Traditionally� all programs for optimization problems were written in C� C��

or Ada� This fact builds a �rewall between developers and end�users� Protein Folding is suitable to be modeled

with a lazy concurrent functional language for many reasons

� non�computer�science people can think in a very high abstraction level and map their ideas� almost directly�

to functional code�

� the learning curve of a Functional Programming language is smoother than that of an imperative one�

bridging the gap between developers and users�

� functional code is concise�

� the folding process is intrinsecally parallel and Functional Programming is specially adequate for managing

parallelism�

� concurrent processes on the string to be folded can be simulated using easy�to�use features of concurrent

functional languages�

� the use of lazy languages avoids the construction of protein con�gurations until they are needed
if ever��

� using Functional Programming� it is straightforward to associate folding algorithms to folding patterns

�KLMP����

The proposal is to use Functional Programming as a bridge between researchers of Computer Science and

Biosciences� Computer�science�researchers have their bene�t because of rapid prototyping� while bioscience�

researchers have it because of the high abstraction that Functional Programming provides� Also� it will be

showed that the functional programming paradigm is� at the current time� capable of a�ording combinatorial

optimization tasks�

In this paper a new functional heuristic is presented� It is deterministic� and linear in the size of the input

protein� but the quality of its output has is comparable with Monte Carlo method
that is non�deterministic and

takes much more time�� The concept of grammar was employed to parse the protein� that is� when a word in the

language of the grammar is recognized� a fold of that word in a certain way is performed� The parsed proteins

can be used as initial population for evolving methods� with the properties that they are factible
self avoiding�

not two aminoacids are mapped to the same location in space� and that they are local optimum
because so

are the folding patterns��

� The problem

A protein can be understood as a linear sequence of components� called aminoacids� that under certain physical

circumstances� is folded in a unique functional structure called its native state� or terciary structure� To �nd

the native state given only the linear sequence of aminoacids is the Protein Folding Problem�

Until now� there were two approachs to the problem

�� the thermodynamic approch� In this approach� aminoacid conformations are studied in terms of free

energy� The fact that the native state is the one that minimizes free energy is assumed� There exist

di�erent models of the energy function� Many factors are considered when developping an analitical

expresion for this function� i�e�� protein�s shape� size and polarity of the involved molecules� Furthermore�

there is no consensus of the relative weigth of each factor�

�� the dynamic approach� It assumes the existence of �folding tunnels� that guide the protein to a unique

and stable state � its native state� It uses some concepts from thermodynamics� but in a di�erent way�

An alternative approach� and the one developed in this paper� assumes that the folding mechanism is �coded�

in the protein by means of an unknown language� The work consists then in �nding the language that rules the

folding process�

The most simple models used to represent proteins are based on grids
of � and 	 dimensions�� where each

�position� is �lled by at most one aminoacid� The correspondence between aminoacids and positions is called

embedding of the protein� and when the embedding is injective� it is called self avoiding � The problem� under

these hypothesis� was shown NP�complete by �Fra�	� and �UM�	a� between ���� and ���	� The existence of a

polynomial algorithm that solves the problem exactly is then assumed imposible� So� the use of heuristics and

approximation algorithms became the most promising chance to solve� at least� some of the problem instances�

In this paper the hydrophobic�hydrophilic model is assumed� This model considers only two kinds of amino�

acids
 hydrophobic ones� represented as a �B�
for Black�� and hydrophilic ones� represented as a �W�
for White��

The energy function takes into account only the interactions between topological neighbours of type B
P�� This

can be easily seen in the following table where interactions between hydrophobics and hydrophilics aminoacids

are shown�

W B

W � �

B � ��

This table states that� every time a hydrophobic aminoacid is a topological neighbor of another aminoacid of

the same type free energy is minimized by a constant factor of ��� The same score table can be used to measure

the number of bonds of a given folding
 see Chap� ��� �� in this case the optimization task is to maximize the

number of bonds given by an B�B interacion�

There exist solutions to the problem under this model� using Simulated Annealing �SSK���� Genetic Algo�

rithms� and the Monte Carlo method �UM�	b�� Also �PKM��� PKM��� present a polynomial� deterministic

algorithm that follows the research line of �UM�	b��

��� Generalization of the model

In order to study the Protein Folding Problem in an abstract way� a generalization of it due to Paterson and

Przytycka �PP� can be used� In their paper they consider the String Folding Problem� wich can be stated as

follows
 given a �nite string S� an integer k� and a grid G� is there a fold of S in G with a score at least k� A

fold of S in G is de�ned as an injective mapping F
 ��� � �n� ��G� where n � j S j� and if � � i� j � n� i�j��

then F
i� is adjacent to F
j� in G� the score of F is computed counting the number of identical symbol pairs

mapped to adjacent nodes of G� calling those pairs bonds � Paterson and Przytycka showed that String�Folding

is NP�Complete in the ZZ� and ZZ�� while other instances of the problem remain NP�Hard � In this paper� the

process of string folding is modelled using an extension of L�system to generate a family of restricted parallel

rewriting grammars� The biologist Aristid Lindenmayer develops what it came to be named �Lindenmayer

Parallel rewriting systems� when he was trying to model development in plants �Lin���� A basic L�system is a

grammar G�f �!� �g� where is a �nite set of symbols called the alphabet� ! is the set of rewriting rules and

�� � is the starting string that generates the language� The most simply L�system is context�independent�

taking ! with the structure f�
 �� �g� wich means that a simple character of a string S maps to a string

of �� One of the most important features of L�systems is that the rewriting rules are applied in parallel all

over the original string� while in other grammars� rules apply sequentially� L�systems can be extended to allow

context�sensitivity� if the rewriting rules are of the form
 LhP iR ��S� with P� and L�R� �� The traditional

interpretation to L�systems are �Logo�like� draws�

��� Extension to L�systems

G�L grammars are a neat extension to L�systems that can be used to specify arbitrary graphs
see �Boe��� for

a detailed description�� With the same spirit as in Boers work� looking for restrictions on L�systems that allows

for the speci�cation of arbitrary foldings of string is one of the author�s goals� The intention is to represent

the graph induced by the mapping F
� using this new subfamily of grammars� Cycles in the graph must be

correctly disabled� wich in turn means that the folding is self avoiding� The restrictions under develop apply to

the set of rewriting rules� Only some kind of structures are allowed� and arbitrary left and right contexts are

not permitted�

����� Folding L�systems� Some De�nitions�

! � G will be called LES for L�Equation System� A Folding L�system with radius r� Folding L�systemr�

is a LES in wich each � � ! is of the form LhP iR ��S� with P �S�L�R � �� being r � Max
k� where k �

f jLj� L � � � ! g � f jRj� R � � � ! g�� and jP j � jSj� That is� k is a number that takes values from

the set comprised of all the sizes of the right and lefth context of the rewriten rules� r is the greater of this

numbers� Also it was shown in �KT��� that a Folding L�systemr can simulate a Cellular Authomata of radius

r� and a Cellular Authomata of radius r can simulate an Folding L�systemr� In that way Folding L�systemr is

equivalent to a Unidemensional Cellular Authomata of radius r�

� The heuristic

In the previous section the use of heuristics to solve the Protein Folding Problem is mentioned � Simulated

Annealing� Genetic Algorithms and Monte Carlo Method being the most common ones� In this section a new

familiy of folding heuristics is developed� The heuristics in the family satisfy two important goals

� they can give energy values that are competitive with the ones of existing algorithms� and

� they re"ect the biological process of folding in a way that is concise and easy to express using grammars�

The goal of these heuristics is to minimize the value of the energy function� this function will be de�ned as

the number of bonds resulting of embedding the protein in a grid� The grid
in � or 	 dimensions� is important

in the algorithm because the concepts of bonds and patterns are based on the position of the aminoacids in the

grid� and the notion of energy is de�ned in terms of bonds�

A heuristic in the family described� �rst alignes the string using folding patterns � then selects some reference

points
the criteria used for this identi�es the particular heuristic� and �nally folds the reference point that

minimizes the energy function�

Figure �
 Examples of folding patterns�

A folding pattern is a pair of proteins� The meaning of a folding pattern arise in the folding process
 the

�rst component of the pattern is replaced with the second component as part of the process� The set of possible

folding patterns is give by extension� and it is a regular set� A future generalization can be obtained through

the use of grammars in order to express families of folding patterns� One important point about patterns is

that they are not necesarily pairwise disjoint� thus re"ecting the fact that there is more than one way to do the

folding a protein�

The application of folding patterns can be understood as a process of parsing the protein looking for the

pattern and replacing it� This allows a generalization and abstraction that are ideal for the extension of the

model� where the patterns are expressed using grammars� The parsing process returns all the possible foldings

according to the given patterns� and a parallel analysis of alternatives can be considered� The combinatorial

explosion implied by the parsing process is restrictive when coded in the imperative paradigm� but� in the

functional paradigm� the lazy evaluation suspends the computation of all the alternatives until they are needed�

If any alternative is never needed� then it will not be computed� Additionally� the functional paradigm is better

suited for a future parallelization of the code� where each alternative is considered by a di�erent processor�

The algorithm begins with the aplication of folding patterns� in order to re"ect the short range interactions

between aminoacids of type B� The output of this step will be called parsed proteins � The folding patterns

used in the present version are de�ned by extension for aminoacid sequences with lengths between � and �
see

Fig� ���

The second step consists in scanning each parsed protein looking for reference points� The choice of these

points is done based on the following criteria
note that di�erent criteria determine di�erent heuristics�

�� Energy criterion� Let El and Er be the energy
number of bonds in this case� between aminoacids � and

i and between the aminoacid
i��� and the last one� respectively� The folding points resulting from this

criterion is P�fi�abs
El�Er� � �g

�� Hydrophobicity criterion� Let Bl and Br be the number of aminoacids B between aminoacids � and i

and between the aminoacid
i��� and the last one� respectively� The folding points resulting from this

criterion is P�fi�abs
Bl�Br� � �g

Figure �
 An example of a U�fold for UM� with energy ����

UM�� BWBWWBBWBWWBWBBWWBWB

UM�� BBWWBWWBWWBWWBWWBWWBWWBB

UM�� WWBWWBBWWWWBBWWWWBBWWWWBB

UM�� WWWBBWWBBWWWWWBBBBBBBWWBBWWWWBBWWBWW

UM�� WWBWWBBWWBBWWWWWBBBBBBBBBBWWWWWWBBWWBBWWBWWBBBBB

UM�� BBWBWBWBWBBBBWBWWWBWWWBWWWWBWWWBWWWBWBBBBWBWBWBWBB

UM	� WWBBBWBBBBBBBBWWWBBBBBBBBBBWBWWWBBBBBBBBBBBBWWWWBBBBBBWBBWBW

UM
� BBBBBBBBBBBBWBWBWWBBWWBBWWBWWBBWWBBWWBWWBBWWBBWWBWBWBBBBBBBBBBBB

Figure 	
 Proteins used for testing�

	� Aminoacid distribution criterion� Let Bl and Br be as in criterion �� Let Wl and Wr be the number of

aminoacids W between aminoacids � and i and between the aminoacid
i��� and the last one� respectively�

The folding points resulting from this criterion is P�fi�abs

Bl�Wl��
Br�Wr�� � �g

In all the criteria� � is the accuracy parameter� and satis�es � � � � ��

The last step is to perform a folding of the parsed protein with the shape of a �lied down U�
called a U�fold�

see Fig� ��� in a reference point that minimizes the energy� This fold allows long range interactions between

aminoacids of type B�

Tests were done using instances of proteins taken from �UM�	b�� because the global optima are known for

that sequences� and then the results can be checked against the ones obtained with simulated annealing and

genetic algorithms� The instances choosed correspond to the Dill�s Model �Dil���� and are presented in Fig� 	�

There are some important points to take into account� and to analyze for future works

� the distribution of aminoacids may be relevant� In the present version an even distribution of them is

assumed� but it could not be the case in real situations�

� the spatial form of the folded protein may be relevant� For example� more �compact� foldings could be

preferable to the opposite�

� biological factibility of proteins may be de�ned� but it is not known the best way to do it�

� The implementations

In this section two implementations of the algorithm are presented� The �rst one was done in ANSI C� and

several reasons guide this selection
 the code is portable� a future parallelization using PVM
Parallel Virtual

Machine� is possible� and the C language is very e�cient� However� the resulting code was too confuse� and

many implementation details blurred the reading and understanding�

Functional programming has been designed with the idea that algorithms coded with it are easy to develop

and read� but� historically� it was only con�ned to applications that came from the academic environment�

Nowadays� functional programming is widening its horizons� mainly because new techniques� compilers and tools

are developed� and they are competitive in e�ciency with their clasical relatives �Wad���� So� the functional

language Haskell �PH���� was chosen to do a second implementation� looking for an easy to understand but

e�cient code�

In Sects� ��� and ��� the C and Haskell implementations are presented respectively and a comparison between

implementations is done�

��� The C implementation

The �rst thing to have into account is the data structure that represents proteins� For that� linked lists

implemented with pointers was choosed � each element in the list represent one aminoacid� Proteins will also

be folded
in a two dimensional grid in this version�� and so� information about the position of each aminoacid

is provided in two di�erent ways
 absolute and relative� The absolute position is given as a coordinate pair

indicating a cell in the grid� and the relative one as an element of the set fU�D�R�Lg� indicating that the

position of the next aminoacid will be Up� Down� Rigth or Left of the present one� Both representations have

to be updated with every change of the embedding�

�� Data Structures to represent Proteins ��

struct Amino� � char type�

int x�y�

��

struct Chain � int size� �� Number of aminoacids ��

char �directions� �� �U�D�L�R�� ��

struct Amino� �sec� �� Chain of aminoacids ��

��

The application of a folding pattern can be implemented as substring substitution in the string �

Three procedures are used extensively in the algorithm
 rotation of a protein� energy evaluation� and cor�

rectness detection
self�avoidness�� These three procedures are simple when implemented over the structure

presented�

�� Rotates the chain in the 	start	 aminocid 	angle	 degrees ��

void RotateAm
struct Chain �pr�int start�int angle�

�int i�CurrX�CurrY� char move�

for
i�start�i
�pr��size�i���

�pr��directions�i��� � NextPosition

pr��directions�i�����angle���

UpdateNumericalPositions
pr��

�

In the present version� the energy evaluation and the correctness detection are calculated separately� having

each of them an order of N�� and they also have to calculate potentiations� because they involve euclidean

distances� If e�ciency becomes a real problem� there exist the possibility of evaluating the two functions at the

same time with order N �

�� Pseudo�code for an energy function that works in O
N� ��

Start with an empty matrix M

energy � �

Put the first amino AM� in M

If Type
AM���	H	 Then

For every neighbour position except the next that will be ocuppied

mark it with P
possible place of contact�

EndIf

For i�� To ChainSize

if the position for AMi is occupied

then 	you have a colision	� EXIT

if
Type
AMi� � 	H	�

if the position for AMi is marked with P

energy �� �
you make one contact�

Put AMi in M

For every FREE neighbour position except the next that will be ocuppied

mark it with P

else

Put AMi in M

Next

Even when the results are excellent� and the expectatives are very promising� most of the development time

was spent in some problems with pointer arithmetic and the explicit memory management� Also the resulting

code is far from readable� and thus the understanding of the solution from the code is not very easy�

��� The Haskell implementation

Functional programming was choosed having in mind that programs coded with this paradigm are very easy to

read� and that the learning time for non�computer�scientist is short� Also� testing the suitability of functional

languages for real applications was one of the goals of this work�

Parsers

Direction

Matrix Cell

Bonds
I#O Interface

Application

ProteinGrid

Algorithm

Z
Z
Z
Z�

�
�

��

C
C
C
CW

������

�

�
�
�
��	

Q
Q
Q
Q
Q
Q
QQs

�
�	
XXXXXXXXz

HHHHj

�

Figure �
 Module hierarchy�

The language used is Haskell in its version ��	 �PH����� and Hugs �Jon��� was used for testing and prototi�

pation� The former is a high level� pure language� based on functions that provides modularization� The latter

is an interactive system that accepts Haskell code and allows to run any function of it� displaying the results�

Both languages have a strong
static� type system�

It is important to mention that the Haskell version of the algorithm is not a simple translation of the C

version� The code was designed from scratch using functions� with the goal that di�erent methods can be

represented� not only the heuristic presented in this paper�

The functional code is designed as a set of interrelated modules� each of which encapsulate an abstract

datatype that represent one entity or concept relevant to the solution� hiding its internal representation� The

hierarchy of modules appears in Fig� ��

There are three important modules
 the Protein module� where the structure and basic functions for proteins

are de�ned� the Grid module� where grids� the energy function and correctness detection are de�ned� and the

Algorithm module� where the heuristic is implemented�

The proteins are represented as a list of pairs
aminoacid� direction�� providing information about relative

positions of aminoacids� The basic functions for proteins are

type Protein � �
Aminoacid� Direction��

rotateP �� Int �� Way �� Protein �� Protein

uFold �� Int �� Protein �� Protein

which rotates a protein in a given point and way� and makes a U�fold in a given reference point� respectively�

Folding patterns are also de�ned in this module� They are represented as parsers�

type Pattern � Parser
Aminoacid� Direction� Protein

The type Parser takes two arguments
 the type of the components of proteins and the type of the result� It

can be de�ned as

type Parser comp res � �comp� ��
res� �comp��

Patterns Aplication

Protein

 Patterns

Non-deterministic parsing tree

 Proc. 1 Proc.2 Proc. N

Figure �
 An example of a nondeterministic parsing tree

The type Parser
Aminoacid�Direction� Protein is then equivalent to Protein ��
Protein�Protein��

Based on the pair of proteins that de�nes abstractly the folding pattern� the operational behavior of the parser

is that when the �rst protein of the pattern matches an initial subsequence of the input protein� the second one

is returned paired with the remaining input�

The �rst step of the heuristic is the aplication of the folding patterns to a given protein� which is represented

by the function applyPatterns�

applyPatterns �� �Pattern� �� Protein �� �Protein�

This function returns a list of all possible ways to apply the given folding patterns to the given protein� see

Fig� �� Thanks to the lazy evaluation of the language� an alternative is not computed unless it is needed�

The Grid module uses matrixes for the representation of grids� The module Matrix used in this version is

only a prototype� and it is not e�cient at all� but as it is de�ned as an abstract datatype� its representation

can be changed without a�ecting the rest of the code� In each cell of the grid there are information about

the aminoacids that lie in that cell� and about the possible bonds� This representation allows to have non�self�

avoiding proteins embedded� and thus a function to test correctness is provided�

type Grid � Matrix Cell

isCorrectP �� Protein �� Bool

energyP �� Bonds �� Protein �� Int

energyPpos �� Bonds �� Protein �� Int ��
Int� Int�

The function energyP calculates the energy of the given protein� and the function energyPpos calculates� given

a point in the protein� the energies of the �rst and second segment of the protein�

The di�erent criteria used for determining the reference points are de�ned in the Algorithm module� The

criteria are represented as functions that take the protein and return all the possible reference points�

type Criteria � Bonds �� Protein �� �Int�

One important characteristic of this representation is that new criteria can be de�ned as easy as with mathe�

matics � no special attention to representation is needed�

The algorithm that implements the heuristic is then a composition of the di�erent functions already de�ned

algorithm �� Bonds �� Criteria �� Protein �� Protein

algorithm bonds criteria prot �

maxEnergy � fprot �

pprot
� applyPatterns patterns prot�

refpoints
� criteria bonds pprot� i
� refpoints�

fprot
� uFold i pprot�

isCorrect fprot

�

The notation in this de�nition is called �list comprehension� and is similar to that of set comprehension� The

function maxEnergy returns the protein of the given list with the maximum energy�

��� The results

Two important results have to be mentioned�

The �rst one is about the use of Functional Programming
 the Haskell version is much better than the C

version in many aspects� To mention only the most signi�cant

� the development time was really much less in the functional version�

� the number of bugs and errors in the code was almost nothing when comparing against the C version� and

also the most important ones were detected by the type system of the Haskell language�

� the code is easy to read and understand�

The author�s expectatives were �lled completely�

The second one is about the optimization behaviour of the heuristic
 the output of the algorithm is not so

far from that of already known solutions� as can be seen in the table of Fig� �� A U�folded version of the eighth

protein of Fig� 	 can be found in Fig� ��

Instance Optimum Monte Carlo Criterium

� � 	

UM� �� �� �� �� ��

UM� �� �� �� �� ��

UM	 �� �� �� �� ��

UM� ��� ��� ��� �� ���

UM� ��� ��� ��� ��	 ���

UM� ��� ��� ��� ��� ���

UM� �	� �	� ��� ��� ���

UM� ��� �	� ��� ��� ���

Figure �
 Results of the heuristic�

Figure �
 Folded UM� with energy �	� obtained with a GA feeded with parsed versions of the protein�

Also� a genetic algorithm feeded with the parsed proteins gives results better and faster than those of Monte

Carlo version of �UM�	b�� To ilustrate that� in Fig� � is presented a folding obtained for the eighth protein

Fig� 	� that has a better energy value that the best one of �UM�	b��

A genetic algorithm can be sketch as follow

��� Initialize population

��� While
termination�criteria � FALSE� Do

��� Select population

��� Cross population

��� Mutate population

��� Output results

The selection process assigns a mating probability Pi to each individual i in the population� This probability

is computed based in their �tnesses
 Pi �
fi
F
where fi is i�s �tness and F �

Pi�N

i�� fi

During the crossover stage two parents geneterate just one o�spring� so the mating pool must be �lled with

� 	
N � Z� genomes� Here N is the population size and Z the elite set size�

Once the mating pool have been generated� a crossover stage arise� Two parents are selected and they are

mated with a probability PX � where PX is the crossover probability� The crossover is the same as Unger�s

crossover� If the mating doesn�t happen then the parent with the best �tness is copied to the next generation�

Our GA uses four kinds of macromutation steps which are applied accordingly to a probability PMM � The

allowed macromutations begins by choosing two random points an them perfomrs one of the following actions

�� The genomic substring between this pair of points is changed in order to represent a turn of �� ��� ��� or

��� grades of this protein segment�

�� Between this points the genome is re"ected verticaly or horizontaly�

	� Between them the protein is unfolded�

�� Each peptide in inside the selected point interval is randomly oriented� This is the most structure less

macromutation�

The GA preserve the best individual and copies it to the next generation� The original feature of this GA

is that the initial population was created in a non�random way� The initial population was set to be the leaves

set of the nondeterministic parsing tree of the instance to optimize� When the width of the bottom level of this

tree was greater than that of the population it was simple cutdown� The leaves selected as individuals were

those with bigger di�erences in their structure� In that way we asure non premature convergence�

Simulations shown that the performance of the GA initialized with the heuristic population was far better

than that of the random initialization� This may seem to be in con"ict with the common believe that a random

population is a better start place for searching� The reason for that believe is that non�random initialization

cause premature convergence� Furthermore� this is not an intrinsic drawback of non�random heuristic� If care

is put in the structural scattering of heuristic initialized genomes then premature convergence is avoid� see

�NDLlC��� NDP�����

� Future work

The most important future work is the discovery of the language used for proteins to code the folding� For that�

there are three main possible approaches

� the �rst one is to use the �Computational Mechanical Framework� of Dr� Das �D���� directly on the

proteins� to discover the language�

� the second one is to use the �Computational Mechanical Framework� on the genetic algorithms� to discover

what kind of computation they perform�

� the third one is to use the �Logical Data Analysis� method of Dr� Hammer �H���� on the proteins correctly

coded� to discover more complex folding patterns�

Further studies on the advantages of using parsed proteins as initial population for evolutives algorithms

should be done� The author�s found that the designing of folding grammars is very di�cult� Research will

be done on the use of automatic genereted grammars in two "avors� Cellular Authomata transition rules and

Folding L�systemr grammars�

The project consist in development a concurrent functional framework to genetic algorithms� It should

provide a base to experiment with evolutive algorithms that have arbitrary representations of population and

operators� Also it should decrease the amount of work and coding to each new application�

The Radcli�e and Surry�s idea in their work called RPL� is followed� RPL� stands for The Reproductive

Plan Language
������ and it is a language that was designed to write� perform and modify the evolutive

algorithms in an easier way� RPL� has imperative programming features� and thus the paralellism is explicit�

and to extend a program� a new compilation and linking is needed� In this language there are no restrictions

to the shape of genomas� and then it is applicable to real world optimization problems�

Finally� the use of Functional Programming for optimization methods will continue�

� Conclusions

This paper presents a new heuristic to �nd near optimal solution for the Protein Folding Problem� This heuristic

assumes the hypotesis that the folding process is coded in the protein itself� and one of the goals is to discover

the language used for that coding� In order to do that� the notion of folding pattern is used�

Two implementations are provided
 one that uses the
imperative� C language� and one that uses the

functional� Haskell language� A secondary goal of this work is to compare both languages� and both paradigms�

The resulting code in both versions satis�es largerly the author�s expectatives� The testing performed with

some known sequences of idealized aminoacids results in values of the energy function that are competitive with

already known algorithms� Also the comparison between the two languages gives the expected results
 while

the C code is faster� the Haskell code is more readable� and it was more easy to design and develop� allowing to

concentrate the thinking e�ort in the problem itself� and not in the coding�

The algorithm is deterministic� and linear in the size of the input protein� but its output has energy values

comparable with Monte Carlo method
that is non�deterministic and takes much more time�� The parsed

proteins can be used as initial population for evolving methods� with the properties that they are factible
self

avoiding� and that they are local optimum
because so are the folding patterns��

Another conclusion is that many lines of research has emerged as consequence of the development of this

work�

Acknowledgements

The authors want to akcnowledge to Gustavo Lobo Acher� Pablo O$na and Cristian Apas for lending the

hardware� to Alicia Reija and Fernando Lyardet for visual design guidelines� to Dr� Rajarshi Das for many

stimulating ideas� to Lic� Pablo Moscato for bringing attention to the protein folding problem� to the Sloan

Fundation Department of Energy� U�S�� for funding support� and �nally� to all LIFIA members that help the

authors during the development of this work�

References

�Boe��� Egbert J�W� Boers� Using L�systems as graph grammar	 G
L systems� Technical Report ������ Department of

Computer Science� Leiden University� The Netherlands� October �����

By FTP� in ftp���ftp�wi�leidenuniv�nl�pub�CS�TechnicalReports����	�tr�	�
��ps�gz�

�BW��� Richard S� Bird and Philip Wadler� Introduction to Functional Programming� Prentice Hall� �����

�D���� Rajarshi Das et al� Evolving globally synchronized cellular automata� In Morgan Kau�man� editor� Proceedings of

the VI International Conference on Genetic Algorithms� �����

�Dil��� Ken A� Dill� Biochemistry�
�	����� �����

�Fra��� Aviezri S� Fraenkel� Complexity of protein folding� Bulletin of Mathematical Biology� �� �����

�H���� Peter L� Hammer et al� An implementation of logical analysis of data� RRR

��� The State University of New

Jersey� Rutgers� July �����

�HI��� W�E� Hart and S� Istrail� Fast protein folding in the hydrophobic�hydrophilic model within three eighths of optimal�

In Proceedings of the ��th ACM Symposium on Theory of Computation� pages �������� �����

�JGF��� Simon L� Peyton Jones� Andrew Gordon� and Sigbjorn Finne� Concurrent Haskell� In ACM Symposium on the

Principles of Programming Languages �PoPL����� St�Petersburg Beach� Florida� January �����

�JM��� Johan Jeuring and Erik Meijer� editors� Advanced Functional Programming	 LNCS ��
� Springer�Verlag� May �����

�Jon��� Mark P� Jones� Hugs ��� � the Haskell user�s Gofer system� User manual� Technical report� Department of Computer

Science� University of Nottingham� August �����

�KLMP��� N� Krasnogor� P�E� Mart��nez L�opez� P� Mocciola� and D� Pelta� Modelling string folding with G
L grammars� In

Proceedings of the International Conference on Functional Programming	 ACM SIGPLAN	 �ICPF����� page ����

Association for Computing Machinery� June ����� Also published in Recomb����

�KT��� Natalio Krasnogor and Germ�an Terrazas� Reporte interno li�a� unlp� En preparaci�on� �����

�Lin��� A� Lindenmayer� Mathematical models for cellular interaction in development� Parts I and II� Journal of Theoretical

Biology� ��	
������� �����

�NDLlC��� N�Krasnogor� D�Pelta� P�E�Mart��nez L�opez� and E�de la Canal� Genetic algorithms for the protein folding problem�

a critical view� In Proceedings of the Engineering of Intelligent Systems �EIS����� �����

�NDP���� N�Krasnogor� D�Pelta� P�Mocciola� P�E�Mart��nez L�opez� and E�de la Canal� Enhanced evolutionary search of foldings

using parsed proteins� In Anales del Simposio de Investigaci�on Operativa
���� �����

�PH���� John Peterson� Kevin Hammond� et al� Report on the programming language Haskell� a non�strict� purely functional

language� Version ���� Technical report� Yale University� May �����

�PKM��� D� Pelta� N� Krasnogor� and P� Moscato� Resultados de la complejidad computacional en el problema de replegado

de prote��nas� In II Jornadas de Inform�atica en Investigaci�on Operativa� Montevideo� Diciembre �����

�PKM��� D� Pelta� N� Krasnogor� and P� Moscato� Primeros resultados de un algoritmo determin��stico para el problema del

protein folding en el modelo H�P� In IV Jornadas del Grupo Montevideo� Brasil� �����

�PP� Mike Paterson and Teresa Przytycka� On the complexity of string folding� Preprint submitted to Elsevier preprint�

�SSK��� A� Sali� E� Shakhnovich� and M� Karplus� How does a protein fold� Nature� ���	
���
��� May �����

�UM��a� R� Unger and J� Moult� Finding the lowest free energy conformation of a protein is an NP�hard problem	 Proof and

implications� Technical report� Center for Advanced Research in Biotechnology� University of Maryland� �����

�UM��b� R� Unger and J� Moult� Genetic algorithms for protein folding simulations� Journal of Molecular Biology�
��	������

�����

�Wad��� Philip Wadler� editor� Journal of Functional Programming� Special Issue on State�of�the�art Applications of Pure

Functional Programming Languages� volume � ���� Cambridge University Press� July �����

