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Abstract

Protein Folding is an important open problem in the field of ‘Computational Biology’. Due to its com-
binatorial nature, exact polynomial algorithms to solve it could not exist, and so approximation algorithms
and heuristics has to be used.

In this paper, a new heuristic is studied, based on the approach that considers that the folding process
is coded into the protein. One important aspect of this work is that the algorithm was implemented using
functional programming, resulting in advantages for the understanding of the problem. The results obtained

are comparable with the ones obtained for classical algorithms.
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1 Introduction

The Protein Folding problem is one of the most important open problems in Biochemistry due to its theoretical
and pragmatic implications. In the field of Computer Science it is positioned in a branch called “Computational
Biology”, that tries to solve problems raised from Biosciences using mathematical and computational tools.
Computational Biology had received a lot of attention and fundings after the Genoma 2000 Proyect.

Proteins are amino acid polymers. There are 20 aminoacids, each composed of a carbon backbone and
a residue that determines its identity and its chemical properties. There are amino acids wich are neutral
and hydrophobics, other neutral and polar, basic or acidic. While in its native state, each protein presents a
charateristic three dimensional shape. This 3D shape is strongly related to the biological properties of the given
protein and the role it plays in living beings.

The Protein Folding problem can be stated as follows: given an unfolded aminoacid sequence, find the
‘right’ folding of that sequence. The unfolded state is just the linear arrangement of amino acids. In nature,
the proteins fold to their ‘native’ state, which determines its functionality. Also, the common believe is that
this native state is minimizing ( maximizing ) some yet unknown criteria.

Some lattice-based computational models of the Protein Folding were shown NP-Complete, others remain
NP-hard [Fra93, UM93a], but some approximation algorithms exist [HI95].

However its theoretical and practical relevance [SSK94, UM93a] makes worthwhile spending resources and
time in modeling the folding process. Usually, strong emphasis is put in the results obtained, rather that in the
way they are generated, enlarging the gap between researchers from Computer Science and Biology. The claim
of this paper is that, using the right tools, both communities can colaborate much closer, enhancing the results
at the same time.

Historically, ‘Functional Programming’ [BW88] has been associated with a small scope of applications,
mainly academic. Computer Science community did not pay enough attention to its potential, perhaps due
to the lack of efficiency of functional languages. Now, new theoretical developments in the field of Functional
Programming [JM95] are emerging, and better languages (e.g. Haskell [PH196], Concurrent Haskell [JGF96])
have been defined and implemented. Also, the gap between theory and practice is smaller in this paradigm
than that of other paradigms, making Functional Programming a good choice for developing simulation and
optimization programs [Wad95]. Traditionally, all programs for optimization problems were written in C, C++
or Ada. This fact builds a firewall between developers and end-users. Protein Folding is suitable to be modeled

with a lazy concurrent functional language for many reasons:

e non-computer-science people can think in a very high abstraction level and map their ideas, almost directly,

to functional code;

e the learning curve of a Functional Programming language is smoother than that of an imperative one,

bridging the gap between developers and users;

e functional code is concise;



e the folding process is intrinsecally parallel and Functional Programming is specially adequate for managing

parallelism;

e concurrent processes on the string to be folded can be simulated using easy-to-use features of concurrent

functional languages;
e the use of lazy languages avoids the construction of protein configurations until they are needed (if ever);

e using Functional Programming, it is straightforward to associate folding algorithms to folding patterns

[KLMP97].

The proposal is to use Functional Programming as a bridge between researchers of Computer Science and
Biosciences. Computer-science-researchers have their benefit because of rapid prototyping, while bioscience-
researchers have it because of the high abstraction that Functional Programming provides. Also, it will be
showed that the functional programming paradigm is, at the current time, capable of affording combinatorial
optimization tasks.

In this paper a new functional heuristic is presented. It is deterministic, and linear in the size of the input
protein, but the quality of its output has is comparable with Monte Carlo method (that is non-deterministic and
takes much more time). The concept of grammar was employed to parse the protein; that is, when a word in the
language of the grammar is recognized, a fold of that word in a certain way is performed. The parsed proteins
can be used as initial population for evolving methods, with the properties that they are factible (self avoiding,
not two aminoacids are mapped to the same location in space) and that they are local optimum (because so

are the folding patterns).

2 The problem

A protein can be understood as a linear sequence of components, called aminoacids, that under certain physical
circumstances, is folded in a unique functional structure called its native state, or terciary structure. To find
the native state given only the linear sequence of aminoacids is the Protein Folding Problem.

Until now, there were two approachs to the problem:

1. the thermodynamic approch. In this approach, aminoacid conformations are studied in terms of free
energy. The fact that the native state is the one that minimizes free energy is assumed. There exist
different models of the energy function. Many factors are considered when developping an analitical
expresion for this function, i.e., protein’s shape, size and polarity of the involved molecules. Furthermore,

there is no consensus of the relative weigth of each factor.

2. the dynamic approach. It assumes the existence of “folding tunnels” that guide the protein to a unique

and stable state — its native state. It uses some concepts from thermodynamics, but in a different way.

An alternative approach, and the one developed in this paper, assumes that the folding mechanism is ‘coded’
in the protein by means of an unknown language. The work consists then in finding the language that rules the

folding process.



The most simple models used to represent proteins are based on grids (of 2 and 3 dimensions), where each
‘position’ is filled by at most one aminoacid. The correspondence between aminoacids and positions is called
embedding of the protein, and when the embedding is injective, it is called self avoiding. The problem, under
these hypothesis, was shown NP-complete by [Fra93] and [UM93a] between 1992 and 1993. The existence of a
polynomial algorithm that solves the problem exactly is then assumed imposible. So, the use of heuristics and
approximation algorithms became the most promising chance to solve, at least, some of the problem instances.

In this paper the hydrophobic-hydrophilic model is assumed. This model considers only two kinds of amino-
acids: hydrophobic ones, represented as a ‘B’ (for Black), and hydrophilic ones, represented as a ‘W’ (for White).
The energy function takes into account only the interactions between topological neighbours of type B (P). This

can be easily seen in the following table where interactions between hydrophobics and hydrophilics aminoacids

are shown,
W | B
010
B 0 |-1

This table states that, every time a hydrophobic aminoacid is a topological neighbor of another aminoacid of
the same type free energy is minimized by a constant factor of -1. The same score table can be used to measure
the number of bonds of a given folding ( see Chap. 2.1 ), in this case the optimization task is to maximize the
number of bonds given by an B-B interacion.

There exist solutions to the problem under this model, using Simulated Annealing [SSK94], Genetic Algo-
rithms, and the Monte Carlo method [UM93b]. Also [PKM95, PKM96] present a polynomial, deterministic
algorithm that follows the research line of [UM93b].

2.1 Generalization of the model

In order to study the Protein Folding Problem in an abstract way, a generalization of it due to Paterson and
Przytycka [PP] can be used. In their paper they consider the String Folding Problem, wich can be stated as
follows: given a finite string .S, an integer k, and a grid G, is there a fold of S in G with a score at least k7 A
fold of S in G is defined as an injective mapping F: [1...n]— G, wheren = | S |, and if 1 < 4,j < n, i=j-1
then F'(i) is adjacent to F'(j) in G. the score of F' is computed counting the number of identical symbol pairs
mapped to adjacent nodes of GG, calling those pairs bonds. Paterson and Przytycka showed that String-Folding
is NP-Complete in the Z> and Z>, while other instances of the problem remain NP-Hard. In this paper, the
process of string folding is modelled using an extension of L-system to generate a family of restricted parallel
rewriting grammars. The biologist Aristid Lindenmayer develops what it came to be named ‘Lindenmayer
Parallel rewriting systems’ when he was trying to model development in plants [Lin68]. A basic L-system is a
grammar G={X,II, a}, where ¥ is a finite set of symbols called the alphabet, II is the set of rewriting rules and
a€XY* is the starting string that generates the language. The most simply L-system is context-independent,
taking II with the structure {m : ¥ — ¥*}, wich means that a simple character of a string S maps to a string

of ¥*. One of the most important features of L-systems is that the rewriting rules are applied in parallel all



over the original string, while in other grammars, rules apply sequentially. L-systems can be extended to allow
context-sensitivity, if the rewriting rules are of the form: L{P)R+ S, with P€X and L,ReX*. The traditional

interpretation to L-systems are ‘Logo-like’ draws.

2.2 Extension to L-systems

G2L grammars are a neat extension to L-systems that can be used to specify arbitrary graphs (see [Boe95] for
a detailed description). With the same spirit as in Boers work, looking for restrictions on L-systems that allows
for the specification of arbitrary foldings of string is one of the author’s goals. The intention is to represent
the graph induced by the mapping F() using this new subfamily of grammars. Cycles in the graph must be
correctly disabled, wich in turn means that the folding is self avoiding. The restrictions under develop apply to
the set of rewriting rules. Only some kind of structures are allowed, and arbitrary left and right contexts are

not permitted.

2.2.1 Folding L-systems, Some Definitions:

IT € G will be called LES for L—Equation System. A Folding L-system with radius r, Folding L-system,.,
is a LES in wich each 7w € II is of the form L{P)R+ S, with P,S,L,R €X* being r = Max(k) where k €
{IL,L+7m ell}U{|R|,R < m €Il}), and |P| = |S|. That is, k is a number that takes values from
the set comprised of all the sizes of the right and lefth context of the rewriten rules. r is the greater of this
numbers. Also it was shown in [KT97] that a Folding L-system, can simulate a Cellular Authomata of radius
r, and a Cellular Authomata of radius r can simulate an Folding L-system,. In that way Folding L-system,. is

equivalent to a Unidemensional Cellular Authomata of radius r.

3 The heuristic

In the previous section the use of heuristics to solve the Protein Folding Problem is mentioned — Simulated
Annealing, Genetic Algorithms and Monte Carlo Method being the most common ones. In this section a new

familiy of folding heuristics is developed. The heuristics in the family satisfy two important goals:
e they can give energy values that are competitive with the ones of existing algorithms, and
e they reflect the biological process of folding in a way that is concise and easy to express using grammars.

The goal of these heuristics is to minimize the value of the energy function; this function will be defined as
the number of bonds resulting of embedding the protein in a grid. The grid (in 2 or 3 dimensions) is important
in the algorithm because the concepts of bonds and patterns are based on the position of the aminoacids in the
grid, and the notion of energy is defined in terms of bonds.

A heuristic in the family described, first alignes the string using folding patterns, then selects some reference
points (the criteria used for this identifies the particular heuristic) and finally folds the reference point that

minimizes the energy function.



Figure 1: Examples of folding patterns.

A folding pattern is a pair of proteins. The meaning of a folding pattern arise in the folding process: the
first component of the pattern is replaced with the second component as part of the process. The set of possible
folding patterns is give by extension, and it is a regular set. A future generalization can be obtained through
the use of grammars in order to express families of folding patterns. One important point about patterns is
that they are not necesarily pairwise disjoint, thus reflecting the fact that there is more than one way to do the
folding a protein.

The application of folding patterns can be understood as a process of parsing the protein looking for the
pattern and replacing it. This allows a generalization and abstraction that are ideal for the extension of the
model, where the patterns are expressed using grammars. The parsing process returns all the possible foldings
according to the given patterns, and a parallel analysis of alternatives can be considered. The combinatorial
explosion implied by the parsing process is restrictive when coded in the imperative paradigm, but, in the
functional paradigm, the lazy evaluation suspends the computation of all the alternatives until they are needed.
If any alternative is never needed, then it will not be computed. Additionally, the functional paradigm is better
suited for a future parallelization of the code, where each alternative is considered by a different processor.

The algorithm begins with the aplication of folding patterns, in order to reflect the short range interactions
between aminoacids of type B. The output of this step will be called parsed proteins. The folding patterns
used in the present version are defined by extension for aminoacid sequences with lengths between 4 and 6 (see
Fig. 1).

The second step consists in scanning each parsed protein looking for reference points. The choice of these

points is done based on the following criteria (note that different criteria determine different heuristics):

1. Energy criterion. Let El and Er be the energy (number of bonds in this case) between aminoacids 1 and
i and between the aminoacid (i+1) and the last one, respectively. The folding points resulting from this

criterion is P={i/abs(El — Er) < ¢}

2. Hydrophobicity criterion. Let Bl and Br be the number of aminoacids B between aminoacids 1 and ¢
and between the aminoacid (i+1) and the last one, respectively. The folding points resulting from this

criterion is P={i/abs(Bl — Br) < ¢}



Figure 2: An example of a U-fold for UM8 with energy -29.
UM1l: BWBWWBBWBWWBWBBWWBWB
UM2: BBWWBWWBWWBWWBWWBWWBWWBB
UM3: WWBWWBBWWWWBBWWWWBBWWWWBB
UM4: WWWBBWWBBWWWWWBBBBBBBWWBBWWWWBBWWBWW
UM5: WWBWWBBWWBBWWWWWBBBBBBBBBBWWWWWWBBWWBBWWBWWBBBBB
UM6: BBWBWBWBWBBBBWBWWWBWWWBWWWWBWWWBWWWBWBBBBWBWBWBWBB
UM7: WWBBBWBBBBBBBBWWWBBBBBBBBBBWBWWWBBBBBBBBBBBBWWWWBBBBBBWBBWBW

UMS8: BBBBBBBBBBBBWBWBWWBBWWBBWWBWWBBWWBBWWBWWBBWWBBWWBWBWBBBBBBBBBBBB

Figure 3: Proteins used for testing.

3. Aminoacid distribution criterion. Let Bl and Br be as in criterion 2. Let W1 and Wr be the number of
aminoacids W between aminoacids 1 and 7 and between the aminoacid (i+1) and the last one, respectively.

The folding points resulting from this criterion is P={i/abs((Bl/W1) — (Br/Wr)) < £}

In all the criteria, € is the accuracy parameter, and satisfies 0 < & < 2.

The last step is to perform a folding of the parsed protein with the shape of a ‘lied down U’ (called a U-fold,
see Fig. 2), in a reference point that minimizes the energy. This fold allows long range interactions between
aminoacids of type B.

Tests were done using instances of proteins taken from [UM93b], because the global optima are known for
that sequences, and then the results can be checked against the ones obtained with simulated annealing and
genetic algorithms. The instances choosed correspond to the Dill’s Model [Dil85], and are presented in Fig. 3.

There are some important points to take into account, and to analyze for future works:

e the distribution of aminoacids may be relevant. In the present version an even distribution of them is

assumed, but it could not be the case in real situations.

e the spatial form of the folded protein may be relevant. For example, more ‘compact’ foldings could be

preferable to the opposite.

e biological factibility of proteins may be defined, but it is not known the best way to do it.



4 The implementations

In this section two implementations of the algorithm are presented. The first one was done in ANSI C, and
several reasons guide this selection: the code is portable, a future parallelization using PVM (Parallel Virtual
Machine) is possible, and the C language is very efficient. However, the resulting code was too confuse, and
many implementation details blurred the reading and understanding.

Functional programming has been designed with the idea that algorithms coded with it are easy to develop
and read, but, historically, it was only confined to applications that came from the academic environment.
Nowadays, functional programming is widening its horizons, mainly because new techniques, compilers and tools
are developed, and they are competitive in efficiency with their clasical relatives [Wad95]. So, the functional
language Haskell [PHT96] was chosen to do a second implementation, looking for an easy to understand but
efficient code.

In Sects. 4.1 and 4.2 the C and Haskell implementations are presented respectively and a comparison between

implementations is done.

4.1 The C implementation

The first thing to have into account is the data structure that represents proteins. For that, linked lists
implemented with pointers was choosed — each element in the list represent one aminoacid. Proteins will also
be folded (in a two dimensional grid in this version), and so, information about the position of each aminoacid
is provided in two different ways: absolute and relative. The absolute position is given as a coordinate pair
indicating a cell in the grid, and the relative one as an element of the set {U, D, R, L}, indicating that the
position of the next aminoacid will be Up, Down, Rigth or Left of the present one. Both representations have

to be updated with every change of the embedding.

/* Data Structures to represent Proteins */

struct Aminol { char type;

int x,y;
};
struct Chain { int size; /* Number of aminoacids */
char *directions; /* {U,D,L,R}+ */

struct Aminol #*sec; /* Chain of aminoacids */

};

The application of a folding pattern can be implemented as substring substitution in the string .
Three procedures are used extensively in the algorithm: rotation of a protein, energy evaluation, and cor-
rectness detection (self-avoidness). These three procedures are simple when implemented over the structure

presented.

/* Rotates the chain in the ’start’ aminocid ’angle’ degrees */

void RotateAm(struct Chain *pr,int start,int angle)



{int i,CurrX,CurrY; char move;
for(i=start;i<=pr->size;i++)

{pr->directions[i-1] = NextPosition((pr->directions[i-1]) ,angle);}
UpdateNumericalPositions(pr);

}

In the present version, the energy evaluation and the correctness detection are calculated separately, having
each of them an order of N2, and they also have to calculate potentiations, because they involve euclidean
distances. If efficiency becomes a real problem, there exist the possibility of evaluating the two functions at the

same time with order V.

/* Pseudo-code for an energy function that works in O(N) */
Start with an empty matrix M
energy = 0
Put the first amino AM1 in M
If Type(AM1)="H’ Then
For every neighbour position except the next that will be ocuppied
mark it with P (possible place of contact)
EndIf
For i=2 To ChainSize
if the position for AMi is occupied
then ’you have a colision’; EXIT
if (Type(AMi) = ’H’)
if the position for AMi is marked with P
energy += 1 (you make one contact)
Put AMi in M
For every FREE neighbour position except the next that will be ocuppied
mark it with P
else
Put AMi in M

Next

Even when the results are excellent, and the expectatives are very promising, most of the development time
was spent in some problems with pointer arithmetic and the explicit memory management. Also the resulting

code is far from readable, and thus the understanding of the solution from the code is not very easy.

4.2 The Haskell implementation

Functional programming was choosed having in mind that programs coded with this paradigm are very easy to
read, and that the learning time for non-computer-scientist is short. Also, testing the suitability of functional

languages for real applications was one of the goals of this work.
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Figure 4: Module hierarchy.

The language used is Haskell in its version 1.3 [PHT96], and Hugs [Jon96] was used for testing and prototi-
pation. The former is a high level, pure language, based on functions that provides modularization. The latter
is an interactive system that accepts Haskell code and allows to run any function of it, displaying the results.
Both languages have a strong (static) type system.

It is important to mention that the Haskell version of the algorithm is not a simple translation of the C
version. The code was designed from scratch using functions, with the goal that different methods can be
represented, not only the heuristic presented in this paper.

The functional code is designed as a set of interrelated modules, each of which encapsulate an abstract
datatype that represent one entity or concept relevant to the solution, hiding its internal representation. The
hierarchy of modules appears in Fig. 4.

There are three important modules: the Protein module, where the structure and basic functions for proteins
are defined, the Grid module, where grids, the energy function and correctness detection are defined, and the
Algorithm module, where the heuristic is implemented.

The proteins are represented as a list of pairs (aminoacid, direction), providing information about relative

positions of aminoacids. The basic functions for proteins are:

type Protein = [(Aminoacid, Direction)]
rotateP :: Int -> Way -> Protein -> Protein

uFold :: Int -> Protein -> Protein

which rotates a protein in a given point and way, and makes a U-fold in a given reference point, respectively.

Folding patterns are also defined in this module. They are represented as parsers.
type Pattern = Parser (Aminoacid, Direction) Protein

The type Parser takes two arguments: the type of the components of proteins and the type of the result. It

can be defined as

type Parser comp res = [comp] -> (res, [comp])
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Figure 5: An example of a nondeterministic parsing tree

The type Parser (Aminoacid,Direction) Protein is then equivalent to Protein -> (Protein,Protein).
Based on the pair of proteins that defines abstractly the folding pattern, the operational behavior of the parser
is that when the first protein of the pattern matches an initial subsequence of the input protein, the second one
is returned paired with the remaining input.

The first step of the heuristic is the aplication of the folding patterns to a given protein, which is represented

by the function applyPatterns.
applyPatterns :: [Pattern] -> Protein -> [Protein]

This function returns a list of all possible ways to apply the given folding patterns to the given protein, see
Fig. 5. Thanks to the lazy evaluation of the language, an alternative is not computed unless it is needed.

The Grid module uses matrixes for the representation of grids. The module Matrix used in this version is
only a prototype, and it is not efficient at all, but as it is defined as an abstract datatype, its representation
can be changed without affecting the rest of the code. In each cell of the grid there are information about
the aminoacids that lie in that cell, and about the possible bonds. This representation allows to have non-self-

avoiding proteins embedded, and thus a function to test correctness is provided.



type Grid = Matrix Cell
isCorrectP :: Protein -> Bool
energyP :: Bonds -> Protein -> Int

energyPpos :: Bonds -> Protein -> Int -> (Int, Int)

The function energyP calculates the energy of the given protein, and the function energyPpos calculates, given
a point in the protein, the energies of the first and second segment of the protein.
The different criteria used for determining the reference points are defined in the Algorithm module. The

criteria are represented as functions that take the protein and return all the possible reference points.
type Criteria = Bonds -> Protein -> [Int]

One important characteristic of this representation is that new criteria can be defined as easy as with mathe-
matics — no special attention to representation is needed.

The algorithm that implements the heuristic is then a composition of the different functions already defined:

algorithm :: Bonds -> Criteria -> Protein -> Protein
algorithm bonds criteria prot =
maxEnergy [ fprot |
pprot <- applyPatterns patterns prot,
refpoints <- criteria bonds pprot, i <- refpoints,
fprot <- uFold i pprot,

isCorrect fprot

The notation in this definition is called “list comprehension” and is similar to that of set comprehension. The

function maxEnergy returns the protein of the given list with the maximum energy.

4.3 The results

Two important results have to be mentioned.
The first one is about the use of Functional Programming: the Haskell version is much better than the C

version in many aspects. To mention only the most significant:
e the development time was really much less in the functional version;

e the number of bugs and errors in the code was almost nothing when comparing against the C version, and

also the most important ones were detected by the type system of the Haskell language;
e the code is easy to read and understand.

The author’s expectatives were filled completely.
The second one is about the optimization behaviour of the heuristic: the output of the algorithm is not so
far from that of already known solutions, as can be seen in the table of Fig. 6. A U-folded version of the eighth

protein of Fig. 3 can be found in Fig. 2.



Instance | Optimum | Monte Carlo Criterium

1 2 3
UM1 -9 8| -7 -T| -7
UM2 -9 81 91 -9 -9
UM3 -8 S A Y N
UM4 -14 -12 | -10 | -9 | -10
UM5 -22 -18 | -14 | -13 | -15
UM6 -21 -19 | -17 | -17 | -17
UM7 -34 -31 | -28 | -28 | -28
UMS -42 -31 | -29 | -29 | -29

Figure 6: Results of the heuristic.

Figure 7: Folded UMS8 with energy -39 obtained with a GA feeded with parsed versions of the protein.

Also, a genetic algorithm feeded with the parsed proteins gives results better and faster than those of Monte
Carlo version of [UM93b]. To ilustrate that, in Fig. 7 is presented a folding obtained for the eighth protein
(Fig. 3) that has a better energy value that the best one of [UM93b].

A genetic algorithm can be sketch as follow:

[0] Initialize population

[1] while (termination-criteria = FALSE) Do

[2] Select population
[3] Cross population
[4] Mutate population

[6] Output results

The selection process assigns a mating probability P; to each individual ¢ in the population. This probability

is computed based in their fitnesses: P; = ff where f; is i’s fitness and F' = Eifr fi



During the crossover stage two parents geneterate just one offspring, so the mating pool must be filled with
2% (N — Z) genomes. Here N is the population size and Z the elite set size.

Once the mating pool have been generated, a crossover stage arise. Two parents are selected and they are
mated with a probability Px, where Px is the crossover probability. The crossover is the same as Unger’s
crossover. If the mating doesn’t happen then the parent with the best fitness is copied to the next generation.

Our GA uses four kinds of macromutation steps which are applied accordingly to a probability Parar. The

allowed macromutations begins by choosing two random points an them perfomrs one of the following actions:

1. The genomic substring between this pair of points is changed in order to represent a turn of 0, 90, 180 or

270 grades of this protein segment.
2. Between this points the genome is reflected verticaly or horizontaly.
3. Between them the protein is unfolded.

4. Each peptide in inside the selected point interval is randomly oriented. This is the most structure less

macromutation.

The GA preserve the best individual and copies it to the next generation. The original feature of this GA
is that the initial population was created in a non-random way. The initial population was set to be the leaves
set of the nondeterministic parsing tree of the instance to optimize. When the width of the bottom level of this
tree was greater than that of the population it was simple cutdown. The leaves selected as individuals were
those with bigger differences in their structure. In that way we asure non premature convergence.

Simulations shown that the performance of the GA initialized with the heuristic population was far better
than that of the random initialization. This may seem to be in conflict with the common believe that a random
population is a better start place for searching. The reason for that believe is that non-random initialization
cause premature convergence. Furthermore, this is not an intrinsic drawback of non-random heuristic. If care
is put in the structural scattering of heuristic initialized genomes then premature convergence is avoid, see

[NDLIC98, NDP+97].

5 Future work

The most important future work is the discovery of the language used for proteins to code the folding. For that,

there are three main possible approaches:

e the first one is to use the ‘Computational Mechanical Framework’ of Dr. Das [D195] directly on the

proteins, to discover the language;

e the second one is to use the ‘Computational Mechanical Framework’ on the genetic algorithms, to discover

what kind of computation they perform;

e the third one is to use the ‘Logical Data Analysis’ method of Dr. Hammer [HT96] on the proteins correctly

coded, to discover more complex folding patterns.



Further studies on the advantages of using parsed proteins as initial population for evolutives algorithms
should be done. The author’s found that the designing of folding grammars is very difficult. Research will
be done on the use of automatic genereted grammars in two flavors, Cellular Authomata transition rules and
Folding L-system, grammars.

The project consist in development a concurrent functional framework to genetic algorithms. It should
provide a base to experiment with evolutive algorithms that have arbitrary representations of population and
operators. Also it should decrease the amount of work and coding to each new application.

The Radcliffe and Surry’s idea in their work called RPL2 is followed. RPL2 stands for The Reproductive
Plan Language (1994), and it is a language that was designed to write, perform and modify the evolutive
algorithms in an easier way. RPL2 has imperative programming features, and thus the paralellism is explicit,
and to extend a program, a new compilation and linking is needed. In this language there are no restrictions
to the shape of genomas, and then it is applicable to real world optimization problems.

Finally, the use of Functional Programming for optimization methods will continue.

6 Conclusions

This paper presents a new heuristic to find near optimal solution for the Protein Folding Problem. This heuristic
assumes the hypotesis that the folding process is coded in the protein itself, and one of the goals is to discover
the language used for that coding. In order to do that, the notion of folding pattern is used.

Two implementations are provided: one that uses the (imperative) C language, and one that uses the
(functional) Haskell language. A secondary goal of this work is to compare both languages, and both paradigms.

The resulting code in both versions satisfies largerly the author’s expectatives. The testing performed with
some known sequences of idealized aminoacids results in values of the energy function that are competitive with
already known algorithms. Also the comparison between the two languages gives the expected results: while
the C code is faster, the Haskell code is more readable, and it was more easy to design and develop, allowing to
concentrate the thinking effort in the problem itself, and not in the coding.

The algorithm is deterministic, and linear in the size of the input protein, but its output has energy values
comparable with Monte Carlo method (that is non-deterministic and takes much more time). The parsed
proteins can be used as initial population for evolving methods, with the properties that they are factible (self
avoiding) and that they are local optimum (because so are the folding patterns).

Another conclusion is that many lines of research has emerged as consequence of the development of this

work.
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