
Coverpage

Introducing Scheme in a FP�less Environment

� The Students� Opinions �

Authors� Kris Aerts� Karel De Vlaminck

Address�

Departement Computerwetenschappen

Katholieke Universiteit Leuven

Celestijnenlaan ���A

B����� Heverlee

Belgium

Fax� �� �� 	 �
 � �� � � � �

e�mail � Kris�Aerts�cs�kuleuven�ac�be

Contact Person� Kris Aerts

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Introducing Scheme in a FP�less Environment

� The Students� Opinions �

Kris Aerts� Karel De Vlaminck

Departement Computerwetenschappen

Katholieke Universiteit Leuven

Celestijnenlaan ���A� B����� Heverlee� Belgium

e�mail � Kris	Aerts
cs	kuleuven	ac	be

Abstract� Since ���� the rst programming language taught to students of the faculty of Applied

Sciences is Scheme	We brie�y describe our preference for Scheme and give an overview of the course	

The controversial language choice induced a lot of reactions� mainly because of unfamiliarity with

the functional programming �FP� paradigm	 We are very open to these reactions� and even more�

performed two surveys	 This article discusses the answers	 We believe to be the rst to actually

concentrate on the students� opinion	 This may be of particular interest to any teacher considering

the move to Scheme or any other functional language� but also to the general FP community	 In

the beginning students� especially those with advance knowledge of other programming languages�

are quite sceptic and even negative� but the appreciation improves as the course moves on	

Introducing Scheme in a FP�less Environment

� The Students� Opinions �

� Overview and Scope of the Article

At the university of Leuven �Vlaanderen � Belgium�� we made the move fromPascal to Scheme three years

ago� We believe that Scheme o�ers better opportunities to express mathematically correct algorithms�

The core language can also be taught very quickly and is very �exible which allows us to teach di�erent

styles of programming and focus on software engineering concepts�

These are key issues when choosing for a speci�c programming language� We have also been contin�

uously concerned about the quality of the course� already resulting in a number of changes� but there�s

a lot more to it�

People tend to �just� like what they know� Students don�t know Scheme� but they do know that it

isn�t widely used in our country� neither in world wide industry projects� and they even tend to dislike

Scheme for it� This unknown � unloved situation forces us to take care that our students are not turned

away from the contents of the course� simply because of the use of Scheme� We know objectively that

Scheme is a good language� but the subjective feelings of the students may di�er�

If we really want functional programming to spread widely� as is the goal of this conference� we have to

address this issue� and it is vital for any teacher considering the move to Scheme or any other functional

language to be aware of the students� opinions�

We have conducted two surveys on how our students feel about the course in general and Scheme

speci�cally� Some of these questions are only relevant to us� but others are important enough to be

communicated on a larger scale� In this stress on the opinion of the students lies the main interest of

our article� Various other papers presented the educators� view� both on their particular approach� on

consequences for and errors made by the students� and on criteria for the perfect functional language

��� ��
� �� ��� ���� but we believe we�re the �rst to actually investigate primarily the students� opinion�

This is of major importance as well� because the language may be extraordinarily powerful� but if it isn�t

appreciated� it won�t be used�

Also interesting is the fact that the course is not taught solely to computer science students� It is

given in the �general� �rst year of Burgerlijk Ingenieur ��civil engineering��� Only in the third year a small

part �approx� �� �� chooses for Computer Science� while others prefer mechanics� electronics� mining�

architecture� � � �

There are still some caveats to the article�

� The results obviously link to the speci�c approach used in our teaching� which may not be your

favourite one �see also infra��

� The results are speci�cally valid in an environment where Scheme is �relatively� unknown� They

would probably look di�erent if the survey was performed at places as MIT or Indiana�

� It is a rather quantitative research� We have focused on questioning many students to get a repre�

sentative view on their opinions� but did not learn in depth why individual students responded the

way they did� For this� one would need a qualitative research in which less students are questioned�

but more thoroughly� Based on our teaching experiences we will nevertheless try to answer some of

these in depth questions too�

In the rest of this article we �rst motivate our choice for Scheme and give an overview of the actual

course� Then follows the main point of the article� the survey� of which the results are sometimes com�

plemented with my personal experience of guiding last years students using Haskell ��� and Fudgets ����

We�ve grouped the questions and answers in a number of categories�

� What students think about Scheme

A controversial choice� but appreciated in the end�

� How do students rate their implementation capabilities�

It decreases as time goes by�

� The use of computers

We don�t use computers a lot� but students de�nitely want more�

� How do they like the course�

Already in real life not everyone likes computers as much as we do� The same thing applies to this

computer science course� but in overall the course is at least judged relevant�

� Preference for specialising in computer science

A di�erent kind of questions relates to their interest in the computer science profession�

� Why We Chose to Go from Pascal to Scheme

The Pascal course we taught in a previous life until �� was quite unsatisfactory because we were more

concentrating on language syntax than on software methodologies� Moreover the structure of Pascal

programs didn�t fully re�ect the mathematically correct algorithms� We had to explain the algorithm�

and then prove that the Pascal program followed this algorithm� This was double work� So we often took

care that our algorithm was such that it could be directly used in Pascal�

It quickly became clear that functional languages were the way to go� Not only because we use them

in our research group and other universities started using them in introductory courses� but mostly

because they have little syntax and therefore allow us to quickly introduce the language and concentrate

on software engineering principles the rest of the time� Another good aspect is the close relationship

between algorithm� speci�cation and implementation� This way� if the algorithm and speci�cation are

built� the implementation should not need too much e�ort�

Anyhow� we all ought to know why to choose a functional language� The question is which one� We

opted for Scheme� mostly because it has dynamic typing� We do not need to explain all about types

before we can start writing programs� For simple programs� types are not that necessary� We can quickly

and intuitively start programming� We found out that even last year students� who are supposed to have

at least some understanding of programming languages and types� have some di�culties at �rst with

the strong typing practised in Haskell� So we try to prevent our students from being exposed too soon

to a complete type system� Naturally� we have to admit� and the last year students agree� that strong

typing o�ers important advantages� And as a matter of fact� one of the �rst changes to the course was

the addition of types �but not statically checked��

We also hoped for a positive side e�ect� keeping the students challenged and motivated� With Pascal

we had two distinct groups� those with previous knowledge and those without� The �rst group had no

problems at all� which is good� but they learned very little� Members of the second group often lost their

motivation as they saw how the others could solve anything in just a few seconds� whereas they had to

su�er hard to get something that looked like a solution� Scheme would make sure that the �rst group

feels they can still learn something and that the second groups doesn�t feel left alone in the dark with

their problems� It puts them more at the same level�

It would also make it easier to learn the �rst group new ways of thinking� They can be quite stubborn

staying with their old � bad � habits when programming in Pascal� but when using Scheme they can�t

use their old methods and have to resort to the general software engineering principles we�re o�ering

them�

To summarise� we preferred Scheme for the following reasons�

� functional language

� helps to construct mathematically correct program

� is close to speci�cations

� enables inductive programming

� small syntax

� no types

� also destructive updates can be modelled

� Scheme puts the students at the same level

� most used functional language in education

� availability of programming environments �

� An Overview of the Course�

The course H��
�Methodiek van de Informatica �Methodologies of Computer Science� is lectured through

a series of approx� �� ex cathedra lectures of � minutes for two groups of roughly ��� students� There is

a small Pascal part at the end� but in this article we only describe the Scheme related contents�

The �rst introductory chapter is devoted to the notion of algorithm� whereas in the second chapter�

titled Modelling of Processes� Scheme is presented �define� if� recursion� let� substitution model��

The de�nition of procedures is considered as the �rst important way of abstraction� In the third chapter

Modelling of Information� cons and lists are introduced� We then quickly move to a �rst glance at

Abstract Data Types and give the small classic examples of vector and representation of time�

E�ciency is the central theme of the fourth chapter� from recursive and iterative processes to calcu�

lating time e�ciency in terms of the O��� notation�

A further means of generalisation and abstraction are higher order functions� We learn them how to

de�ne genuine higher order procedures� and how to use foldr� foldl� map and filter� We also give

the de�nitions of these procedures�

There�s also a part on sorting algorithms as they are �ne examples of the power of a higher order

language� one can simply include the sorting criterion as a parameter� Calculating their di�erent time

complexities is another interesting aspect�

After this side step we return to Abstract Data Types and give two more elaborate examples� alge�

braic expressions and sets� implemented as both �un�sorted lists and binary trees� As an introduction to

Object Oriented ADT�s �implemented as procedures that receive messages�� we �rst discuss the problems

associated with dynamic typing� A proposed solution is the use of message passing objects as in Structure

and Interpretation of Computer Programs ���� This is exempli�ed by the rede�nition of algebraic expres�

sions� which are implemented as functional objects� objects with a state that cannot be destructively

updated�

� For imperative programming languages even better tools may exist� but in the eld of functional programming�

Scheme o�ers the most and best choices	

survey

first second

survey

introducing

Scheme
Pascal

Abs
tra

ct
Data

 T
yp

es
 (1

)

eff
ici

en
cy

hig
he

r o
rd

er

so
rti

ng
 al

go
rit

hm
s

Abs
tra

ct
Data

 T
yp

es
 (2

)

dy
na

mic
typ

ing

fu
nc

tio
na

l o
bje

cts

int
era

cti
ve

 pr
og

.

up
da

tea
ble

 ob
jec

ts

lis
ts

etc
.

int
ro

du
cti

on

pr
oc

ed
ur

es
, r

ec
ur

sio
n

ta
sk

 1

ta
sk

 2

Fig� �� A rough course time scale

The use of updateable objects �and set�� is explained through the modelling of bank accounts� We

therefore need to get rid of the simple substitution model presented in the second chapter� We explain

the real environmental model of Scheme and the impact of set� on it� We stress that this set� should

only be used when de�ning updateable objects� and not for plain calculations�

We are not so much interested in speci�c algorithms� An example of backtracking �eight queens

problem� was removed after the �rst year� because we �nd the implementation too technical and preferred

to stress the concept of Abstract Data Types more� The solution of the towers of Hanoi is still presented�

but more as an application of the chapter on interactive programming�

As for the practical side of the course� we make groups of up to �� students and teach them a

�limited� set of �� exercise sessions of � hours each� Until now� we use no computer at nine of these

sessions� just pencil and paper� We believe that algorithms can be better developed on paper than on

computer� We want to properly teach the software engineering concepts involved in programming and

are not satis�ed when they have a program� that is� although working� hacked together� It needs to be

constructed methodologically and this can be better done on paper�

On the other hand� real implementation work has to be performed in two larger projects that are to

be handed in individually or in groups of up to � persons�

� Our Survey

Instead of trying to prove the relevance of our approach by using our own arguments� we decided to

let our audience speak� not literally� but by the use of questionnaires� This paper presents the results�

mainly from the students� viewpoint and referring to their opinion� but also coupled to our own insights�

This is necessary as students will mostly only notice the short term e�ects �especially when they have

not yet been assessed�� whereas we may as well be interested in the long term e�ects�

We have questioned the students twice� to see if there would be an evolution in their answers� The

�rst time was after � lessons� when the concept of higher order functions was explained� At that moment

they had only attended the very �rst exercise session and had hardly acquired any Scheme skills�

At the second time we had just started introducing Pascal� The part of Scheme that we use� was

completely lectured and the students had attended ten out of twelve exercise sessions� The �rst �smaller�

project was �nished for some time and the second task was just handed out� They were supposed to have

a lot more hands on experience�

We mostly asked questions regarding their personal opinion� At the �rst survey they marked their

answer on a scale of � to � The middle answer would be �� The second set of answers was scanned by the

computer� As our computer eye is limited to
 choices� the scale was restricted to � to
 �middle score

now ����� If we compare questions asked at both occasions� we will recalculate the results according to

the ��
 scale�

Most of the students that follow our course have little or no previous experience with �other� pro�

gramming languages� Half of them has no experience at all� while about a quarter has prescience to some

larger extent� As these two groups will probably have di�erent opinions� we decided not only to view

the group as a whole� but also to split it according to their advance knowledge �really high or none��

Another criterion was whether they liked the course a lot or not at all� It will be obvious that the group

who likes the courses gave more positive answers� but it�s still worth looking at�

� What Students Think about Scheme

��� Our Questions

� In the �rst questionnaire�

� To me� the choice of Scheme is � � awfully bad� � � amazingly great

� I consider the use of brackets in Scheme as � � perfect� � � terrible

� In the second questionnaire�

� In Scheme one can do a lot more than I thought at �rst � � � agree� � � not agree�

� We have seen lots of programming styles �stepwise re�nement� Abstract Data Types� Object

Orientation �message passing style��� I think this can be done very nicely in Scheme �� � agree�

�� not agree�

The item that strikes the students most in our course is the programming language� We should point

out that Scheme is completely unknown to our students� Until now� even most graduated students do not

know of this language� So when students asked colleagues who study computer science about Scheme�

they got the answer �Never heard about it�� Some even started thinking that Scheme was something

invented by us �which� ofcourse� it is not��� The most frequent complaint is that it�s useless to teach a

language they won�t be using later on�

But as those who complain loudly may not be representative� we had to ask the entire group�

The most striking elements in Scheme is the parenthesis� much to the annoyance of many students�

So we expected rather negative answers on both questions� but were convinced that the third question

would yield better results� The last question in this category is the most thrilling� We hoped the response

would be positive� but had received no indications in whatever direction�

��� Some Criticism

entire group

6 5

18

9

30

13 13

5
1

0

10

20

30

1 2 3 4 5 6 7 8 9

average = 4.74

%
 o

f
21

3
re

sp
o

n
se

s

high advance knowledge

15

6

27

4

19

10 12
8

0
0

10

20

30

1 2 3 4 5 6 7 8 9

average = 4.19

%
 o

f
52

 r
es

p
o

n
se

s

Fig� �� To me� the choice of Scheme is � � awfully bad� � � amazingly great

Despite the distinct number of complaints� the answer to whether they liked our preference for Scheme

as an implementation language �Fig� ��� was not that negative� The slightly negative trend was mostly

pushed by those with major knowledge of other languages� It is a fact that� if used to an imperative

language� one has to make a notable mental switch to be able to program correctly in Scheme� One could

argue that their opinion counts double as they are the only ones that know of other possible choices�

but we rather believe it�s due to prejudice� We have a hard time convincing these people to use Scheme

properly� In the beginning� lots of them misuse define to write Scheme programs in a Pascal like way�

And if they do not know how to program in Scheme� how can they judge it properly�

no advance knowledge

1

11
9 10

17 18

12

7

15

0

5

10

15

20

1 2 3 4 5 6 7 8 9

average = 5.59

%
 o

f
10

5
re

sp
o

n
se

s

high advance knowledge

6 6
10 8 8

2

14
8

39

0

10

20

30

40

1 2 3 4 5 6 7 8 9

average = 6.41

%
 o

f
51

 r
es

p
o

n
se

s

Fig� �� I consider the use of brackets in Scheme as � � perfect� � � terrible

Further exploring their opinion on aspects of Scheme� we especially notice that the use of parentheses

is something students don�t seem to like and	or understand �Fig� ��� Those without advance knowledge

are best o�� They are open to its use as a function evaluator� while those with advance knowledge

�probably better called prejudice� do not see the light� they clearly dislike them� This is certainly a

pity� because we considered it an advantage that everything in Scheme is a S�expression� This makes the

language very orthogonal� but students do not seem to get this� They just see a lot of brackets that have

to be placed somewhere� Lots of them open a bracket just when they feel appropriate� and wait with

closing until the very end of the de�nition� This is clearly very error prone� In a negative mood� we could

be tempted to state that we switched from the problems in Pascal with the semicolon� to the parentheses

in Scheme� It is de�nitely true that some students loose the overview� purely due to the brackets�

This may seem like a trivial observation� but if this would be the main reason why students dislike

Scheme� we have to take care� The source of their frustration is most likely the fact that parentheses

mostly do not have a semantics as strict as in Scheme� The number of parentheses has a big in�uence on

the meaning of the program� Another problem is that brackets are sometimes used as a means to group

entities �as in the let�� but also then� students must be aware that the grouping can just be done in one

single way�

Another related problem is the use of lists� The fact that a cons can also create a pair� but that

some pairs are lists� while others are not� turns out to be very confusing� A good solution might be to

avoid the confusion by restricting the use of cons� We could rede�ne cons such that it can only be used

to construct lists� It is quite feasible to do this such that cons signals an error whenever the second

argument is not a list�

��� Some Good Points

In our second questionnaire� we included the question �In Scheme one can do a lot more than I

thought at 	rst �� � agree� � � not agree�	 �Fig� ��� And this question is answered quite positively

�a score of ����� Those who have advance knowledge and didn�t like Scheme at �rst� agree even more�

But the most convinced group is those who like Scheme� They already liked Scheme� but their faith still

seems to be growing�

the entire group

18

25 26

15

8 9

0

10

20

30

1 2 3 4 5 6

average = 2.95

%
 o

f
24

4
re

sp
o

n
se

s

high advance knowledge

24

33

17
9

4

13

0

10

20

30

40

1 2 3 4 5 6

average = 2.76

%
 o

f
46

 r
es

p
o

n
se

s
Fig� �� In Scheme one can do a lot more than I thought at rst � � � agree� � � not agree�

The question �We have seen lots of programming styles
stepwise re	nement� Abstract

Data Types� Object Orientation
message passing style��� I think this can be done very

nicely in Scheme �� � agree� �� not agree��� scores a ����� with identical scores if one knew nothing

or a lot of other programming languages� Even those who dislike the course score ����� but here the

histogram is more evenly spread� On the other hand� those who like it� score an incredible ����

�� Discussion of the Results

Although the students are resistant at the beginning� the positive reactions in the second questionnaire

indicate that they �nally seem to agree that Scheme o�ers certain advantages� We believe this to be true

for all functional languages�

Haskell may even do better� because it needs no or little brackets and has features such as pattern

matching that enhance readability� Its list manipulation is far better and the confusion between pairs

and lists is removed�

Another aspect is that programs in Scheme still really look like programs� a bit obfuscated by the

use of brackets� and the control structures such as if� cond� � � � that need to be written explicitly�

Haskell �just as other modern functional languages� comes closer to programs looking like speci�cations�

Because our strong interest in speci�cations� this is good� It stresses that we are not interested that much

in programming in itself� but more in well thought out development�

Its strong typing on the other hand could make the initial steps more di�cult �although one can

argue about this�� because we would �rst need to explain the type system� Still� the major reason for not

using Haskell would be the fact that destructively updated objects cannot be modelled� A language with

little brackets� list comprehensions and the possibility for destructive updating may be the appropriate

choice�

� How do students rate their implementation capabilities�

Questions relating to this were asked on both occasions� Although the curves didn�t reveal a lot� we

noticed that there was a negative trend� On overall they thought they were worse implementors on the

second occasion� This really surprised us a lot� as one would expect this to ameliorate�

After some consideration� we came up with two hypotheses�

� either the complexity of our algorithms grew faster than the students could cope with�

� or they overestimated their capabilities at the �rst occasion�

The last one may be the most likely� At the time of the �rst survey they had rarely implemented

something useful� The programs they had seen� were fully explained in the course� Due to Scheme�s

expressive nature� the programs can be easily understood and seem to be very easy� It is most probable

that students could not fully appreciate the di�culties involved in programming� They just thought they

would be able to implement� but programming in Scheme turned out to be more di�cult than it seemed�

When we asked them during the exercise sessions why they couldn�t implement a certain exercise�

students mostly mentioned I don	t know how to start with it� This was con�rmed by the empty sheet of

paper they were still facing� This not being able to start is more explicit when programming in Scheme

than in Pascal� There� students can easily write down a frame of program heading� variable declarations

etc� without actually having done any thinking on the solution� Such a busy doing nothing phase doesn�t

exist in Scheme and students face in a more violent way the fact that they actually can�t solve the

problem� They �rst have to completely understand the problem and develop a solution for it before they

can write any Scheme code� And if they can�t �nd an algorithm� they can�t write the program�

As a matter of fact� we have calculated the individual correlations between the questions If I

understand the algorithm� I can implement it�! and If I understand the problem completely�

I can develop the algorithm and the program�!� They are really signi�cant� a whopping high of

���� for the group who likes the course� but also ���� for those without advance knowledge and ��
� for

the entire group� This indicates that the two problems are very strongly related�

Indeed� if we take a look at the group with prior knowledge of programming� this correlation drops

to ����� But then we noticed that this is the group who disliked Scheme the most� Their problem may be

dual� Firstly� they�re probably not used to the functional way of thinking and develop their algorithms

in a di�erent way� Secondly� it is even likely that they generally don�t think about the algorithm� but

just start programming� which is a failure proof method in Scheme� Scheme doesn�t seem to pose extra

di�culties for the non experienced users� but it does so for the experienced group and that may be why

their correlation drops�

Another but related view on this problem can be seen when students think they have an algorithm

for the solution� When we notice that they cannot write the Scheme program� we ask them to explain

what they�re trying to program� It turns out that they are unable to formalise their algorithm enough to

be able to write it down as a computer program� Computers need very concise programs� and they have

problems getting to this level of conciseness� They would su�er from the same pain in any programming

language� either Scheme or Pascal�

We have the feeling that they might get closer to something in Pascal� Mostly� part of their ideas is

good� but not good enough for Scheme� They may be able to code the good part in Pascal� and sometimes

they may even get an executable program by �ddling with it� but we believe that the program will be

very error prone� because it is the translation of a badly understood algorithm� simply hacked together

by assembling vague ideas� Scheme does not allow such a way of writing programs�

	 The Use of Computers

��� The Questions

These questions vary largely in scope� but all relate to moments in which students can	should encounter

computers�

� Our use of computers

� I want more	less demonstrations of working Scheme programs on computer during the lectures�

� � out of �� exercise sessions are in the computer lab� This is � � simply not enough � � way too

much�

� The programming tasks

� I�ve used a Scheme interpreter at home �before the
rst task was handed out��

� How do you feel about the programming tasks�

� Would you still perform the task if you weren�t obliged to�

� How much did you learn from the �rst project�

��� Our Use of Computers

Due to circumstances� we haven�t given any computer demonstrations during the lectures this year� But

even in normal situations� the amount of demos remains pretty limited� We believe that it is not that

interesting to see a Scheme program run� one learns little about the way Scheme works by just looking

at a running computer� It�s even pretty boring e�g� to see several lists being sorted�

It surprised us that the students don�t agree� They clearly want to have demonstrations and the need

even grows in time� the �rst enquiry gave ���
 �recalculated �gure�� the second time ���� �� � a must�

� � don	t want demos�� So we asked a few students what they considered an interesting demo� They

don�t want a plain run� but would like to see how the di�erent procedures are used during evaluation� So

they�d rather have a program with breakpoints� and not just a trace� because that scrolls way too fast

and doesn�t show code being executed� just entry and exit points�

As already mentioned earlier on� we prefer not to program computers extensively� It is not a course

on programming� but on methodology� Practical issues are also involved� During the exercise sessions�

we usually rehearse the theoretical concepts to be used� We experienced that it is di�cult to get the

students� attention during the computer sessions� That is why we are reluctant to schedule more of them�

Another problem is that we want them to implement several programs� When implementing on PC�

they rather make sure that their
rst program actually runs� before continuing with the rest� Having a

program run is important� but because of our limited amount of exercise sessions� we do not necessarily

want all the gory details� Instead of having them struggling with syntax details �mostly bracket related��

we want the overall structure�

Despite the fact that we get to do more exercises during the paper sessions� the students de�nitely

want more computer sessions� �� � want it real hard �Fig� ��� They �nd that computer sessions are more

e�cient� Perhaps they can only �nish one or two exercises� but then they really do understand them�

And there�s also the important psychological bonus of �Hey� look what I can do�� which is lost on paper�

��� The Programming Tasks

But their whish for more computer exercises contrasts with our desire to concentrate on software engi�

neering concepts� We don�t want to stress the programming details in the exercise sessions� but rather

the methodology�

entire group

40

15

25

7 8
1 2 0 1

0

10

20

30

40

1 2 3 4 5 6 7 8 9

average = 2.49

%
 o

f
21

9
re

sp
o

n
se

s

Fig� �� � out of �� exercise sessions are in the computer lab	 This is � � simply not enough � � way too much	

On the other hand� we agree that being able to really implement something working is an important

issue� but we prefer to let them experiment on their own� It is a well known fact that programming can

only be learned by extensive experimenting�

For this purpose� we include two mandatory projects to be made on computer� The results don�t

count for the examination� but it gives them the opportunity to learn to develop bigger applications� Not

all students take care of this as seriously as they should� but those who do� generally get higher grades�

It�s not important that they score well in the project� just that they actually make the e�ort� and not

simply copy the result from a colleague�

To help them �nish the project� we give them the opportunity to have a Scheme interpreter at home�

Before the task is handed out� some of them already use it voluntarily� If � � never and � � all the time�

about one third answers from
 to � The amount of advance knowledge doesn�t in�uence this� and even

in the group of people who love the course� a rather large number seldom experiments at home�

On the matter of projects� they really feel comfortable about them �Fig�
�� And an average score of

�� on another question indicates that they would still participate in the projects� even if they were no

longer mandatory� This further stresses their interest in real programming�

entire group

0 2 1
5 8 7

20 21

35

0

10

20

30

40

1 2 3 4 5 6 7 8 9

average = 7.32

%
 o

f
21

5
re

sp
o

n
se

s

I don’t like the course

0 3 0 3 3 6

38

25 22

0

10

20

30

40

1 2 3 4 5 6 7 8 9

average = 7.31

%
 o

f
32

 r
es

p
o

n
se

s

Fig� �� How do you feel about the programming tasks� �� � negative� � � positive�

�� Discussion

Although educators do not agree on whether it is better to do exercises on paper or using a computer

���� the students themselves clearly rebuked our approach to sparsely use computers�

And perhaps this is good� We may rightfully concentrate on the software engineering principles� but

as it is the students� �rst computer science course� they should get some real hands�on experience� They

can only understand and appreciate what is involved in �good� software development if they went through

the �painful� process of programming a computer� This necessarily includes paying full attention to the

details and precisely expressing the algorithm in the programming language� As long as we take care

that they don�t get overwhelmed by the details� they will certainly learn that the software engineering

principles help in controlling the complexity of software development�

But please take note that students are very critical when it comes to programming environments� In

the �rst year we used SCM �� for DOS� which is just a recompilation of the Unix version and therefore

has a very basic command line and needs a separate editor� The students were far from enthusiastic�

but as we moved to EdScheme for Windows ���� �a very user friendly tool� that helps in parentheses

matching� indentation� key words colouring� � � � � their appreciation for Scheme more than doubled and

they became a lot more eager to actually experiment�

This may sound like a very trivial fact� but it is important to stress that students tend to confuse

between the language and the tool� If the tool is bad� they think the language is bad� This is con�rmed by

the fact that many questions and	or complaints about Scheme are actually about �the use of� EdScheme�

We agree with their concern for a good programming environment� It may have nothing to do with the

language itself� but it is an important aspect that cannot be underestimated� After all� if the students

can write their programs quickly and nicely� but only feed it to the computer through major e�orts�

what�s the point�

So the morale of this section is that anyone considering to start teaching a functional language has

to take care that it is complimented with a suitable programming environment� and that� especially in

an introductory course� a substantial part of the exercises is scheduled on computers�

 How Do Students Like the Course�

��� Questions and Answers

Whereas we looked into their love for Scheme earlier on� we also asked whether or not they like the

course �Fig� ��� During the �rst survey only few people disliked the course� and a fair number liked it a

lot� but the overall curve was Gaussian �again� with a slight advantage for the positive side� The second

survey revealed that a number of people with a neutral opinion moved to the negative side� We see no

clear reason for that� It may be in�uenced by the di�erent lectors� as the normal lector was ill during

the �rst nine weeks of the semester� another person replaced him� The students viewed his lessons as

more interesting ����� instead of ���� �� " swift�
 " boring��� Especially those with advance knowledge

preferred the part with the �rst lector�

The other question of the second survey that �ts in this section is more specialised towards the

contents of the course� �The software engineering concepts in this course are fascinating �� �

agree� � � disagree��� It gave no really di�erent result� The average ������ is now exactly in the middle�

The peak just moved a bit in the positive sense� Those with advance knowledge like the concepts even

more� They seem to understand that they can be used in any language�

first survey

3 3

10

18
22

15 16

8
5

0
5

10
15
20
25

1 2 3 4 5 6 7 8 9

average = 5.30 (3.71 on 6)

%
 o

f
22

0
re

sp
o

n
se

s

second survey

14

20
24

21
16

5

0
5

10
15
20
25

1 2 3 4 5 6

average = 3.21

%
 o

f
24

7
re

sp
o

n
se

s

Fig� 	� I �� � hate� � � love� this course

Up to the crucial question� �Do you think the contents
as far as known� makes sense� �� �

not at all� � � ������ �Fig� ���

The results were identical on both occasions� but clearly point in the good direction� There�s no Gauss

curve here� but a steady ascend with a peak just below the top score� The average is clearly positive�

���� �max� � or ��
� �max�
��

first survey

3 4

11
15

19 19
23

4 2

0
5

10
15
20
25

1 2 3 4 5 6 7 8 9

average = 5.23 (3.66 on 6)

%
 o

f
21

5
re

sp
o

n
se

s

second survey

5

15

22
27 27

4

0

10

20

30

1 2 3 4 5 6

average = 3.67

%
 o

f
24

6
re

sp
o

n
se

s

Fig�
� Do you think the contents �as far as known� makes sense� �� � not at all� � or � � �		
�

��� Discussion

The observation that students prefer some lecturers over others may not be surprising� but is important�

Teachers still in doubt about moving to Scheme or another language� should keep in mind that simply

the decision of moving from one language to another will not substantially in�uence the fascination for

the course� Other e�orts have to be made�

For example� when we used Scheme for the �rst time� we introduced lists very late �after higher

order functions�� At that time� we had lots of complaints of the kind �In Scheme one can only work with

numbers� Nothing interesting can be solved�� As a result we now introduce lists a lot earlier� immediately

after recursion� Since then we no longer heard such complaints� but we decided to explicitly ask the

question during our �rst survey� The answers were evenly spread� A conclusion cannot be safely drawn�

but at least the initial � wrong � impression is gone�

Related to our concern to keep the interest in our course high� we wondered if some graphical appli�

cations would help� The survey revealed that no high demand exists� Nevertheless� those who do not like

the course� would like some� As we should try to convince them too �otherwise� convincing the convinced

is not hard�� it may be appropriate to include some more graphics� for example through the use of the

turtle graphics included in EdScheme�

If the direct question to the relevance of the contents is answered positively� there�s another indication

to prove this� We also asked how much they would remember after � and � years� There was no immediate

interesting answer to this� but it struck us that those with advance knowledge think they will remember a

lot more� We interpret this positively because we believe that they can see the di�erence between speci�c

techniques and general principles� If there�s anything to be remembered� it�s the principles� So if they

think there�s a lot to be remembered� there must have been many principles learnt and this is what we

wanted�

� Preference for Specialising in Computer Science

A matter not really related to simply teaching a course� but still very relevant� is the following� Our

students are very heterogeneous� they still have to choose an option� they can go into mining� electronics�

computer science� � � �

Some may already know what to choose and others may only be sure not to choose CS� Anyhow� for

most of the students this course meant the �rst contact with real computer science� not just programming�

playing games� word processing and web browsing�

Perhaps it learned them that computer science is more than just bit manipulations and indeed a very

interesting art� Or perhaps to the contrary� only now they see that programming computers is a hard

working profession and realise that it�s not as fun as blasting enemies in the games gallery�

It may be vital for our department at the university� but more importantly for our economy� to raise

the amount of students choosing for CS� because in Belgium we are facing a huge shortage of computer

science graduates �at the moment approx� ������ and I�m sure this equally applies to various other

countries�

Our �rst questionnaire included two questions about the in�uence of this course on their preference

for computer science�

� Did your interest in the option computer science
� � grow� � � shrink� �

One third had no opinion� but for the rest we have a bit more interest losers than interest winners�

� �If this course gives a correct taste of the computer science option� I will choose � �

computer science� � � no computers��

This scored
���� At that time we were unable to attract anyone without previous knowledge of

computer languages� Luckily those who love the course� will mostly choose computer science�

These results may not look so good� but should be a bit relaxed� They were to be expected� as also

in real life only a small minority eventually chooses CS� The survey just con�rms this� Besides� it should

not be the only purpose of a course to attract students� If anything� it should give them a right view on

the problems involved and solutions proposed� We�d rather have students that know what is awaiting

them� than those that are simply attracted by job opportunities�

�� Conclusion

As long as Scheme is not widely used in Belgium� both in educational and commercial projects� our

use of Scheme as the �rst programming language will be controversial� Not because we allegedly don�t

do valuable things with it� but simply because the language won�t be used later on� The students who

are actually exposed to this strange thingie called Scheme� appreciate it in the end� We think that it is

a powerful language in which a lot of software engineering concepts can be modelled and most of the

students �nally agree�

Despite the fact that a lot of students will continue to be confused by the brackets of Scheme and

the problems related with dynamic typing� we will continue to use Scheme the following years� mostly

because dynamic updating of objects is possible and the absence of types partly liberating� The presence

of a user friendly environment is another important advantage�

The students who had advance knowledge of other computer languages resisted the most in the

beginning� but even this group can be persuaded of the assets of our approach� The group of �nal year

students who use Haskell is the most convinced of the power of functional programming� but then� they

really got to taste it to its full extent� The problem with a �rst year course may be that it is just a

�rst course� the examples and tasks are not big enough to fully appreciate the power of well thought out

development�

Although not everyone is fully satis�ed about the course and the language� we have certainly been able

to convince most of our students� We therefore believe our approach and our preference for a functional

language to be quite successful�

Acknowledgements

We would like to thank the students for �lling in the questionnaires and giving very interesting extra

remarks� Margot and the people of DUO for processing the questionnaires and Bern� Peter� Wim and

Yvan for proof reading�

References

�	 H	 Abelson� G	J	 Sussman� Structure and Interpretation of Computer Programs MIT Press� ������	

�	 M	 Carlsson� Th	 Hallgren� Th	� Fudgets � A Graphical User Interface in a Lazy Functional Language� Pro�

ceedings of FPCA� ������ �������	

�	 C	 Clack� C	 Myers� The Dys�functional Student� Proceedings of FPLE ���� Lecture Notes in Computer Science

���� ������	

�	 A	 Davidson� Teaching C after Miranda� Proceedings of FPLE ���� Lecture Notes in Computer Science ����

������	

�	 S	 Fincher �co�ordinator�� S	 Thompson� P	 Molyneux� Teaching Functional Programming Opportuni�

ties and Di�culties� CSDN one�day workshop� Kingston University ���th September ������ report at

http���snipe�ukc�ac�uk�CSDN�conference����Report�html

�	 P	 H	 Hartel� B	 van Es� D	 Tromp Basic Proof Skills of Computer Science Students Proceedings of FPLE ����

Lecture Notes in Computer Science ���� ������	

�	 P	 Hudak� S	 Peyton Jones� P	 Wadler �editors�� Report on the Programming Language Haskell �version �����

Technical Report Yale University�Glasgow University ������

�	 J	�P	 Jacquot� J	 Guyard� Requirements for an Ideal First Language� Proceedings of FPLE ���� Lecture Notes

in Computer Science ���� ������	

�	 A	 Ja�er� SCM �e	�� Implementation of Scheme that conforms to R�RS and is available for many platforms	

��	 E	 T	 Keravnou� Introducing Computer Science Undergraduates to Principles of Programming through a

Functional Language� Proceedings of FPLE ���� Lecture Notes in Computer Science ���� ������	

��	 E	 Martin �editor�� The WinScheme editor� the manual for Edscheme Schemers Inc	 ������

��	 S	 Thompson� S	 Hill� Functional Programming through the Curriculum� Proceedings of FPLE ���� Lecture

Notes in Computer Science ���� ������	

