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Abstract. IP Networks, and particularly the Internet, were proposed to be a
simple and robust support for heterogeneous communications. This implies
that only basic controls have to be done by network elements. Connection
management, along with transport, and more generally communication
management, has to be done by the terminals. For example, error detection
mechanisms, error recovery mechanisms with “Slow Start”, are implemented
within the transport protocol, managed by the terminals. However, integration
of new services and increasing need for QoS require the network to be more
and more flexible and adaptive. New algorithms and protocols are then
proposed to address these issues, and include new configuration layers. Manual
configuration of such network architectures is then very complex, if not
impossible. We think that future core network elements will have to be more
adaptive, but also more autonomic. Auto-configuration is indeed a necessary
condition to integrate new services in the network. We believe that auto-
configuration requires new knowledge provisioning and computing policies.
This paper then presents an architecture of software agents, collaborative and
autonomic. These agents are embedded inside the routers. Their role is to share
local and situated knowledge, in order to control and optimize the existing
control mechanism of the router.

1 Introduction

Since several years, evolution of networks includes the integration of new services.
This achievement implies the setting of different features and tools. On one hand,
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new control mechanisms (traffic engineering, QoS, security, etc...) are then
proposed. On another hand, a new perspective of network evolution, more and more
present in the discussions, is autonomy. It refers on creating a network that has self-
configuring, self-healing, self-optimizing, and self-protecting features [IBMO3], in
order to adapt to new situations in the context.

To achieve these issues, the new mechanisms need a huge quantity of numeric
and/or symbolic knowledge. Provisioning, computing and representation of this
knowledge are for now achieved separately at a very low level by each existing
control mechanism. We think that high level information cannot be provisioned at a
larger scale by existing mechanisms, because this knowledge is complex, and it has to
be more specifically provisioned.

This paper presents an architecture of software agents, collaborative and
autonomic [FER99]. These agents are embedded inside the routers. Their role is to
share local and situated knowledge, in order to control and optimize the existing
control mechanism of the router. Our work is based and inspired by several papers in
the literature, including [MES03] which proposes a multi-agent based architecture to
share knowledge and control DiffServ; [MERO3] which presents a 2 layer end-to-end
adaptive monitoring mechanism based on collaborative agents. In a similar field,
[BIE98] proposes to base the network management on a mobile agent system.

We first describe in section 2 the internal basis structure of an agent. In the third
section are described the interfaces of this agent with its environment. In the end, last
section proposes an application of this technology to control and optimize the routing
algorithm OSPF, using high-level, local, and situated elements of knowledge. The
steps of the conception of an agent are not detailed in this paper.

2 Basis structure of an agent

An agent is made of a decision core and several modules (fig. 1). Decision core is the
kernel of the application. It is based on synchronous execution of several “behavior
units”, and is able to compute received data and observed data, in order to decide of
an action.

Modules are the sensors and effectors of the agent. These are interfaces with the
environment of the agent, which allows the behavior units to observe a given part of
the functional environment (reading an element in a MIB, receiving inter-agent
messages, etc...), and act on it (configuring equipments, send inter-agent messages,
reporting events to the network operator, etc...).
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The agent within its environment

In this section the decision core and the modules mechanism are described in
details.

2.1 Decision core

The decision core is based on one or more behavior units. These units are execution
units, synchronized by an internal timer. They are executed in a given order, at a
fixed rate.

There are three different kinds of behavior units:

e Observation and listening units, which are able to gather information about
network elements and neighbor agents ;

e Computing units, which extract useful information from the data gathered by
observation units, and compute a “good” decision for the network element
configuration ;

e Action units, which apply actions decided by the computing units.

These are executed sequentially, in order to plan mechanisms over several
behavior units. Decisions are taken after information was collected. Each one of
these behavior units can access the modules they want. Actions decided by these
units can use primitives of available modules (“send a message”, “check a mailbox”,
“set a parameter”, etc...). Each of these can access the controlled equipment, send
messages to the neighbors, and update a remote database.
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2.2 Modules

Modules are interfaces between an agent and its environment. Primitives are
described and behavior units can access them. Development of these modules is
strictly separated from the development of the application. It depends on
environment (architecture, hardware, technical means, etc...) and on primitives to
provide.

For example, the primitive « send a message » of a communication module can
either: open a TCP connection with a neighbor to send an ACL message; send a
simple string in UDP, without opening any connection; send an only Ethernet frame
including the whole desired information; invocate a Java-RMI method on a remote
agent; etc... There is a huge amount of possibilities. On the agent side, only the
functionality is seen.

2.3 Needed support features

When building the different agent behaviors, one will need some basic functionalities
(change a configuration parameter on the controlled equipment, send a message to a
peer agent, etc...). These functionalities have to be provided to agents by the
primitives of available modules. These modules, then, use some primitives in the
controlled equipments (where the agent is embedded). If the agent, for example, has
to be able to communicate with peers, it will need a communication module, which
in turn will be based on available primitives in the equipment (a router with a UDP
transport layer, for example).

3 Agent interfaces

These interfaces are classified in 3 categories (fig. 2): Agent-router interfaces, agent-
agent interfaces, agent-human interfaces.
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Interfaces between the agent and its environment

3.1 Agent-to-router interface

The agent-to-router interface is the most important interface: it allows the agent to
control routing and QoS functions in the router.

This could be a local interface, if agents are embedded within routers (fig. 4); it
could also be a remote interface, if agents cannot be embedded within routers (fig.
3). In any case, it can be based on IP-level protocols (telnet connection, SNMP,
etc...).

Accessing the router parameters can be done in command lines via a telnet
connection, or by consulting MIB databases. Generally, gathering data can be done
within 2 modes: polling (active gathering of information from the router) or trap
reception (alarm messages sent by the router when a threshold is reached).

Accessing the configuration always depends on the application. It could even not
be necessary, when applications do not need to re-configure the router (i.e.
monitoring applications). If it is necessary, it can be done in command lines via the
router shell, or via specific configuration protocols like netconf.



132 Thomas Bullot(1,2) and Dominique Gaiti(1)

Deploying the agent : remote control agent Deploying the agent : local control agent

3.2 Agent-to-agent interface

Agent-to-agent communication is a key issue, and one of the most important
innovations provided by multi-agent systems. Transversal sharing of information by
agents allows one to build a global distributed ‘“knowledge plane”. Each agent can
build its own situated view of the network state. Addition of these different situated
view results in what one can call a distributed knowledge plane. The situatedness of
agent knowledge is a key point in our architecture: it ensures that our system can be
scalable.

This transversal, peer-to-peer, and not hierarchical communication model is an
answer to one of the most important issues in the domain of networks: how to build
and maintain a global network state representation, without being stopped by
scalability problems? Building in real time a unique and centralized view of the
network is only possible in very small networks. On the contrary, if one accepts that
this representation is not centralized, not always complete and deterministic; our
architecture is a suitable answer.

In order to exchange data in a coherent way, a suitable representation of these
data has to be adopted. On the suitability of this model will depend the efficiency of
the application. It is necessary for example to find an adequate level of granularity.

Exchange protocols can also be a key issue of an application. Depending on the
kind of protocol used, one can sometimes with very few messages exchange a huge
amount of information. These protocols also have to be extremely robust: each agent
has to be autonomic; it is a key quality of our system! The stability of an agent can
never rely on the reception of a message. Every situation must be faced and managed.
One should avoid explicit requests. Instead, one way information messages are
preferred.



Towards autonomic networking and self-configurating routers 133

3.3 Agent-to-human interface

Technically, the agent-to-human interface is not a crucial interface. However, it’s
necessary for a human operator to observe and influence the evolution of the system.
Monitoring facilities can be very precise, in order to allow a human operator to
understand and validate or invalidate some of the agent-decisions in real time. On the
contrary, it can be a very synthetic high-level monitoring, to observe the evolutions
of the agents.

Agent configuration, in the same way, can either be very synthetic at a high level
or more technical at a lower level. It should generally not be too precise, because if
the agents are so difficult to configure as the network itself, utility of these agents is
much reduced. Ideally, configuration of the agents should be down automatically by
the agents themselves. To achieve this kind of auto-configuration skills, the agent has
to be built to need as less information as possible. Its efficiency will always rely on
the amount of information it’s got to build a representation of the network, but it has
to be working with very few information.

4 Automatic configuration of OSPF protocol using such agents

An example of agents applying on network functionality is auto-configuration of
OSPF protocol.

OSPF is a dynamic routing protocol. As a routing protocol, it is a task achieved
by all of the routers in the network. As it is dynamic, it should be done depending on
the context and the local environment of nodes. Because of these 2 reasons, this
example is a good application for our agent architecture.

The work of the agent consists in observing the current situation, and applying
OSPF parameters reconfigurations, in real time.

4.1 Principles

OSPF is a dynamic routing protocol, which computes in real time all the routing
tables depending on the weight affected to each interface. One route will be chosen
to send packets from one point to another if the sum of the weights of each used
interface in this route is minimal in the network.

Interface weights are then a key issue for choosing routes in OSPF. Choosing
these weights is a complex issue. Many works refer to the general routing problem.
[BER92] proposes a set of solutions to this problem, and [WAN99] studies different
versions of this problem. The particular OSPF weight setting problem, on the
contrary, has been proven to be NP-Hard [FOR00], and many heuristics has been
proposed to address it. A generally accepted heuristic to choose these weights was
proposed by Cisco [CIS98]: the weight of an interface should be proportional to the
inverse of the capacity of that interface. Very capable interfaces are then more used
than less capable interfaces. However, this heuristic doesn’t take in account topology
and current load of links, and sometimes causes misuse of small external links and
overload of big main interior links.
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A lot of works on the OSPF Weight Setting Problem [FORO00], and particularly
using techniques based on artificial intelligence [ERIO1], encountered a reasonable
success [YE02], but it is often about off-line optimization techniques, based on such
pieces of information that “demand matrix”, which are very often unavailable.

How, then, to choose a “good” configuration of OSPF weights, at execution time,
depending on topology and the current state of the system, without encountering
scalability problems (i.e. with no centralized computing).

To address this issue, we propose our autonomic agent architecture. As far as we
know, no work before has addressed this problem using multi-agent systems. At a
fixed rate, agents observe the state of the different interfaces of their controlled
router. They then broadcast a representation of that information to their neighbors.
Each agent is informed of the load of its interfaces and of the state of its neighbors. It
will then be able to recompute the weight of its interfaces.

4.2 Agents behavior

The implemented behavior can decide of 2 independent actions: on one hand, it can
decide to change the weight of one of its interfaces; on the other hand, it has to
decide what the new weight to set is. These decisions have to be separated, because
changing a weight causes the whole network to be flooded with the topology with
the new weights, and all the routing tables to be recomputed. It is important then to
decide very rarely to change the weights. This decision can rely of different pieces of
information as the new weight to set.

The choice of interface weights is based on the current load of these interfaces,
and on the state of the routers directly linked to these. It’s indeed very important,
before deciding to redirect more traffic on an interface, to see if the adjacent router to
this interface is already loaded or not.

In the following example (fig. 5), router-agent O has to choose OSPF weights of
its interfaces. Available information is showed on the figure: the load of each one of
its interfaces (cursors near each interface), and the state of nodes directly linked to
these interfaces (color of the nodes). In this case, router-agent O has to set a weight
to 3 interfaces, numbered from 1 to 3. For the interface 1, the current load of the
interface is high, and the adjacent router (A) is in a “critical” state (red). Agent O’s
decision will then surely tend to increase the weight of this interface, in order to
reduce the traffic passing through it. For interface 2, the load is high, but the state of
the adjacent router (B) is “good” (green), so one can guess that the weight of this
interface can remain the same. For interface 3, the load is low and the state of the
adjacent router is “good”, then the decision may be to decrease the weight associated
to this interface.
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An example of a weight setting situation

On the contrary, deciding to effectively change the weights of the interfaces in a
router (and, then, to reset the whole OSPF protocol in the network) does not rely
directly on the load of interfaces, but on the global state of the router. This state takes
in account the load of interfaces (max load, average load, etc...) and an evaluation of
the state of environment (state of the neighbor routers). To avoid multiple OSPF
resets at the same time in the same neighborhood, each agent sends an “I reset!”
message to all its neighbors (on 1, or 2, or 3 hops). Multiple resets in a same
neighborhood could indeed cause oscillation and strongly decrease the performance
in the network. To avoid these problems, we also propose to take into account 2 kinds
of influences: stabilizing influences and destabilizing influences. A positive state of
the neighbors is a stabilizing influence. In the contrary, negative state of the
neighbors is a destabilizing influence. Heavy load of an interface is a destabilizing
influence, when light load of an interface is a stabilizing influence.

To avoid oscillation around a not-perfect-but-optimal configuration, we included
within the agent behavior a habituation phenomenon. That means that a data has no
sense by its own. Each data taken into account by the agent is pre-computed to
compare it with previous identical data, to know if it is “particularly high”, “normally
high”, “surprisingly high”, etc... More precisely, each data is compared with its
minimum, its maximum, and its average. This pre-computing is done by
normalization (fig.6). Our normalization is done with the following system:

Xnorm = [(X — Xmin)/Xavg]*0.5 if 0<X<Xavg

Xnorm = 0.5 + [(X — Xavg)/Xmax]*0.5 if Xavg<X<Xmax



136 Thomas Bullot(1,2) and Dominique Gaiti(1)

HnffM

0.5

0 P

Imin Xavg Xmax

A representation of our normalizing operation

5 The simulation conditions

5.1 Motivations

The main motivation of this simulation is to show how the system works, and what
its objectives are. This is definitely not a performance test, and one should take into
account mechanisms, and not values. Values are given as a piece of illustration
information. For the same reasons, the simulated traffic is uniform.

5.2 Data

The network topology used in our simulation (fig. 7) represents a network that is
similar to the one of the British operator British Telecom. This topology has been
chosen because it represents a network that is technically credible, highly meshed,
with enough nodes. The nodes are distant enough (distance up to 5 hops between 2
nodes).
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Topology used in this simulation

The traffic introduced is not even a nearly realistic traffic model. Every node in
the model sends a uniform traffic stream to each other node in the network. The only
aim is to overload the network, in order to push the agent system to try and find an
optimal solution.

5.3 Simulation results

Given results are to study qualitatively. Our main evaluation criteria in a given instant
is the number of overloaded interfaces at this instant. We just consider that,
approximatively, the global load of the network is linked with the number of
overloaded interfaces. This hypothesis is not exactly true, because an overloaded
interface can reject a huge number of packets, when two overloaded interfaces can be
just a little bit overloaded, and reject a very few packets... However, this is not the
most common situation, and even if our results “only” show a very remarkable
tendency of reducing the number of overloaded interfaces, one can think that we
found a way to compute “good” weights in OSPF.
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A first test allows us to observe the OSPF behavior without any agents (fig.8),
configured following the Cisco heuristic: weight(interface) = 1/capacity(interface).

=

OSPF behavior without any agent

One can see that 6 interfaces are overloaded. One in node n5, two in node nl10,
one in node nl3, one in node nl7, and one in node n18. These interfaces are clearly
overloaded, and the other interfaces are not.

When activating agents, one can observe a few transitive phases (fig.9). Duration
of these phases is not studied here. Our aim in further studies will be to obtain
duration of a transitive state that is proportional to the “stability” of the configuration
(cf. stabilizing and destabilizing influences, in previous part). One data to study will
also be the number of these transitive states. It has been told in previous parts that the
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cost of resetting OSPF is very high. It is capital to reduce the number of these resets
at its minimum, and to converge as quickly as possible to a stable state.

Of

Succession of transitive states

Then, one can observe a succession of stable states. Stability of these states relies
on the state of all agents in the network. Agents are influencing each other, and push
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to a stabilization of the global system. An example of a stable state is represented in
fig. 10.

= =

An example of a stable state

One can observe on this example that, even if the situation is stable, not
everything is perfect: the node nl0 has two overloaded interfaces. Thanks the
habituation phenomenon, the agent on node nl10 considers that the situation is rather
positive, and adopts a positive state.
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6 Conclusions and perspectives

IP networks, and particularly the Internet, are supposed to be simple and robust.
Integration of new differentiated services new functionalities implies adding new
configuration layers. These new layers become quickly too complex, and require a
huge amount of high-level knowledge, that cannot be provided by standard exchange
protocols. As a consequence, new functionalities, not optimally configured, are either
under-exploited or even not used at all.

Facing this result, we propose a simple and robust architecture of autonomic and
collaborative agents, which role is to share local and situated information, in order to
build a global distributed knowledge plane. In a distributed environment like a
network, distributed computing approaches (from Artificial Intelligence) like multi-
agent systems ideally fit. Sharing their situated views of the environment, agents are
building locally a representation of their environment in order to decide elementary
configuration actions. We assert that providing such high-level situated knowledge to
the control mechanisms will open the way to new smart control heuristics. These
heuristics shall be less deterministic, and more based on fuzzy/uncertain global
knowledge.

We describe the application of our technology to a concrete issue: configuration
of OSPF weights. To address this complex problem, our solution use a new set of
heuristics, based on a situated representation of the local neighborhood (which is
provided by our multi-agent system). This solution presents a convincing behavior.
We manage to reduce drastically the number of overloaded interfaces, thanks to a
simple, robust, scalable, and flexible new technology.

However, a lot of further studies are planned. As a first step, we will have to
develop new test patterns. Even if qualitative tests provide appreciable information
about the processes, we need to ensure that this technology allows us to get better
performance within acceptable delays. We have to test our system with credible
traffic models, and to observe the behavior of the system depending on the values of
the parameters of the agents.

On another hand, new applications will allow us to try different techniques, in
order to enhance our agent model. We particularly began to develop an alarm
filtering and management application, which relies on more symbolic data and
algorithms, when OSPF application was using more numeric data. We also improve
with this new application new knowledge sharing mechanisms.
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