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Abstract. Software architecture constitutes the primary design of a software 
system. Consequently, architectural design decisions involved in architecture 
design have a key impact on the system in such aspects as future maintenance 
costs, resulting quality, and timeliness. However, the applied knowledge 
employed and the design decisions taken by software architects are not 
explicitly represented in the design despite their important role; consequently, 
they remain in the mind of designers and are lost with time. In this work, a 
model for capturing and tracing the products and architectural design decisions 
involved in software architecture design processes is proposed. An operational 
perspective is considered in which design decisions can be modelled by means 
of design operations. The basic ontology of situation calculus is adopted to 
formally model the evolution of a software architecture. 

1 Introduction 

Software Architecture Design Process (SADP) involves several activities such as 
exploration, evaluation and composition of design alternatives which make it a 
difficult, complex process [1]. In order to address those activities, the research 
community has been working intensively in the achievement of modelling languages 
[2, 3], design methods [4] and computer environments for architect assistance [1, 5]. 
Those tools are basically focused on assisting designers in generating a software 
architecture design to satisfy a set of requirements. However, documentation of 
associated rationale, design decisions, and applied knowledge are often omitted. 
Such omissions stem from the fact that such information may be intuitive or obvious 
to the architects involved in the design process, or from the lack of adequate 
computer-aided environments that allow support design processes. Thus, most 
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architectural design knowledge and architectural design decisions taken through 
SADP remain in the minds of experienced designers, and are lost with time. 
Consequently, capturing design decisions is of great importance to capitalize 
previous designs and to provide the foundations for learning and training activities. 
Precisely, this latter issue has been the goal of other contributions [6, 7] which 
recognise that the design rationale should be incorporated into the SADP. 

Therefore, this work introduces a model for capturing and tracing the SADP and 
its products. Its goals are to make explicit the states of the SADP and the way in 
which they were generated. The model is based on a generic Process Version 
Administration Model (PVAM) [8], which provides mechanisms for capturing and 
managing versions generated during the course of an engineering design project. 

In the next section a conceptual model is presented, introducing the extensions 
for making PVAM applicable to SADP. After that, the operation capturing system is 
described, where the products and operations of the SADP are represented. The 
proposed model is illustrated in Section 4 with a case study about the design of a 
monitoring system for an industrial process. Finally, conclusions and future research 
guidelines are discussed. 

2 A Conceptual Model for Capturing Architectural Design 
Processes 

The proposed scheme considers the SADP as a sequence of activities operating 
on the products of the design process, which are called design objects. Examples of 
design objects are components and connectors of the architecture being designed, or 
functional and quality requirements and scenarios to be met. Naturally, these objects 
evolve as the SADP takes place, giving rise to several versions. In order to maintain 
these versions, the previously proposed PVAM [8] is considered. The general 
scheme employed in such approach represents a design object at two levels, the 
repository and the versions level.  Each model version is generated from views of a 
repository that keeps all the objects that have been created and modified due to the 
model evolution during a design project. The elements constituting the repository are 
called versionable objects. A versionable object represents the artifact that can 
evolve during a design project, whose history is desirable to be kept during the 
modelling process. Furthermore, relationships among the different objects are 
maintained in the repository. 

At the versions level, the evolution of versionable objects contained in the 
repository is explicitly represented. A model version consists of a set of instances of 
object versions which represent the versions of the objects that compose a given 
model at a time point. The relationships between a versionable object and one of its 
object versions is represented by the version(v, o) predicate. Therefore, a given 
versionable object keeps a unique instance in the repository and the versions it 
assumes in different model versions belong to the versions level. 

Based on that scheme, the model evolution is posed as a history made up of 
discrete situations. The situation calculus [9] is adopted for modelling such version 
generation process. A new model version mn is generated when an activity a is 
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executed. An activity a is materialised by a sequence of operations φ and the new 
model version mn is the result of applying such sequence φ to the components of a 
previous model version mp. In the context given by the design process, it is possible 
to assimilate each new generated model version with a situation and each action with 
a sequence of operations which is applied on a precedent model version. Therefore, 
the new model version mn is achieved by performing the following evaluation: 
apply(φ, mp) = mn. 

The primitive operations that were proposed to represent the transformation of 
model versions are add, delete, and modify. By using the add(v) operation, an object 
version that did not exist in a previous model version can be incorporated into a 
successor model version. Conversely, the delete(v) operation eliminates an object 
version that existed in the previous model version. Also, if a design object has a 
version vp, the modify(vp, vs) operation creates a new version vs of the existing design 
object, where vs is a successor version of vp. Thus, an object version v is added after 
applying the sequence of operations φ to model version m when the new version v is 
created by means of an add or modify operation (Expression 1). On the other hand, 
the Expression 2 represents the fact that an object version v is deleted after applying 
the sequence of operations φ to model version m when the version v is deleted by the 
delete or modify operation. 

(∀φ, v, m) add(v) ∈ φ ∨ (∃vp) modify(vp, v) ∈ φ ⇒ added(v, apply(φ, m)) (1) 

(∀φ, v, m) delete(v) ∈ φ ∨ (∃vs) modify(v, vs) ∈ φ ⇒ deleted(v, apply(φ, m)) (2) 

From these definitions, and using the format of successor state axioms proposed 
by [9], a formal specification of the cases in which an object version belongs to a 
model version is presented. In Expression 3, the predicate belong(v, m) is true when 
object version v belongs to model version m. Thus, an object version v belongs to a 
model version that arises after applying the sequence of operations φ to model 
version m, if and only if one of the following conditions is met: (i) v is added when 
the new version is created (added(v, apply(φ,  m))); or (ii) v already belonged to the 
previous model version m (belong(v, m)) and it is not deleted when φ is applied to it 
(¬deleted(v, apply(φ,  m))).  

 (∀φ, v, m) belong(v, apply(φ, m)) ⇔  
(belong(v, m) ∨ added(v, apply(φ, m))) ∧ (¬deleted(v, apply(φ, m))) 

 
(3) 

From this expression, the object versions belonging to a model version can be 
determined. Then, it is possible to reconstruct a model version mi+1 by applying all 
operation sequences from the initial model version m0. 

Once the versions belonging to a model version are defined, the relationships 
existing among object versions have to be specified. First, it should be noted that in 
this proposal, object versions belonging to a model version are not explicitly 
associated to other versions belonging to the same model version. These links are 
represented at the repository level. Consequently, the relationship existing between 
two object versions must be inferred from the relationship established between the 
versionable objects that have been versioned by them. This fact is represented in 
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Expression 4, in which an association ak is inferred between two object versions v1 
and v2 belonging to the same model version m (inferredAssociation(ak, v1, v2, m)), if 
and only if there exists an association ak between the two versionable objects o1 and 
o2 (association(ak, o1, o2)), of which v1 and v2 are versions, respectively (version(v1, 
o1) and version(v2, o2)). 

(∀ v1, v2, m, ak) inferredAssociation(ak, v1, v2, m) ⇔  
(∃ o1, o2) belong(v1, m) ∧ belong(v2, m) ∧ version(v1, o1) ∧ version(v2, o2) ∧ 

association(ak, o1, o2) 

 
 

(4) 

The primitive operations add, delete, and modify introduced are not enough to 
capture and trace a SADP execution. Then, PVAM must be extended in terms of the 
suitable operations for this design domain, like the ones listed in Table 1. This 
operations range from the most basic to the most complex ones:  
• Basic: operations that allow creating and deleting basic design objects (like 

components and connectors);  
• Special: more complex operations that involve object refinement or delegation;  
• Styles/Mechanisms application: these operations generate a new set of design 

objects which have a configuration based on an architectural style; or even if they 
do not modify the model structure, they affect certain design objects properties. 

Table 1. Possible Operations for the Software Architecture Design Domain 

Basic Operations 
addComponent addScenario deleteQualityRequirement 
addConnector addTypeComponent deleteResponsibility 
addFunctionalRequirement addTypeConnector deleteRole 
addPort deleteComponent deleteScenario 
addProperty deleteConnector deleteTypeComponent 
addQualityRequirement deleteFunctionalRequirement deleteTypeConnector 
addResponsibility deletePort  
addRole deleteProperty  

Special Operations 
refineComponent delegateResponsibility verifyScenario 
refineResponsibility delegateScenario  

Styles/Mechanisms application 
applyIntermediaryBlackboard applyRuleEngine applyPoolOfConnections 
applyControlLoop applyClientServer  

These operations are defined in terms of primitive operations as add(c), and non-
primitive ones (see Table 1), as addPort(c, p). The execution of one of these 
operations implies that a sequence of primitive operations add, delete, and/or modify 
are applied to a previous model version, which results in a new model version. From 
this, it is possible to express these operations in terms of added and deleted 
predicates introduced in Expressions 1 and 2. For illustration purposes, let us 
consider the addComponent(s, c, lResps, lPorts) operation. It adds a component c to a 
system s. Therefore, if it is applied to a model version m, then a version of a 
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component c having a set of responsibilities r and ports p, will belong to the 
successor model version (apply(φ, m)), as it is defined in Expression 5. 

(∀ φ, s, c, lResps, lPorts, m) addComponent(s, c, lResps, lPorts) ∈ φ ⇒ 
added(c, apply(φ, m)) ∧ added(rel(s,c), apply(φ, m)) ∧ 

((∀ r ∈ lResps) added(r, apply(φ, m)) ∧ added(rel(c,r), apply(φ, m))) ∧ 
((∀ p ∈ lPorts) added(p, apply(φ, m)) ∧ added(rel(c,p), apply(φ, m))) 

 
 
 

(5) 

Similarly to Expression 5, the definition of new operations allows enlarging the 
set of operations. This can be done without modifying the successor state axiom 
(Expression 3). 

The precondition for applying the addComponent operation is specified in 
Expression 6, where the poss(op, m) predicate expresses that an operation op is 
applicable to a given model version m. 

(∀ s, c, lResps, lPorts, m) poss(addComponent(s, c, lResp, lPorts), m) ⇔  
belong(s, m) ∧ ¬ belong(c, m) ∧ 

(∀ r ∈ lResps) ¬ belong(r, m) ∧ (∀ p ∈ lPorts) ¬ belong(p, m) 

 
 

(6) 

3 The Version Support System for Capturing Architectural 
Design Processes 

3.1 Defining the Operations Model 

The class diagram illustrated in Fig. 1 shows the main concepts of PVAM 
introduced in the previous section. The relationship between a versionable object and 
one of its object versions is represented by the version relationship. Furthermore, it is 
assumed that design objects are identified and classified according to the different 
types (see Section 3.2). The design object type is represented by ModellingConcept 
class (Fig. 1).  
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Fig. 1. Process version administration model 

As outlined before, each transformation operation applied to a model version 
incorporates the necessary information to trace a model evolution. This information 
is represented by history relationships between the object versions to which the 
operation is applied and the ones arising as the result of its execution (Fig. 1). In 
order to represent architecture evolution, a model version has zero or more successor 
model versions (noted by * cardinality at successor role of History association 
shown in Fig. 1). 

PVAM must be capable of extending in terms of the suitable operations for 
SADP domain. Subsequently, in this section the operation model is presented, which 
allows specifying and instantiating specific domain operations. 

Operations are associated with a modelling concept and are defined as ordered 
sets of commands (Fig. 2). Those commands can be primitives or operations that can 
be used to define other operations. Primitives encapsulate the semantics defined by 
Expressions 1, 2 and 3. The execution of an operation generates one or more results, 
which can be a set of versions. Furthermore, history class is instantiated, linking the 
predecessor with the successor versions. 
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Fig. 2. Operations package 

The operation definition is represented using the basic structure of the Abstract 
Syntax Kernel Metamodel for Expressions defined by the UML 2.0 OCL 
Specification [10]. To implement operations, the well-known Command design 
pattern was used [11]. Therefore, a command abstract class is introduced into the 
Operations package illustrated in Fig. 2. An operation is defined as a macro 
command (MacroCommand class), a subclass of command that simply executes a 
sequence of commands. Therefore, when an operation is specified, it is necessary to 
define both the arguments and the body of the operation. The commands that 
constitute its body are some other already defined commands, which are available for 
use in the specification (primitives, loop, variable assignment, or other operations). 
Note that the modelling concept over which an operation is applied must be 
explicitly indicated.  Furthermore, there are other concrete classes that specialise the 
command class, and that can be part of a macro command. One of them is the 
LoopCmd, which represents a loop construct over a collection variable and has a 
body that is executed for each element in the collection. Another valid command is 
VariableAssignment that represents the assignment of a value to a variable of a given 
type.  

As shown in Fig. 2, every command has one or more data typed arguments. 
Arguments are considered as a kind of variable. A variable can be also declared and 
used in the body of an operation and has a given type. The types described by the 
model are grouped by the abstract class DataType. DataType subclasses are 
PrimitiveDataType, CollectionType, and ModellingConcept. PrimiteDataType 
includes Integer, Float, String and Boolean types. Collection describes a list of 
elements of a particular given type that are ordered, have no duplicates and are 
parameterized with an element type. ModellingConcept is imported from Domain 
Package and enables specifying arguments that explicit the type of an expected 
object version to be added during the execution of an add primitive. 

As regards VariableAssignment, it denotes the mapping between a Variable and a 
RunTimeValue. This interface is not defined to specify operations. It is included to 
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represent the run time values during the execution of an operation. RunTimeValue 
can be realized by different values like literal, object version, modelling concept, or 
AttribValue (value of an attribute of an object version, Fig. 2), depending on the 
variable type. 

3.2 Products of SADP 

In order to capture the versions generated during a SADP, the PVAM must be 
extended according to the particular design objects produced by that process. To this 
purpose, the Domain Package shown in Fig. 1 must be extended with concepts of the 
SADP domain. The products that constitute the design object types are taken from 
the Attribute-Driven Design Method (ADD) proposed in [4], and the architectural 
description language ACME [2]. The class diagram shown in Fig. 3 introduces these 
concepts and their relationships. This model is implemented by the instantiation of 
the classes of Domain package (Fig. 1). The classes presented in Fig. 3 are going to 
be instances of ModellingConcept and their properties are going to be instances of 
Attribute. Finally, the relationships of Fig. 3 will be instantiated from 
DomainRelationship in Domain package. 

The ADD method is based on a recursive decomposition process where 
architectural patterns (or styles) are chosen at each stage to fulfil a set of quality 
scenarios. Then, component and connector types provided by architectural patterns 
are instantiated and functionality is allocated to them. The input to ADD is a set of 
requirements (functional and quality requirements). The quality requirements are 
expressed as a set of system specific quality scenarios, and the functional 
requirements are translated into a set of responsibilities [4]. Quality scenarios and 
responsibilities can be delegated to other components when the original component 
is refined. When the method iteration is finished, the designer verifies scenarios and 
sets an assessment. 

 
Fig. 3. Domain model for architecture based design 

In ADD, the different model versions are represented using various types of 
views. Only the component view is considered within the scope of this work in order 
to describe the architecture. Accordingly, ACME [2] has been chosen as the 
architectural description language. ACME defines a component as a computational 
element and data store of a system. A component may have multiple interfaces, each 
of which is termed port. The connectors represent interactions among components 
and have interfaces that are defined by a pair of roles. The systems comprise 
components and connectors, establishing attachments between roles and ports. In 
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Fig. 3, the attachment concept is not considered as a modelling concept but as a 
relationship. Moreover, ACME proposes elements to document extra-structural 
properties of a system’s architecture, as Properties. Furthermore, it is possible to 
attach constraints to design elements. With the aim of providing a more powerful 
language, ACME defines component, connector, and property type building blocks. 
On the basis of these modelling concepts, it is possible to define Families or Styles. 
They are defined by a set of property, component, and connector types and a set of 
constraints. 

3.3 Architectural Operations Specification 

As it was outlined in Section 3.1, PVAM must be extended in terms of the 
suitable operations for the SADP domain, like the ones listed in Table 1.  

Fig. 4 presents functional specifications for some of the basic operations defined 
in Table 1. The other operations are defined in a similar way, but they are not shown 
due to lack of space. As seen in Fig. 4, the operation addComponent(s, c, lResps, lPorts) 
is carried out by a series of operations. First, a version of component c is added 
(add(c)). After that, a set of responsibilities (specified by list lResp) and ports (detailed 
by list lPorts) are inserted. These operations are carried out by the addResponsibility(c, 
r) and addPort(c, p) operations. Finally, a relationship between the new component c 
and an existing system s is included. This last operation is performed by the add 
primitive operation (add(rel(s, c))). These operation specifications are implemented 
as instances of the Operation model introduced in Fig. 2.  

In the same way as for basic operation, it is possible to define the special 
operations. Fig. 5 presents some examples. A function with a ‘?’ symbol at the end 
indicates that it is interactive; thus, the user is asked about how to proceed. The 
interactive commands can be implemented as a special case of VarAssignment 
command (Fig. 2). 

 
Fig. 4. Specifications of basic operations 

The delegateResponsibility(c1, c2) operation enables delegating a responsibility 
of component c1 to component c2. Thus, if a given responsibility is assigned to a 
component c1 in a model version m and a delegateResponsibility(c1, c2) operation is 
included in the sequence of operations applied to m, then the resulting model version 

addComponent(s,c, lResps,lPorts) 
add(c) 
for each r in lResps 

addResponsibility(c,r) 
end for 
for each p in lPorts 

addPort(c, p) 
end for 
add(rel(s, c)) 

deleteComponent(s, c) 
lPorts = getPorts(c) for each p in lPorts 

deletePort(c, p) 
end for 
delete(rel(s,c)) 
delete(c) 

addPort(c, p) 
add(p) 
add(rel(c, p)) 

deletePort(c, p) 
// port deletion implies deletion  
// of connector attached to it 
deleteConnector(getConnector(getRol(p))) 
delete(rel(c, p)) 
delete(p)   

addResponsibility(c, r) 
add(r) 
add(rel(c, r)) 

deleteResponsibility(c, r) 
delete(rel(c, r)) 
delete(r) 
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shows that the responsibilities delegated to c2 will not be assigned to c1. In a similar 
way, the operation delegateScenario proceeds.  

 
Fig. 5. Specifications of special operations 

The refineComponent(c, lComps, llPorts, llResps, lConns, llRoles, llAtts) operation, another 
example of special operation (Fig. 5), decomposes a component c into one or more 
components given by the list lComps. The ports and responsibilities of the new 
components are given by the lists llPorts and llResps, respectively. Furthermore, a set of 
connectors among the new components is added. These connectors are specified by 
lConns whose roles are given by the list llRoles and the attachments by the list llAtts.  

The operations that apply an architecture style [12], or an architectural pattern 
[13], refine a preexistent component with a new set of components and connectors 
that are instantiated from an architectural style/pattern. They interact with the 
designer asking for the responsibilities and scenarios delegation, as well as 
connectors mapping between external components and refined components. An 
example of applyStyle operation is defined in Fig. 6. In this case, the 
applyControlLoop operation is specified. This style proceeds from the process 
control paradigm and defines the architecture to activate various monitoring policies 
when different events coming from sensors are produced [14]. The monitoring 
policies may in turn produce other events or actions in response to predefined 

delegateResponsibility(c1, c2) lResps = getResponsibility(c1) 
for each r in lResps 

if (delegate?(c2, r)) delete(rel(c1, r)) 
add(rel(c2, r)) 

end if    
 end for 

delegateScenario(c1, c2) lScens = getScenario(c1) 
for each s in lScens 

if (delegate?(c2, s)) delete(rel(c1, s)) 
add(rel(c2, s)) 

end if    
end for 

refineComponent(c, lComps, llPorts, llResps , lConns, llRoles, llAtts) 
i = 0 
for each cc in lComps 

 lr = llResps(i) // cc responsibilities listi 
 lp = llPorts(i) // cc ports listi  addComponent(getSystem(c),cc,lr,lp)  
 i++ 

end for 
i = 0 
for each cn in lConns 

 lr = llRoles(i) // cn roles listi  la = llAtts(i) //  port list which should attach cn roles 
 addConnector(getSystem(c), cn, lr, la) 
 i++ 

end for 
// delegate scenarios and responsibilities to new components  
// (interactive) 
for each cc in lComps 

 delegateScenario(c, cc) 
 delegateResponsibility(c, cc) 

end for 
// create new connections between internals and external components  
// (interactive) 
lp = getPorts(c) 
for each p in lp 

 np = PortMap?() 
 r = getRol(p) 
 delete(rel(p, r)) 
 add(rel(np, r)) 

end for 
deleteComponent(getSystem(c),c)                
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situations. Note that this operation can be considered as a specialization of 
refineComponent operation. The knowledge on how to proceed in the refinement of 
component c is given by the control loop style. Therefore, a series of addComponent 
operations is performed. The addComponent(s, {Diagnosis, TDiagnosis}, [P1,P6]) 
operation indicates that a component and two ports must be created. The component 
is called Diagnosis, whose modelling concept is TDiagnosis, an instance of 
ComponentType (see Fig. 3), and the ports are denominated P1 and P6. 

 
Fig. 6. Specification of applyControlLoop operation 

4 Case Study: Monitoring System for an Industrial Process 

The following case study describes the design of a monitoring system for an 
industrial process (see Fig. 7). It is based on classical case studies presented in other 
contributions [1, 4]. Monitoring activities are focused on the two core distillation 
columns: an extractive distillation column and a solvent stripping one, working 
together in a highly integrated manner. The system should monitor control loops and 
temperature sensors, by continued acquisition of real-time process data, tracking set-
point values, alarm conditions and outputs of valves, and comparing them with 
normal pattern behaviour. The system should also monitor process state, using real-
time process data previously processed in combination with expert knowledge in 
order to maintain process stability and performance. Further functionalities are 
control flowrate sensors and validate material balances. In order to meet all these 
functional requirements, the system should be connected to input and output devices. 
Input devices allow the system to get the real time data from the process equipment 
and output devices are used by the system to inform the plant operator about process 
anomalies, like: solvent inventory buildup, sensor fault, abnormal process pattern, 
etc. The main functions considered in designing the monitoring system include: 
administration of users (process operator, plant supervisor, etc.) and permissions, 

applyControlLoop(c) 
  s = getSystem(c) 
  addComponent(s,{Diagnosis, TDiagnosis}, [P1,P6]) 
  addComponent(s,{PolicyManager, TPolicyManager}, [P2,P3]) 
  addComponent(s,{Reactor, TReactor}, [P4, P5]) 
  addConnector(s,{CDgnPMgr,TCDgnPMgr},[R1,R2],[P1,P2]) 
  addConnector(s,{CPMgrRct,TCPMgrRct},[R3,R4],[P3,P4]) 
  delegateScenario(c,Diagnosis) 
  delegateScenario(c,PolicyManager) 
  delegateScenario(c,Reactor) 
  delegateResponsibility(c,Diagnosis) 
  delegateResponsibility(c,PolicyManager) 
  delegateResponsibility(c,Reactor) 
  // Set mappings between previous connector and new components  
  lp = getPorts(c) 
  for each p in lp     np = PortMap?(p) // Ask the user the port to map  
    r = getRol(p) 
    delete(rel(p, r))  
    add(rel(np, r)) 
  end for 
  deleteComponent(s, c) 
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configuration of input/output devices, priority-based event management, process 
diagnosis, specification of warning and process protective actions. 

 
Fig. 7. Monitoring system for an industrial process 

For reasons of space, only a sequence of operations of the model evolution is 
analyzed. Let us consider an intermediate model version i (see Fig. 8) where the 
main components are: Control&Diagnosis (with responsibilities in priority based 
event management, protective actions execution, warning launch, input/output 
devices configuration); UserInterface (with responsibilities related to user interaction 
issues: set parameters values, show information, rule administration); 
SensorActuatorLayer (with responsibilities like sending out commands to actuators, 
receiving information from sensors); and Configuration. From this model version, 
the designer chooses to refine the Control&Diagnosis component by applying the 
applyControlLoop operation. This operation creates three new components: 
Diagnosis, PolicyManager, and Reactor. The applyControlLoop operation (see Fig. 
6) asks the necessary information for delegating responsibilities, and for 
reconnecting previous connections to the new configuration. 

Fig. 8 shows a partial view of the Version and Repository levels from which 
model version views can be inferred. This figure is focused on the version of 
Control&Diagnosis evolution to a set of versions of components and connectors due 
to applyControlLoop operation. A view of a model version is obtained from the 
knowledge in the Version and Repository levels. The object versions belonging to a 
model version are inferred by the belong(v, m) predicate (Expression 3). Fig. 8 shows 
some object versions that belong to model version i (Control&Diagnosisv,1, 
P1C&Dv,1, P2C&Dv,1, P3C&Dv,1). Given an object version (Control&Diagnosisv,1), 
it is possible to know its versionable object (Control&Diagnosiso), which is linked 
with its design object type (modelling concept component, defined in Domain). All 
this information makes possible to reconstruct the elements of a model version view, 
as it is the Control&Diagnosis component which is obtained from object version 
Control&Diagnosisv,1 and versionable object Control&Diagnosiso. On the other 
hand, the expression 5 enables to retrieve the relationships among the object versions 
that belong to a given model version. Control&Diagnosiso has three ports named 
P1C&Do, P2C&Do, and P3C&Do which have their respective object versions 
P1C&Dv,1, P2C&Dv,1, and P3C&Dv,1. Therefore, component Control&Diagnosisv,1 
has ports P1C&Dv,1, P2C&Dv,1, and P3C&Dv,1.  

Input-Output Devices
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Fig. 8. Evolving the products of the software architecture design process 

The applyControlLoop operation is applied on Control&Diagnosis component 
(Control&Diagnosisv,1 object version). This operation is traced by an instance of the 
history link (Fig. 1) which associates the previous object version 
(Control&Diagnosisv,1) with the successor object versions (Reactorv,1, Diagnosisv,1, 
PolicyManagerv,1, P1Reactv,1, P1Diagv,1, P1PMgrv,1, P2PMgrv,1 in Fig. 8). P1C&Dv,1, 
P2C&Dv,1, and P3C&Dv,1 object versions belong to both model version i and model 
version i+1 because they were delegated from the original component 
(Control&Diagnosis) to the newer ones by applyControlLoop operation.  

Additionally, other operations were applied on model version i to obtain model 
version i+1 that are not illustrated in Fig. 8 at version and repository levels.  One of 
them arises due to the need of associating PolicyManager and Configuration 
components, so a new connection and their roles objects are added, applying 
addConnector operation. Using again operation addConnector, a new connection 
between PolicyManager and SensorActuatorLayer is added. It enables 
PolicyManager to receive information from, and send information to, 
SensorActuator (see Fig. 8, View of model version i+1). 

It is important to note that the proposed extension of PVAM enables applied 
operations on SADP’s products (Fig. 3) to be captured. For example, responsibilities 
are refined using refineResponsibility operation. The RDiag1 responsibility (Fig. 8, 
view of model version i) was refined on the following responsibilities: i) listening 
notifications of situations coming from SensorActuator (RDiag1.1); ii) getting 
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devices information (RDiag1.2); iii) probing device (RDiag1.3) (Fig. 8, view of 
model version i + 1). 

4.1 Retrieving the History of Architectural Design Processes 

The model introduced allows tracing and recovering the history of the 
architectural design activities carried out by the designer during SADP. It is possible 
to ask about the history of model versions in terms of operation sequences that have 
generated a given model version, and also consult on the history of a particular 
object version, which allows to know how the evolution took place through the 
different versions. Fig. 9 shows an example of a history query to perform on the 
hypothetical monitoring system designed in current section. An actor would whish to 
know the sequence of operations that originated model version i+1 from the 
precedent model version i. The applied operations were applyControlLoop, 
refineResponsibility and addConnector, which can be seen in Fig. 8 of the case 
study. The resulting information allows knowing who carried out the operations, at 
what time and date, their arguments, the new elements incorporated to the design, the 
set of elements eliminated and what kind of modelling concepts they were. As shown 
in Fig. 9, additional information can be obtained, like the suboperations implied at 
the execution of the current one. Knowing which were the operations that gave rise 
to model version i+1 is useful for understanding the rationale associated with such a 
step because the architect knows the semantic of the operation and the intent. 

5 Conclusions 

The model proposed in this paper, an extension of PVAM, captures the 
operations that generate each design product during the SADP. Furthermore, it also 
offers an explicit mechanism to manage the different model versions generated 
during the SADP. Thus, it allows the tracing of the SADP and its resulting products, 
setting the grounds for learning and future reuse of the design process. This is a 
fundamental step towards the development of computational tools to support the 
SADP and to guide designers in the different activities of a design project. A related 
work [6] proposes a set of requirements which such tools should satisfy in order to 
adequately support the evolution of software architectures. The approach presented 
in this work meets a wide spectrum of those requirements: (i) First class 
architectural concepts, represented by the extensible domain model proposed; (ii) 
First class architectural design decisions, enabling specification of adequate 
operations for software architecture design representing design decisions made by 
the architect; (iii) Under-specification and incompleteness, allowed by the model 
evolution through discrete situations (model versions) increasing the level of 
abstraction; (iv) Explicit architectural changes, allowing capturing, managing and 
tracing of products of SADP, using explicit history links between different versions, 
which means that the operations applied through the design process are saved and, 
therefore, it is possible to reconstruct the history from an initial model version; (v) 
Support for modification, subtraction, and addition type changes, implemented by 
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the primitive operations add, delete and modify. Those operations are also used in 
the definition of higher level operations representing more complex design 
operations like refining or styles application. 

 
Fig. 9. Partial view of the sequence of operations applied to model version i 

Situation calculus, the formal background of the framework, allows us to 
represent the activities carried out during a SADP, and therefore, it enables the 
designer to get a better understanding of the information on how the various design 
objects (systems, components, connectors, functional requirements, quality 
requirements, quality scenarios, assessment, etc.) have been obtained. Thus, the 
history of operations performed on versions of design objects can be kept. Besides, 
this conceptual framework also provides the foundations for the proposal of formal 
means for detecting potential conflicts.  

The framework could incorporate extensions to the Domain package, integrated 
to the version administration model, defining other characteristics not included by 
ADD or ACME. Furthermore, it uses an operational perspective where design 
decisions can be modelled by means of design operations. This approach is 
employed in other contributions [1, 4]. The structure of the conceptual framework 
allows the easy definition of specific design operations, like applyControlLoop, by 
instantiating the Operation model (Fig. 2). This extension is possible without 
modifying the successor state axiom (Expression 3). 

Model Version: Model Version i+1 
Precedent Model Version: Model Version i 
Applied Operations: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Operation: applyControlLoop   
Model Version: Model Version i       Actor: Architect1   
Arguments:  

Argument Name  Value Data Type 
Source Version Control&Diagnosis Component 

Results: 
 Object Version  Modelling Concept Date Time 
PolicyManagerv,1 Component TPolicyManager 01-06-2006 10:56 
Reactor v,1 Component TPolicyManager 01-06-2006 10:56 
...... ...... ...... 
RPMgr1 v,1 Responsibility 01-06-2006 10:56 

Deleted versions: 
Object Version  Modelling Concept Date Time 
Control&Diagnosis v,1 Component 01-06-2006 10:56 
.... ..... ......... 
Rel_C&D_Diag v,1 Relation 01-06-2006 10:56 

SubOperations: 
(+) delegateResponsibility 
(+) delegateResponsibility 
... 

Operation: refineResponsibility  
Model Version: Model Version i       Actor: Architect1   
(+) 
Operation: addConnector 
Model Version: Model Version i       Actor: Architect1   
(+) 
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