
Experiences in Portable Mobile Application

Development

Antti Kantee and Heikki Vuolteenaho

Helsinki University of Technology

Summary. In the software world portability means power. The more operating
environments you can support out of the same code tree means more potential users
for your software. If done right, additional platforms can be supported with little
extra maintenance cost. If done wrong, maintaining additional platforms will become
a veritable nightmare.

This paper describes experiences undergone when creating truly portable soft-
ware. Our software is a real time rendered 3D map and messaging application, which
runs on UNIX (Linux, Mac OS X, NetBSD), Windows 98/2000/XP, Windows CE
and Symbian Series 60. It is Symbian which makes this mix of platforms interesting
and challenging. However, with the knowledge of potential problems, we found that
this set of platforms is totally manageable for a portable mobile 3D application.

1 Introduction

Traditionally, in the UNIX and C world, portability has come to stand for the
ability of a software to deal with differences imposed by the underlying CPU
architecture, such as byte order, pointer size or alignment constraints [4, 5].
Other usual suspects for hindering a porting process are standard library or
system interfaces either missing or behaving differently. By carefully program-
ming against POSIX and ISO C provided interfaces and avoiding making as-
sumptions about the compiler or underlying hardware, it is possible to achieve
a fairly high level of portability, even between UNIX and Windows.

However, when a completely different kind of system, Symbian, is intro-
duced into the picture, the rules change. All assumptions which used to hold
in the UNIX and Windows environments may no longer be valid. This does
not necessarily make things more complex or difficult. The major factor of
difficulties for having Symbian within the sphere of portability of a software
is basing key design elements on non-valid assumptions.

This paper describes the issues encountered in developing a mobile 3D
application written in C. In Chapter 2 we describe issues specific to Symbian
while Chapter 3 concentrates on issues affecting all platforms.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Antti Kantee and Heikki Vuolteenaho

1.1 The software: mLOMA

mLOMA [13] (mobile LOcation aware Messaging Application) is in its essence
a 3D map application optimized for mobile devices and built on top of
OpenGL [9]and GLUT [6]. The mLOMA client can be used to browse a real
time rendered 3D scene with a framerate acceptable for interactive use. It
features a route guidance system and support for GPS location tracking. A
server component is also provided. If a network connection is available, clients
can receive up-to-date information on the model and interact using the server.
Users can track each others’ locations and communicate using messages. Mes-
sages can be public or targeted to individual users and they can be attached
to any points in space or the model.

Fig. 1. mLOMA client running on Pocket PC and Symbian Series 60 platforms

Since mobile terminals do not feature 3D acceleration in hardware and
are limited both in terms of available CPU power and memory, the imple-
mentation must try to limit resource consumption to a minimum. This is in
part done by doing a PVS precalculation on the 3D scene [13] and the rest is
accomplished by non-wasteful C programming.

Experiences in Portable Mobile Application Development 3

1.2 Portability

For defining portability, we first separate the whole idea of portability into
two different categories: code portability and concept portability. Concept
portability refers to the ability to implement an idea on a variety of platforms.
For example, a user interface requiring a cursor is not completely portable to
all mobile computing platforms, since some platforms lack a pointer device.
On those platforms it is possible to emulate a pointer device, but this will
affect usability and is therefore visible to the end user.

Code portability is the ability of software to run common lines of code
between the various platforms it is portable to. The code lines which cannot
be shared result from differences in the various platforms either in system
interfaces or from the hardware. Code portability involves crafting interfaces
which abstract the underlying platform functionality where it is different.
Abstracing does, however, come with a price of call indirection and increased
coding effort, and therefore should be carried out only where necessary. We
use the term machine independent (MI) to describe code which runs on all
platforms and the term machine dependent (MD) to describe code which runs
only on a certain platform. Software with code portability will have a high
MI/MD ratio in terms of lines of code.

Implementing a certain functionality multiple times for different platforms
when not really necessary is in its essence confusing code portability with con-
cept portability. The resulting user-perceived functionality will be the same,
but the cost of maintaining several different implementations is much higher
and will probably lead to broken platforms as code evolves [7, 11]. It is easy
to see why, since as the number of lines of code shared between platforms goes
down, the portion of the codebase that can be tested on a single platforms
goes down as well.

1.3 Symbian

Symbian is an operating system designed primarily for mobile phones and
other mobile devices. Conserving limited resources is a priority, and several
programming practices used on Symbian encourage it. This makes working
with Symbian in a multi-platform project a challenging task.

While fully understanding Symbian requires closer attention, this paper
does not cover the architecture of Symbian and such studies can be found in
dedicated literature [3, 17].

2 Porting to Symbian

The mLOMA client was originally written for Linux desktops, Windows desk-
tops and Windows CE PDA devices. Symbian Series 60 support was not origi-
nally planned. However, once capable mobile terminals became available, sup-
port was required.

4 Antti Kantee and Heikki Vuolteenaho

2.1 GLUT

Symbian lacks a platform-provided GLUT [6] implementation. GLUT, tersely
put, works as an event handler in between the application and console (win-
dowing, input devices). Generally, implementations never come out of the
main event loop until they detect the quit command being issued. However,
due to the active object scheduling scheme used in Symbian applications [12],
we cannot run continuosly in the main loop. Instead, we need to periodically
relinquish control of execution and generate events to regain control.

A subset implementation of GLUT for Windows CE had been done earlier
in the project, since GLUT was not available for it at that time 1. How-
ever, this implementation is mostly incompatible with the Symbian program-
ming restrictions and in addition was built on top of the normal application-
transparent preemptive scheduling principle.

We ended up with two separate GLUT implementations. While this is in
disagreement with our portability rule set forth in Chapter 1.2, it is important
to note this as an acceptable and even encouraged exception to the rule. First
of all, code lines are not shared because there are not very many lines to share:
approximately 415 of the total 496 lines in the implementation are completely
specific to Symbian. Second, the GLUT interface is very unlikely to change
and therefore require platform-specific maintenance.

2.2 Writable global data in DLLs

Symbian GUI applications are built as DLLs and Symbian does not allow
writable global data in DLLs [3]. There are two choices: build an EXE instead
of a DLL or get rid of all global writable data. The first option makes building
a traditional Symbian GUI very complicated [21].

Each thread can store exactly one word of global writable data in a slot
called Thread Local Storage (TLS). We put all our global variables inside
a (rather large) struct and push the struct pointer to TLS. Accessing the
TLS is slower than a regular function call, in our testing it was roughly 20
times slower. Because of this, we often pass the pointer as an extra parameter
in often-used function calls. However, we noticed that passing ”a pointer to
globals” was detrimental for the interface development within the client. Es-
pecially junior programmers had the habit of crafting interfaces with nothing
but that pointer passed.

Symbian tools are not helpful in locating global writable data in the pro-
gram, as they do not even specify the offending module:

ERROR: Dll ’MLOMA[102048D8].APP’

has uninitialised data.

Symbian developers have found ways to extract the offending source modules
and variables [18], but they are not very practical. A much better way of

1 However, GLUT|ES is now available for Windows CE.

Experiences in Portable Mobile Application Development 5

locating modules and code fragments in violation of this restriction is to use
a typical UNIX command sequence:

find . -name *.o \

| xargs nm -o --defined-only \

| awk ’$2 !~ /[tTrR]/{print $0}’

If the filter encounters a symbol type that is not text or read-only data, it
prints the module and symbol name. After this, it is easy to use a text editor
to search for the culprit symbol in the offending module.

Notice, that for this to work, nm must support the object format of the
objects it is supposed to examine. It is most natural to run this on a UNIX
development platform against UNIX objects, although it should be possible
to use a UNIX-hosted toolchain, such as the one provided by the GNUPoc
project, for running it against Symbian object files.

2.3 Stack size

In C programming it is customary to allocate memory for local operations from
the current stack frame, from where it will be automatically freed when upon
return. In most environments it is safe to assume at least tens or hundreds of
kilobytes of stack space, making allocating fairly large objects from the stack
possible.

Symbian has a comparatively small default stack size (8kB). Large alloca-
tions from stack are therefore impossible. On the device, running out of stack
will lead to a crash, but the emulator build fails on purpose if it runs into a
dangerously large (>4kB according to our tests) stack frame 2:

MAIN.obj : error LNK2001:

unresolved external symbol __chkstk

To remedy this problem, all large allocations had to be moved from the
stack to the heap. It involved some code restructuring, but was mechanical
work.

2.4 Texture loading

The mLOMA client needs to load JPEG and PNG images to show textures
on the 3D map. On platforms other than Symbian the open source libraries
libjpeg and libpng are used for this purpose. However, these libraries have not
been ported to Symbian. Porting them is problematic at best because of the
writable global data limitation discussed in Chapter 2.2. Symbian does have
a native API for image loading and we use that instead.

2 Notice that running out of stack is still possible in case of a deep enough call
recursion without any single stack frames running over the warning limit.

6 Antti Kantee and Heikki Vuolteenaho

The Symbian image loading APIs are asynchronous (non-blocking), while
on the other platforms they are synchronous (blocking); the client was de-
signed fairly heavily on synchronous interfaces meaning that it expects the
image to loaded once the image loading call returns. We used a nested active
scheduler loop to effectively make the loading process appear synchronous [1],
although this is strongly discouraged [16]. We ran into several problematic
situations because of this. Normally application code handling an event runs
without interruption (non-preemptively). But while the image loading func-
tion is blocking (using nested scheduling), the nested scheduler is free to
schedule other active objects requiring attention. This causes for example
reentrancy problems, as we enter GLUT through the active scheduler (Chap-
ter 2.1). Several workarounds were introduced into the code, but, needless to
say, these problems were extremely difficult to locate and the resulting bug
symptoms may occur only in rare corner cases.

One possibility would have been to convert the entire application to deal
with asynchronous interfaces. This, however, would have been poor choice
unless the previously synchronous image loading backends would have been
converted to asynchronous also. The reason is that different behaviour would
have introduced platform specific bugs. Converting the sychronous backends
to asychronous would have meant introducing threads into the program. The
authors generally consider threading to be harmful [20]. Specific to this case,
we probably would have run across different platforms exhibiting different
threading behaviour.

A better solution to the problem came from an isolation technique [14]
used, amongst other locations, in the popular OpenSSH networking daemon.
In MD Symbian startup we create a thread whose only function is to handle
texture loading. Communication between the application execution context
and texture thread happens through a synchronization primitive. The applica-
tion first triggers the texture loading and then sleeps on top of the synchroniza-
tion primitive. When texture loading is complete, the texture thread triggers
the application to continue executing. After replacing the nested scheduler
with this scheme, all inexplicable crashes disappeared. We propose that all
who want to emulate sychronous interfaces on Symbian use this method.

2.5 Stdio problems with locales

The stdio call families of printf and scanf() have a problem with the thou-
sands separator and decimal separator on Symbian. It seems that modifying
the application’s private locale does not affect the separators at all and using
the system-wide locale it is only possible to change the characters, not totally
remove them (more important for the thousands separator). This leads to
a situation where it is not possible to reliably read and write floating point
numbers from using an externally provided source, such as a config file.

Third party options were not available due to licensing or problems with
globals (see Chapter 2.2), so we crafted our own implementations called

Experiences in Portable Mobile Application Development 7

fgetfloat() and fputfloat(), which read and write, respectively, a float us-
ing the given stdio stream. These are suboptimal, because they disrupt code
flow. In retrospect, the right choice would have been to drop floating points
from files all together.

3 Problems & solutions, tools

3.1 The build process

Currently, using the native build systems for each platform, we have different
build systems for:

• UNIX desktops: Linux, Mac OS X, NetBSD (make & GNU’ish toolchain)
• Windows (MS Developer Studio, Visual C++)
• Windows CE, PocketPC 2002 (MS Developer Studio, Visual C++)
• Windows CE, PocketPC 2003 (MS Developer Studio, Visual C++)
• Symbian Series60 V1 (makmake, Visual C++/gcc)
• Symbian Series60 V2 (makmake, Visual C++/gcc)

This means that adding a source file to the project or for example adding a
project-wide C preprocessor definition requires modifying seven different files.
The MS Developer Studio projects are not even meant for hand-editing, so
touching them from outside the actual IDE is dubious practice.

As the number of platforms increases, the maintenance overhead grows
soon beyond acceptable limits. If various platforms require a lot of manual
editing to keep up, they will likely end up being out-of-sync with the main de-
velopment environment. At one point after a project has grown onto multiple
platforms, an attempt to unify the build procedures for all platforms should
be made.

We will attempt to make this unification for mLOMA in the future. One
possibility is to autogenerate the Symbian makmake project files from the
UNIX Makefiles and use GNU Make in the Windows builds. The latter is ac-
complished by a well-known scheme of having a MS Developer Studio project
file, which just contains the instructions to run GNU Make for building the
project and leaves the details of the build process up to the Makefile.

Another possibility for accomplishing the same effect would be to auto-
generate the project files. The UNIX Makefiles could easily be used to act
as the autogeneration facility, since they are written in a clean fashion sepa-
rating input data (e.g. source file names) from rules (e.g. how to product an
executable). It should be fairly simple to autogenerate the .mmp files for Sym-
bian builds and there is evidence that autogenerating MS Developer Studio
project files is possible [8], even if not directly available.

In a sense, the build system can be equated with program source code and
the concept discussed in Chapter 1.2. A portable program will also have a
portable and flexible build system.

8 Antti Kantee and Heikki Vuolteenaho

3.2 Local language support

The mLOMA client application needs to support various different languages,
as it is aimed primarily for tourists, who benefit from local-language support.
This means that our software cannot include hardcoded messages to the user
in the middle of code, but rather the code must contain identifiers, which can
be translated on the fly. While is it well-known how to accomplish this on
any given platform, for example Linux [2], the problem is finding something
usable on all platforms; for example even UNIX vendors cannot agree amongst
themselves on should they use catgets() or gettext().

Message database

The problem here is not so much abstracting the programming interface as it
is abstracting the message database. If we were to use the native i18n services
of each platform, it would require us to input the translated messages into
several different databases. This would, first of all, mean learning the tools of
the various message catalogs. Second, and worse, this would most likely mean
that some of the catalogues would be out-of-sync with others, as development
takes place on different platforms.

Since we only need to do simple key-to-text translation, a self-authored
component was created for translation purposes. This was done by writing a
script in awk for translating the input text into lookup tables which could be
used from within the code. A selection of the input text format is presented in
Table 1. This table is translated by the script into code usable at runtime. For
all except Symbian, this means creating tables of C strings and for Symbian
this means creating resource files and appropriate descriptor tables.

Table 1. Selected example translations from master ui.txt

!fi

FORM_ROUTE_FASTEST Nopein reitti

MENU_HELP Ohjeet

!en

FORM_ROUTE_FASTEST Fastest route

MENU_HELP Help

!et

FORM_ROUTE_FASTEST Kiireim tee

MENU_HELP Abi

After the translation tables have been built, they are compiled into the
client software and can be accessed through a call to a function a bit mislead-
ingly named localize() 3, for example the call localize(UISTR MENU HELP)

3 After all, the call only gives a translation of the string. It does not, for example,
convert monetary units, dates or thousands separators to local conventions.

Experiences in Portable Mobile Application Development 9

would produce the string ”Ohjeet”, ”Help”, or ”Abi” depending on if the
selected language was Finnish, English or Estonian, respectively.

Runtime interface and language selection

Deciding which translation to use runtime is equally, if not more, difficult than
deciding how to do the translation. In a perfect world it would be possible
to do this while holding on to two guidelines: changing the language should
be similar on all mLOMA platforms and the method for changing the lan-
guage should be in alignment with the platform’s native way of doing runtime
language selection.

POSIX does not specify anything about local language support in the
locale interface, so we cannot use the setlocale() interface for querying the
language: LC MESSAGES would be close, but not being a part of POSIX it is
not defined by Windows. Environment variables (getenv("LANG")), are not
supported by Windows CE. Symbian has its own framework.

Currently all platforms use specific implementations: UNIX and Windows
use getenv(), Windows CE uses a compile-time selector and Symbian uses
its own resource file framework, which allows the application to select the
correct locale at application startup. The future is undecided, although all
things considered, a configuration file entry might be the simplest choice even
though it means going against established platform conventions.

3.3 Memory management

Our memory resources are different from modern GUI applications. We have
to assume an extremely small amount of available memory, around 5MB in
the minimum configuration. In addition, there is no secondary memory on
the Symbian and Windows CE platforms, so we need to control memory
management ourselves.

Our scheme for dealing with the memory limit is simple: we have a wrapper
around malloc, memory malloc() 4, which checks if memory allocation fails,
frees all memory available to be free’d and tries to allocate the same amount
of memory again. Only if this second allocation fails, the wrapper will return
a failure to the caller and the caller must deal with the situation.

For parts of allocated memory it is easy to tell if it is currently in use or
not. A lot of memory usage comes from the geometric model and associated
textures used to render the 3D scene. This static information is easy to reload
if it is later required. In a sense, this type of operation can be compared with
a practice used in some operating systems, where the read-only text segment

4 For the diversity of platforms we have, it is much simpler to have a completely
different symbol name for the memory allocation function than it is to try insert
a wrapper using the same name as the platform malloc and still try to call the
platform malloc from within the wrapper.

10 Antti Kantee and Heikki Vuolteenaho

is not paged out to secondary memory. To perform a memory sweep in case
of a shortage, we simply walk the list of textures and meshes and free ones
which are currently not in the field of view.

Tracking allocated memory

Table 2. CPP tricks for memory allocator interface

memory.h:

#ifdef MEMORY_DEBUG

void *memory_malloc(size_t, unsigned /*magic*/,

const char *, const char *, int);

#define memory_malloc(a,b) \

memory_malloc(a,b,MEMORY_DEBUG_MAGIC, \

__FUNCTION__,__FILE__,__LINE__)

#else

void *memory_malloc(size_t);

#endif /* MEMORY_DEBUG */

memory.c

#ifdef MEMORY_DEBUG

#undef memory_malloc

void *omamemory_malloc(size_t);

#else

#define omamemory_malloc memory_malloc

#endif /* MEMORY_DEBUG */

Symbian is designed for low-memory environments with long-running ap-
plications and tries to encourage proper memory management habits to avoid
memory leaks. This exhibits itself by the debug builds panicking at exit if any
allocated (non-freed) memory remains. Most UNIX and Windows programs
do not free their memory upon exit, as keeping track of all memory alloca-
tions requires extra work and in any case the operating system will unmap
the pages of an exiting process.

While we could simply not care about the issue, as Symbian release builds
do not complain, playing along with the platform memory management func-
tionality seems like a correct option. This mandates us to do memory tracking
if we wish to avoid two related problems: the Symbian debug builds panick-
ing upon exit and standard desktop programming practices contributing such
errors. While a tool such a Valgrind [10]would work perfectly for this, normal
development cycles are not usually done within it and since we already feature
our own malloc(), coupling tracking with it is the right choice.

Some malloc() implementations register the amount of memory reserved
in extra space right before the pointer returned to the caller [19], also illus-

Experiences in Portable Mobile Application Development 11

Fig. 2. Memory meta information reserved by our malloc()

alloc
size

other
metainfo

user memory

malloc internal returned
pointer

trated in Figure 2. Our idea is to use this same space to achieve an O(1)
lookup for memory allocation chunk describing metadata. Using the informa-
tion contained in the chunks of metadata, the application prints out diagnostic
messages when exiting:

non-free’d chunk at 0x8a16a1c, size 0x24

main/mother.c:mother_init(), line 55

This indicates that memory reserved from the module mother.c, in the func-
tion mother init(), on line 55 in the module was not freed before exit. Upon
seeing this message, it is much easier to figure out what is going wrong than
from having the program crash on the Symbian platform with the following
error message:

Program closed: MLOMA ALLOC: 132df248 0

By using certain C preprocessor tricks illustrated in Table 2, memory allo-
cation works, without any modifications to calling code, for the memory wrap-
pers compiled with or without MEMORY DEBUG and the calling code compiled
with or without MEMORY DEBUG. The tracking layer is implemented directly
as memory malloc and it calls the backend called omamemory malloc. If the
memory module is compiled without MEMORY DEBUG, the call to the tracking
layer is simply skipped by renaming the omamemory malloc symbol. In the op-
posite case, a caller compiled without MEMORY DEBUG will not pass the correct
MEMORY DEBUG MAGIC signalling that the rest of the arguments are garbage
and should not be examined.

Table 3. Compiled (gcc 3.3.3, NetBSD/i386) total size of memory free’ing subrou-
tines

optimization flags resulting code size (bytes)

-O0 2485
-O2 1770
-Os 1534

We could of course use the metainformation to free all memory, but it
was decided against that. First of all, the code size (Table 3) for the freeing

12 Antti Kantee and Heikki Vuolteenaho

code is insignificant when compared with the allocation overhead, at least two
pointers per allocation. Second, and more important, an automatic solution
would not be in alignment with the original reason for freeing all memory.

3.4 Networking

The networking code used in the client is divided into four different layers.

1. platform-provided networking interface
2. platform-specific implementation backing our networking abstraction layer
3. abstraction layer for platform networking interface
4. protocol unit serialization and deserialization layer

Platform networking interfaces

The underlying implementations and their limitations must be understood
before abstracting them can be attempted. Our platforms are divided into
two categories: the Berkeley-influenced [15] platforms such as Linux, Windows
and Mac OS X in one category and Symbian in the other.

Symbian uses active objects to provide an asynchronous interface to nor-
mal socket operations. The major difference to the normal Berkeley-style in-
terface is the fact that Symbian sockets do not support synchronous operation
at all.

Platform-specific implementations

The differences within the Berkeley category are subtle enough so that group-
ing them under a single implementation is feasible and painless.

The relevant differences we encountered between the UNIX implementa-
tions and the Windows implementations can be seen from Table 4. All of these
problems could be circumvented by simple cpp macros and a typedef.

Table 4. UNIX and Windows socket differences

UNIX Windows

initialization none WSAStartup()
error query myerr = errno myerr = WSAGetLastError()
errno values EINPROGRESS / EAGAIN WSAEWOULDBLOCK / WSAEWOULDBLOCK

ioctl call ioctl() ioctlsocket()
shutdown() arguments SHUT RDWR SD BOTH

sockaddr length type socklen t none

The Symbian implementation is completely disjoint from the Berkeley-
family implementation. It uses its own data structures, descriptor buffers and
active objects to interface with the Symbian platform networking interface.
Conversion from descriptor buffers to buffers in machine-independent code
(char *) and vice versa is currently inefficiently done using memory copy.

Experiences in Portable Mobile Application Development 13

Abstraction layer

Table 5. Machine Independent Networking Interface

int network_init(struct network *net);

void network_exit(struct network *net);

int network_enqueue(struct network *net, uint8_t *data,

size_t datalen, int message_type);

struct netbuf * network_dequeue(struct network *net);

void network_buf_done(struct netbuf *buf);

int network_connect(struct network *net,

const char *address,

unsigned short port);

void network_disconnect(struct network *net);

As noted above, the only major difference between the two families of
platform network interfaces is Symbian’s inability to do synchronous opera-
tion. This is not a hindrance at all, since being a single-threaded application,
asynchronous network operation is the only choice if we do not want to block
the entire UI in case of e.g. network congestion.

For managing connections, we need two different interface functions: one
for initiating a connection and one for disconnecting. The asynchronous nature
of the TCP connection is handled internally. In case the connection to the
server is not successful, the situation is no different from the user perspective
as a failed login and it will be treated as such: the network functionality will
be unavailable to the user.

Network send and receive functions in a two-level fashion. Sending data
onto the network first puts the data onto a network buffer list. This is done
synchronously from the application point-of-view. We cannot directly always
attempt to send data onto the network, since the network might be congested,
the socket buffer therefore full, and sending would either block or fail, depend-
ing on if we were operating in blocking or non-blocking mode [15]. After data
has entered the network buffer list, it is periodically drained onto the network
using the GLUT timer functionality. Receiving data happens conversely: the
network buffer queue is periodically filled by a function called from a GLUT
timer handler and the application can read complete protocol data units off
it synchronously.

To reduce the strain on memory allocation for the clients, this layer is not
completely protocol-agnostic, but knows also about the application protocol
framing mechanism we use, so that it can allocate memory chunks of the
correct size for incoming transmissions.

14 Antti Kantee and Heikki Vuolteenaho

Protocol serialization layer

To avoid subtle but difficultly trackable incompatibility issues between the
various client platforms and the server, the from- and to-wire routines are
autogenerated from an XML representation.

The interface used to access the protocol unit contents is simply struct
member access provided by the C language. A single PDU is always repre-
sented by a single structure and the structure representation is auto generated
from the XML information. After all fields have been filled, the autogener-
ated serialize() routine is called to produce a byte stream representation of
the contents of the structure. Conversely, deserialize() is called for a byte
stream received from the network to fill out a struct representation of the
same byte stream.

4 Conclusions and future work

Writing a portable mobile application for UNIX, Windows 98/2000/XP and
Windows CE is simple when compared to the situation with Symbian. Sym-
bian is a different type of system and many normal programming idioms were
found to be unsuitable for Symbian. However, including Symbian produces a
symbiotic relationship between the platforms: the requirements of Symbian
keeps questionable programming practices down to a minimum while tools
available on other platforms aid development on Symbian.

The scheduling model used by Symbian causes major problems: most plat-
form functionality is a schedulable service, which in turn causes its inter-
face to be asynchronous. For software with prior design elements based on
synchronous interfaces, we showed an acceptable method for emulating syn-
chronous interfaces on Symbian. Another major set of differences are memory
limitations, both the lack of a read/write data segment on Symbian as well
as the small amounts of main memory and lack of secondary memory on
PDA/mobile devices.

When attempting to write software with code portability to multiple plat-
forms, it is most important to understand the limitations and characteristics
of each platform and make design decisions based upon that understanding.
If platform expertise is not available at the beginning of the project, resources
for some necessary development iteration to get the interfaces right should be
allocated. The main goal is to make, as far as reasonably possible, all com-
ponents either shared or behave similarly on all platforms. This will not only
unify the user experience across various platforms, but, more importantly,
reduce development, maintenance and testing effort.

Future work with the project includes unifying the user interface and pro-
gram menu code: currently Symbian uses its native components while other
platforms use OpenGL. In addition, unifying the build system to support a
single project file across all our platforms needs work.

Experiences in Portable Mobile Application Development 15

References

[1] Matti Dahlbom. Image loading and color reduction. 2003. URL
http://www.newlc.com/Image-loading-and-color-reduction.html.

[2] Pancrazio de Mauro. Internationalizing messages in linux programs.
Linux Journal, 1999(March 1999).

[3] Richard Harrison. Symbian OS C++ for Mobile Phones. Wiley, 2003.
[4] Martin Husemann. Fighting the lemmings. In EuroBSDCon, pages 45–

53, 2004.
[5] Steve Johnson and Dennis Ritchie. Portability of C programs and the

UNIX system. The Bell System Technical Journal, 57(6):2021–2048,
June–August 1978.

[6] Mark J. Kilgard. The OpenGL Utility Toolkit (GLUT) Programming
Interface API Version 3. 1996.

[7] David G. Korn. Porting UNIX to Windows NT. In USENIX Annual
Technical Conference, pages 43–57, 1997.

[8] Paul Kunz. Building with automake.
[9] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming

Guide. Addison-Wesley Publishing Company, 1993.
[10] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision

framework. Electronic Notes in Theoretical Computer Science, 89(2),
2003.

[11] Geoffrey J. Noer. Cygwin32: A free Win32 porting layer for UNIX ap-
plications. In 2nd USENIX Windows NT Symposium, 1998.

[12] Nokia Corporation. Symbian OS: Active objects and the active scheduler.
2004.

[13] Antti Nurminen and Ville Helin. Technical challenges in mobile real-time
3D city maps with dynamic content. In IAESTED Software Engineering,
2005.

[14] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege
escalation. In 12th USENIX Security Symposium, pages 231–241, 2003.

[15] W. Richard Stevens. UNIX Network Programming, volume 1. 1998.
[16] Symbian. Symbian developer library, 2003. URL

http://www.symbian.com/developer/techlib/v70sdocs/doc source/

reference/cpp/AsynchronousServices/CActiveSchedulerClass.html.
[17] Martin Tasker. Professional Symbian programming. Wrox Press, 2000.
[18] Paul Todd. Finding initialized or uninitialized static data in a dll. 2004.
[19] Uresh Vahalia. UNIX Internals: The New Frontiers. Prentice Hall, 1996.
[20] Robbert van Renesse. Goal-oriented programming, or composition us-

ing events, or threads considered harmful. In ACM SIGOPS European
Workshop, pages 82–87, 1998.

[21] Peter van Sebille. EMame: a MAME port to EPOC Release 5 and Sym-
bian platform v 6.0. 2001.

