

A Model for Capturing and Tracing
Architectural Designs

M. Luciana Roldán, Silvio Gonnet, Horacio Leone
CIDISI, Universidad Tecnológica Nacional

INGAR, Universidad Tecnológica Nacional, CONICET
 Avellaneda 3657, 3000, Santa Fe, Argentina

{lroldan, sgonnet, hleone}@ceride.gov.ar

Abstract. Software architecture constitutes the primary design of a software
system. Consequently, architectural design decisions involved in architecture
design have a key impact on the system in such aspects as future maintenance
costs, resulting quality, and timeliness. However, the applied knowledge
employed and the design decisions taken by software architects are not
explicitly represented in the design despite their important role; consequently,
they remain in the mind of designers and are lost with time. In this work, a
model for capturing and tracing the products and architectural design decisions
involved in software architecture design processes is proposed. An operational
perspective is considered in which design decisions can be modelled by means
of design operations. The basic ontology of situation calculus is adopted to
formally model the evolution of a software architecture.

1 Introduction

Software Architecture Design Process (SADP) involves several activities such as
exploration, evaluation and composition of design alternatives which make it a
difficult, complex process [1]. In order to address those activities, the research
community has been working intensively in the achievement of modelling languages
[2, 3], design methods [4] and computer environments for architect assistance [1, 5].
Those tools are basically focused on assisting designers in generating a software
architecture design to satisfy a set of requirements. However, documentation of
associated rationale, design decisions, and applied knowledge are often omitted.
Such omissions stem from the fact that such information may be intuitive or obvious
to the architects involved in the design process, or from the lack of adequate
computer-aided environments that allow support design processes. Thus, most

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Model for Capturing and Tracing Architectural Designs 2

architectural design knowledge and architectural design decisions taken through
SADP remain in the minds of experienced designers, and are lost with time.
Consequently, capturing design decisions is of great importance to capitalize
previous designs and to provide the foundations for learning and training activities.
Precisely, this latter issue has been the goal of other contributions [6, 7] which
recognise that the design rationale should be incorporated into the SADP.

Therefore, this work introduces a model for capturing and tracing the SADP and
its products. Its goals are to make explicit the states of the SADP and the way in
which they were generated. The model is based on a generic Process Version
Administration Model (PVAM) [8], which provides mechanisms for capturing and
managing versions generated during the course of an engineering design project.

In the next section a conceptual model is presented, introducing the extensions
for making PVAM applicable to SADP. After that, the operation capturing system is
described, where the products and operations of the SADP are represented. The
proposed model is illustrated in Section 4 with a case study about the design of a
monitoring system for an industrial process. Finally, conclusions and future research
guidelines are discussed.

2 A Conceptual Model for Capturing Architectural Design
Processes

The proposed scheme considers the SADP as a sequence of activities operating
on the products of the design process, which are called design objects. Examples of
design objects are components and connectors of the architecture being designed, or
functional and quality requirements and scenarios to be met. Naturally, these objects
evolve as the SADP takes place, giving rise to several versions. In order to maintain
these versions, the previously proposed PVAM [8] is considered. The general
scheme employed in such approach represents a design object at two levels, the
repository and the versions level. Each model version is generated from views of a
repository that keeps all the objects that have been created and modified due to the
model evolution during a design project. The elements constituting the repository are
called versionable objects. A versionable object represents the artifact that can
evolve during a design project, whose history is desirable to be kept during the
modelling process. Furthermore, relationships among the different objects are
maintained in the repository.

At the versions level, the evolution of versionable objects contained in the
repository is explicitly represented. A model version consists of a set of instances of
object versions which represent the versions of the objects that compose a given
model at a time point. The relationships between a versionable object and one of its
object versions is represented by the version(v, o) predicate. Therefore, a given
versionable object keeps a unique instance in the repository and the versions it
assumes in different model versions belong to the versions level.

Based on that scheme, the model evolution is posed as a history made up of
discrete situations. The situation calculus [9] is adopted for modelling such version
generation process. A new model version mn is generated when an activity a is

3 M. Luciana Roldán, Silvio Gonnet, Horacio Leone

executed. An activity a is materialised by a sequence of operations φ and the new
model version mn is the result of applying such sequence φ to the components of a
previous model version mp. In the context given by the design process, it is possible
to assimilate each new generated model version with a situation and each action with
a sequence of operations which is applied on a precedent model version. Therefore,
the new model version mn is achieved by performing the following evaluation:
apply(φ, mp) = mn.

The primitive operations that were proposed to represent the transformation of
model versions are add, delete, and modify. By using the add(v) operation, an object
version that did not exist in a previous model version can be incorporated into a
successor model version. Conversely, the delete(v) operation eliminates an object
version that existed in the previous model version. Also, if a design object has a
version vp, the modify(vp, vs) operation creates a new version vs of the existing design
object, where vs is a successor version of vp. Thus, an object version v is added after
applying the sequence of operations φ to model version m when the new version v is
created by means of an add or modify operation (Expression 1). On the other hand,
the Expression 2 represents the fact that an object version v is deleted after applying
the sequence of operations φ to model version m when the version v is deleted by the
delete or modify operation.

(∀φ, v, m) add(v) ∈ φ ∨ (∃vp) modify(vp, v) ∈ φ ⇒ added(v, apply(φ, m)) (1)

(∀φ, v, m) delete(v) ∈ φ ∨ (∃vs) modify(v, vs) ∈ φ ⇒ deleted(v, apply(φ, m)) (2)

From these definitions, and using the format of successor state axioms proposed
by [9], a formal specification of the cases in which an object version belongs to a
model version is presented. In Expression 3, the predicate belong(v, m) is true when
object version v belongs to model version m. Thus, an object version v belongs to a
model version that arises after applying the sequence of operations φ to model
version m, if and only if one of the following conditions is met: (i) v is added when
the new version is created (added(v, apply(φ, m))); or (ii) v already belonged to the
previous model version m (belong(v, m)) and it is not deleted when φ is applied to it
(¬deleted(v, apply(φ, m))).

 (∀φ, v, m) belong(v, apply(φ, m)) ⇔
(belong(v, m) ∨ added(v, apply(φ, m))) ∧ (¬deleted(v, apply(φ, m)))

(3)

From this expression, the object versions belonging to a model version can be
determined. Then, it is possible to reconstruct a model version mi+1 by applying all
operation sequences from the initial model version m0.

Once the versions belonging to a model version are defined, the relationships
existing among object versions have to be specified. First, it should be noted that in
this proposal, object versions belonging to a model version are not explicitly
associated to other versions belonging to the same model version. These links are
represented at the repository level. Consequently, the relationship existing between
two object versions must be inferred from the relationship established between the
versionable objects that have been versioned by them. This fact is represented in

A Model for Capturing and Tracing Architectural Designs 4

Expression 4, in which an association ak is inferred between two object versions v1
and v2 belonging to the same model version m (inferredAssociation(ak, v1, v2, m)), if
and only if there exists an association ak between the two versionable objects o1 and
o2 (association(ak, o1, o2)), of which v1 and v2 are versions, respectively (version(v1,
o1) and version(v2, o2)).

(∀ v1, v2, m, ak) inferredAssociation(ak, v1, v2, m) ⇔
(∃ o1, o2) belong(v1, m) ∧ belong(v2, m) ∧ version(v1, o1) ∧ version(v2, o2) ∧

association(ak, o1, o2)

(4)

The primitive operations add, delete, and modify introduced are not enough to
capture and trace a SADP execution. Then, PVAM must be extended in terms of the
suitable operations for this design domain, like the ones listed in Table 1. This
operations range from the most basic to the most complex ones:
• Basic: operations that allow creating and deleting basic design objects (like

components and connectors);
• Special: more complex operations that involve object refinement or delegation;
• Styles/Mechanisms application: these operations generate a new set of design

objects which have a configuration based on an architectural style; or even if they
do not modify the model structure, they affect certain design objects properties.

Table 1. Possible Operations for the Software Architecture Design Domain

Basic Operations
addComponent addScenario deleteQualityRequirement
addConnector addTypeComponent deleteResponsibility
addFunctionalRequirement addTypeConnector deleteRole
addPort deleteComponent deleteScenario
addProperty deleteConnector deleteTypeComponent
addQualityRequirement deleteFunctionalRequirement deleteTypeConnector
addResponsibility deletePort
addRole deleteProperty

Special Operations
refineComponent delegateResponsibility verifyScenario
refineResponsibility delegateScenario

Styles/Mechanisms application
applyIntermediaryBlackboard applyRuleEngine applyPoolOfConnections
applyControlLoop applyClientServer

These operations are defined in terms of primitive operations as add(c), and non-
primitive ones (see Table 1), as addPort(c, p). The execution of one of these
operations implies that a sequence of primitive operations add, delete, and/or modify
are applied to a previous model version, which results in a new model version. From
this, it is possible to express these operations in terms of added and deleted
predicates introduced in Expressions 1 and 2. For illustration purposes, let us
consider the addComponent(s, c, lResps, lPorts) operation. It adds a component c to a
system s. Therefore, if it is applied to a model version m, then a version of a

5 M. Luciana Roldán, Silvio Gonnet, Horacio Leone

component c having a set of responsibilities r and ports p, will belong to the
successor model version (apply(φ, m)), as it is defined in Expression 5.

(∀ φ, s, c, lResps, lPorts, m) addComponent(s, c, lResps, lPorts) ∈ φ ⇒
added(c, apply(φ, m)) ∧ added(rel(s,c), apply(φ, m)) ∧

((∀ r ∈ lResps) added(r, apply(φ, m)) ∧ added(rel(c,r), apply(φ, m))) ∧
((∀ p ∈ lPorts) added(p, apply(φ, m)) ∧ added(rel(c,p), apply(φ, m)))

(5)

Similarly to Expression 5, the definition of new operations allows enlarging the
set of operations. This can be done without modifying the successor state axiom
(Expression 3).

The precondition for applying the addComponent operation is specified in
Expression 6, where the poss(op, m) predicate expresses that an operation op is
applicable to a given model version m.

(∀ s, c, lResps, lPorts, m) poss(addComponent(s, c, lResp, lPorts), m) ⇔
belong(s, m) ∧ ¬ belong(c, m) ∧

(∀ r ∈ lResps) ¬ belong(r, m) ∧ (∀ p ∈ lPorts) ¬ belong(p, m)

(6)

3 The Version Support System for Capturing Architectural
Design Processes

3.1 Defining the Operations Model

The class diagram illustrated in Fig. 1 shows the main concepts of PVAM
introduced in the previous section. The relationship between a versionable object and
one of its object versions is represented by the version relationship. Furthermore, it is
assumed that design objects are identified and classified according to the different
types (see Section 3.2). The design object type is represented by ModellingConcept
class (Fig. 1).

A Model for Capturing and Tracing Architectural Designs 6

Fig. 1. Process version administration model

As outlined before, each transformation operation applied to a model version
incorporates the necessary information to trace a model evolution. This information
is represented by history relationships between the object versions to which the
operation is applied and the ones arising as the result of its execution (Fig. 1). In
order to represent architecture evolution, a model version has zero or more successor
model versions (noted by * cardinality at successor role of History association
shown in Fig. 1).

PVAM must be capable of extending in terms of the suitable operations for
SADP domain. Subsequently, in this section the operation model is presented, which
allows specifying and instantiating specific domain operations.

Operations are associated with a modelling concept and are defined as ordered
sets of commands (Fig. 2). Those commands can be primitives or operations that can
be used to define other operations. Primitives encapsulate the semantics defined by
Expressions 1, 2 and 3. The execution of an operation generates one or more results,
which can be a set of versions. Furthermore, history class is instantiated, linking the
predecessor with the successor versions.

DomainRepository

Versions

partcontainer * *

attributeType

end

object

version

objectType

associationType

*

*

instance

Association

1..*

successor
*

AttribValue
*

*

version1..*

ObjectVersion
1..*

ModellingConceptVersionableObject

ModelVersion

predecessor

*

*

predecessor

successor

ModelHistory

Activity

*

*

Version

DomainRelationship

History

origin * *

* Operation
(from Operations)

Attribute

belong

7 M. Luciana Roldán, Silvio Gonnet, Horacio Leone

Fig. 2. Operations package

The operation definition is represented using the basic structure of the Abstract
Syntax Kernel Metamodel for Expressions defined by the UML 2.0 OCL
Specification [10]. To implement operations, the well-known Command design
pattern was used [11]. Therefore, a command abstract class is introduced into the
Operations package illustrated in Fig. 2. An operation is defined as a macro
command (MacroCommand class), a subclass of command that simply executes a
sequence of commands. Therefore, when an operation is specified, it is necessary to
define both the arguments and the body of the operation. The commands that
constitute its body are some other already defined commands, which are available for
use in the specification (primitives, loop, variable assignment, or other operations).
Note that the modelling concept over which an operation is applied must be
explicitly indicated. Furthermore, there are other concrete classes that specialise the
command class, and that can be part of a macro command. One of them is the
LoopCmd, which represents a loop construct over a collection variable and has a
body that is executed for each element in the collection. Another valid command is
VariableAssignment that represents the assignment of a value to a variable of a given
type.

As shown in Fig. 2, every command has one or more data typed arguments.
Arguments are considered as a kind of variable. A variable can be also declared and
used in the body of an operation and has a given type. The types described by the
model are grouped by the abstract class DataType. DataType subclasses are
PrimitiveDataType, CollectionType, and ModellingConcept. PrimiteDataType
includes Integer, Float, String and Boolean types. Collection describes a list of
elements of a particular given type that are ordered, have no duplicates and are
parameterized with an element type. ModellingConcept is imported from Domain
Package and enables specifying arguments that explicit the type of an expected
object version to be added during the execution of an add primitive.

As regards VariableAssignment, it denotes the mapping between a Variable and a
RunTimeValue. This interface is not defined to specify operations. It is included to

Operations

type
ObjectVersion
(from Versions)

ModelVersion
(from Versions)

CurentModelVersion

Command
name

MacroCommand Primitive LoopCmd VarAssignment

Operation

AddDelete Modify

Variable
name

Argument DataType

ModellingConcept
(from Domain)

PrimitiveDataType

Collection

ObjectVersion
(from Versions)

Literal

AttribValue
(from Versions)

<<Interface>>
RunTimeValue

body

body
type

type

elementType

declares
iterator

arguments

value

reference

results

scope

predecessor 0..*

*

applicable
To

{ordered} 1..*

actual

History
(from Versions)

successor
Version

(from Versions)

A Model for Capturing and Tracing Architectural Designs 8

represent the run time values during the execution of an operation. RunTimeValue
can be realized by different values like literal, object version, modelling concept, or
AttribValue (value of an attribute of an object version, Fig. 2), depending on the
variable type.

3.2 Products of SADP

In order to capture the versions generated during a SADP, the PVAM must be
extended according to the particular design objects produced by that process. To this
purpose, the Domain Package shown in Fig. 1 must be extended with concepts of the
SADP domain. The products that constitute the design object types are taken from
the Attribute-Driven Design Method (ADD) proposed in [4], and the architectural
description language ACME [2]. The class diagram shown in Fig. 3 introduces these
concepts and their relationships. This model is implemented by the instantiation of
the classes of Domain package (Fig. 1). The classes presented in Fig. 3 are going to
be instances of ModellingConcept and their properties are going to be instances of
Attribute. Finally, the relationships of Fig. 3 will be instantiated from
DomainRelationship in Domain package.

The ADD method is based on a recursive decomposition process where
architectural patterns (or styles) are chosen at each stage to fulfil a set of quality
scenarios. Then, component and connector types provided by architectural patterns
are instantiated and functionality is allocated to them. The input to ADD is a set of
requirements (functional and quality requirements). The quality requirements are
expressed as a set of system specific quality scenarios, and the functional
requirements are translated into a set of responsibilities [4]. Quality scenarios and
responsibilities can be delegated to other components when the original component
is refined. When the method iteration is finished, the designer verifies scenarios and
sets an assessment.

Fig. 3. Domain model for architecture based design

In ADD, the different model versions are represented using various types of
views. Only the component view is considered within the scope of this work in order
to describe the architecture. Accordingly, ACME [2] has been chosen as the
architectural description language. ACME defines a component as a computational
element and data store of a system. A component may have multiple interfaces, each
of which is termed port. The connectors represent interactions among components
and have interfaces that are defined by a pair of roles. The systems comprise
components and connectors, establishing attachments between roles and ports. In

Connector Type

System

Quality Requirement

Component Type Requirement

Style

Property Type

Functional Requirement

Responsibility Quality Scenario Connector

Component

Property

Constraint
Assessment

Role

Attachment

Port

9 M. Luciana Roldán, Silvio Gonnet, Horacio Leone

Fig. 3, the attachment concept is not considered as a modelling concept but as a
relationship. Moreover, ACME proposes elements to document extra-structural
properties of a system’s architecture, as Properties. Furthermore, it is possible to
attach constraints to design elements. With the aim of providing a more powerful
language, ACME defines component, connector, and property type building blocks.
On the basis of these modelling concepts, it is possible to define Families or Styles.
They are defined by a set of property, component, and connector types and a set of
constraints.

3.3 Architectural Operations Specification

As it was outlined in Section 3.1, PVAM must be extended in terms of the
suitable operations for the SADP domain, like the ones listed in Table 1.

Fig. 4 presents functional specifications for some of the basic operations defined
in Table 1. The other operations are defined in a similar way, but they are not shown
due to lack of space. As seen in Fig. 4, the operation addComponent(s, c, lResps, lPorts)
is carried out by a series of operations. First, a version of component c is added
(add(c)). After that, a set of responsibilities (specified by list lResp) and ports (detailed
by list lPorts) are inserted. These operations are carried out by the addResponsibility(c,
r) and addPort(c, p) operations. Finally, a relationship between the new component c
and an existing system s is included. This last operation is performed by the add
primitive operation (add(rel(s, c))). These operation specifications are implemented
as instances of the Operation model introduced in Fig. 2.

In the same way as for basic operation, it is possible to define the special
operations. Fig. 5 presents some examples. A function with a ‘?’ symbol at the end
indicates that it is interactive; thus, the user is asked about how to proceed. The
interactive commands can be implemented as a special case of VarAssignment
command (Fig. 2).

Fig. 4. Specifications of basic operations

The delegateResponsibility(c1, c2) operation enables delegating a responsibility
of component c1 to component c2. Thus, if a given responsibility is assigned to a
component c1 in a model version m and a delegateResponsibility(c1, c2) operation is
included in the sequence of operations applied to m, then the resulting model version

addComponent(s,c, lResps,lPorts)
add(c)
for each r in lResps

addResponsibility(c,r)
end for
for each p in lPorts

addPort(c, p)
end for
add(rel(s, c))

deleteComponent(s, c)
lPorts = getPorts(c) for each p in lPorts

deletePort(c, p)
end for
delete(rel(s,c))
delete(c)

addPort(c, p)
add(p)
add(rel(c, p))

deletePort(c, p)
// port deletion implies deletion
// of connector attached to it
deleteConnector(getConnector(getRol(p)))
delete(rel(c, p))
delete(p)

addResponsibility(c, r)
add(r)
add(rel(c, r))

deleteResponsibility(c, r)
delete(rel(c, r))
delete(r)

A Model for Capturing and Tracing Architectural Designs 10

shows that the responsibilities delegated to c2 will not be assigned to c1. In a similar
way, the operation delegateScenario proceeds.

Fig. 5. Specifications of special operations

The refineComponent(c, lComps, llPorts, llResps, lConns, llRoles, llAtts) operation, another
example of special operation (Fig. 5), decomposes a component c into one or more
components given by the list lComps. The ports and responsibilities of the new
components are given by the lists llPorts and llResps, respectively. Furthermore, a set of
connectors among the new components is added. These connectors are specified by
lConns whose roles are given by the list llRoles and the attachments by the list llAtts.

The operations that apply an architecture style [12], or an architectural pattern
[13], refine a preexistent component with a new set of components and connectors
that are instantiated from an architectural style/pattern. They interact with the
designer asking for the responsibilities and scenarios delegation, as well as
connectors mapping between external components and refined components. An
example of applyStyle operation is defined in Fig. 6. In this case, the
applyControlLoop operation is specified. This style proceeds from the process
control paradigm and defines the architecture to activate various monitoring policies
when different events coming from sensors are produced [14]. The monitoring
policies may in turn produce other events or actions in response to predefined

delegateResponsibility(c1, c2) lResps = getResponsibility(c1)
for each r in lResps

if (delegate?(c2, r)) delete(rel(c1, r))
add(rel(c2, r))

end if
 end for

delegateScenario(c1, c2) lScens = getScenario(c1)
for each s in lScens

if (delegate?(c2, s)) delete(rel(c1, s))
add(rel(c2, s))

end if
end for

refineComponent(c, lComps, llPorts, llResps , lConns, llRoles, llAtts)
i = 0
for each cc in lComps

 lr = llResps(i) // cc responsibilities listi
 lp = llPorts(i) // cc ports listi addComponent(getSystem(c),cc,lr,lp)
 i++

end for
i = 0
for each cn in lConns

 lr = llRoles(i) // cn roles listi la = llAtts(i) // port list which should attach cn roles
 addConnector(getSystem(c), cn, lr, la)
 i++

end for
// delegate scenarios and responsibilities to new components
// (interactive)
for each cc in lComps

 delegateScenario(c, cc)
 delegateResponsibility(c, cc)

end for
// create new connections between internals and external components
// (interactive)
lp = getPorts(c)
for each p in lp

 np = PortMap?()
 r = getRol(p)
 delete(rel(p, r))
 add(rel(np, r))

end for
deleteComponent(getSystem(c),c)

11 M. Luciana Roldán, Silvio Gonnet, Horacio Leone

situations. Note that this operation can be considered as a specialization of
refineComponent operation. The knowledge on how to proceed in the refinement of
component c is given by the control loop style. Therefore, a series of addComponent
operations is performed. The addComponent(s, {Diagnosis, TDiagnosis}, [P1,P6])
operation indicates that a component and two ports must be created. The component
is called Diagnosis, whose modelling concept is TDiagnosis, an instance of
ComponentType (see Fig. 3), and the ports are denominated P1 and P6.

Fig. 6. Specification of applyControlLoop operation

4 Case Study: Monitoring System for an Industrial Process

The following case study describes the design of a monitoring system for an
industrial process (see Fig. 7). It is based on classical case studies presented in other
contributions [1, 4]. Monitoring activities are focused on the two core distillation
columns: an extractive distillation column and a solvent stripping one, working
together in a highly integrated manner. The system should monitor control loops and
temperature sensors, by continued acquisition of real-time process data, tracking set-
point values, alarm conditions and outputs of valves, and comparing them with
normal pattern behaviour. The system should also monitor process state, using real-
time process data previously processed in combination with expert knowledge in
order to maintain process stability and performance. Further functionalities are
control flowrate sensors and validate material balances. In order to meet all these
functional requirements, the system should be connected to input and output devices.
Input devices allow the system to get the real time data from the process equipment
and output devices are used by the system to inform the plant operator about process
anomalies, like: solvent inventory buildup, sensor fault, abnormal process pattern,
etc. The main functions considered in designing the monitoring system include:
administration of users (process operator, plant supervisor, etc.) and permissions,

applyControlLoop(c)
 s = getSystem(c)
 addComponent(s,{Diagnosis, TDiagnosis}, [P1,P6])
 addComponent(s,{PolicyManager, TPolicyManager}, [P2,P3])
 addComponent(s,{Reactor, TReactor}, [P4, P5])
 addConnector(s,{CDgnPMgr,TCDgnPMgr},[R1,R2],[P1,P2])
 addConnector(s,{CPMgrRct,TCPMgrRct},[R3,R4],[P3,P4])
 delegateScenario(c,Diagnosis)
 delegateScenario(c,PolicyManager)
 delegateScenario(c,Reactor)
 delegateResponsibility(c,Diagnosis)
 delegateResponsibility(c,PolicyManager)
 delegateResponsibility(c,Reactor)
 // Set mappings between previous connector and new components
 lp = getPorts(c)
 for each p in lp np = PortMap?(p) // Ask the user the port to map
 r = getRol(p)
 delete(rel(p, r))
 add(rel(np, r))
 end for
 deleteComponent(s, c)

A Model for Capturing and Tracing Architectural Designs 12

configuration of input/output devices, priority-based event management, process
diagnosis, specification of warning and process protective actions.

Fig. 7. Monitoring system for an industrial process

For reasons of space, only a sequence of operations of the model evolution is
analyzed. Let us consider an intermediate model version i (see Fig. 8) where the
main components are: Control&Diagnosis (with responsibilities in priority based
event management, protective actions execution, warning launch, input/output
devices configuration); UserInterface (with responsibilities related to user interaction
issues: set parameters values, show information, rule administration);
SensorActuatorLayer (with responsibilities like sending out commands to actuators,
receiving information from sensors); and Configuration. From this model version,
the designer chooses to refine the Control&Diagnosis component by applying the
applyControlLoop operation. This operation creates three new components:
Diagnosis, PolicyManager, and Reactor. The applyControlLoop operation (see Fig.
6) asks the necessary information for delegating responsibilities, and for
reconnecting previous connections to the new configuration.

Fig. 8 shows a partial view of the Version and Repository levels from which
model version views can be inferred. This figure is focused on the version of
Control&Diagnosis evolution to a set of versions of components and connectors due
to applyControlLoop operation. A view of a model version is obtained from the
knowledge in the Version and Repository levels. The object versions belonging to a
model version are inferred by the belong(v, m) predicate (Expression 3). Fig. 8 shows
some object versions that belong to model version i (Control&Diagnosisv,1,
P1C&Dv,1, P2C&Dv,1, P3C&Dv,1). Given an object version (Control&Diagnosisv,1),
it is possible to know its versionable object (Control&Diagnosiso), which is linked
with its design object type (modelling concept component, defined in Domain). All
this information makes possible to reconstruct the elements of a model version view,
as it is the Control&Diagnosis component which is obtained from object version
Control&Diagnosisv,1 and versionable object Control&Diagnosiso. On the other
hand, the expression 5 enables to retrieve the relationships among the object versions
that belong to a given model version. Control&Diagnosiso has three ports named
P1C&Do, P2C&Do, and P3C&Do which have their respective object versions
P1C&Dv,1, P2C&Dv,1, and P3C&Dv,1. Therefore, component Control&Diagnosisv,1
has ports P1C&Dv,1, P2C&Dv,1, and P3C&Dv,1.

Input-Output Devices

13 M. Luciana Roldán, Silvio Gonnet, Horacio Leone

Fig. 8. Evolving the products of the software architecture design process

The applyControlLoop operation is applied on Control&Diagnosis component
(Control&Diagnosisv,1 object version). This operation is traced by an instance of the
history link (Fig. 1) which associates the previous object version
(Control&Diagnosisv,1) with the successor object versions (Reactorv,1, Diagnosisv,1,
PolicyManagerv,1, P1Reactv,1, P1Diagv,1, P1PMgrv,1, P2PMgrv,1 in Fig. 8). P1C&Dv,1,
P2C&Dv,1, and P3C&Dv,1 object versions belong to both model version i and model
version i+1 because they were delegated from the original component
(Control&Diagnosis) to the newer ones by applyControlLoop operation.

Additionally, other operations were applied on model version i to obtain model
version i+1 that are not illustrated in Fig. 8 at version and repository levels. One of
them arises due to the need of associating PolicyManager and Configuration
components, so a new connection and their roles objects are added, applying
addConnector operation. Using again operation addConnector, a new connection
between PolicyManager and SensorActuatorLayer is added. It enables
PolicyManager to receive information from, and send information to,
SensorActuator (see Fig. 8, View of model version i+1).

It is important to note that the proposed extension of PVAM enables applied
operations on SADP’s products (Fig. 3) to be captured. For example, responsibilities
are refined using refineResponsibility operation. The RDiag1 responsibility (Fig. 8,
view of model version i) was refined on the following responsibilities: i) listening
notifications of situations coming from SensorActuator (RDiag1.1); ii) getting

RDiag1.3

P1C&Dv,1

P2C&Dv,1
P3C&Dv,1 Reactorv,1

PolicyManagerv,1

Diagnosisv,1

P1PMgrv,1

P1Reactv,1

P1Diagv,1
P2PMgrv,1

Model Version i

applyControlLoopHistory

Model Version i ∩
Model Version i + 1

RPMgr6

View of
Model Version i + 1

View of Model Version i

RAdmin1REvent1

RStore1

<<quality scenario>>
SCPerf1

<<quality scenario>>
SCPerf2

<<quality scenario>>
SCModif3

<<quality scenario>>
SCModif2

 <<quality scenario>>
SCPerModif1

<<component>>
UserInterface

<<quality scenario>>
SCModif1 Resp1

Resp2

RDiag1

<<system>>
MonitoringSystem

<<component>>
Control&Diagnosis

<<component>>
SensorActuatorLayer

RConfig1RConfig2

<<quality scenario>>
SCPerf1

<<quality scenario>>
SCPerf2

<<quality scenario>>
SCModif3

<<quality scenario>>
SCModif2

 <<quality scenario>>
SCPerModif1

<<component>>
UserInterface

RSA1 RSA2

<<system>>
MonitoringSystem

<<component TPolicyManager>>
PolicyManager

<<component>>
SensorActuatorLayer

RConfig1 RConfig2

Applied
Operattions:
φi+1=
{applyControlLoop,
refineResponsibility,
addConnector}

<<component>>
Configuration

<<component>>
Configuration

RSA3

<<component TDiagnosis>>
Diagnosis

<<quality scenario>>
SCModif1

RDiag1.1
RDiag1.2

RAdmin1

RReact5
RReact4

RReact3
RReact2

RReact1

<<component TReactor>>
Reactor

RPMgr5RPMgr4RPMgr3 RPMgr2 RPMgr1

version
version

Model Version i + 1

P2C&Do

P3C&Do Reactoro

PolicyManagero P1Reacto

P1Diago P1PMgro P2PMgro
Repository

P1C&Do

Diagnosiso

component component
TDiagnosis

component
TReactor

component
TPolicyManager

objectType

port Domain

Control&Diagnosisv,1

Control&Diagnosiso

A Model for Capturing and Tracing Architectural Designs 14

devices information (RDiag1.2); iii) probing device (RDiag1.3) (Fig. 8, view of
model version i + 1).

4.1 Retrieving the History of Architectural Design Processes

The model introduced allows tracing and recovering the history of the
architectural design activities carried out by the designer during SADP. It is possible
to ask about the history of model versions in terms of operation sequences that have
generated a given model version, and also consult on the history of a particular
object version, which allows to know how the evolution took place through the
different versions. Fig. 9 shows an example of a history query to perform on the
hypothetical monitoring system designed in current section. An actor would whish to
know the sequence of operations that originated model version i+1 from the
precedent model version i. The applied operations were applyControlLoop,
refineResponsibility and addConnector, which can be seen in Fig. 8 of the case
study. The resulting information allows knowing who carried out the operations, at
what time and date, their arguments, the new elements incorporated to the design, the
set of elements eliminated and what kind of modelling concepts they were. As shown
in Fig. 9, additional information can be obtained, like the suboperations implied at
the execution of the current one. Knowing which were the operations that gave rise
to model version i+1 is useful for understanding the rationale associated with such a
step because the architect knows the semantic of the operation and the intent.

5 Conclusions

The model proposed in this paper, an extension of PVAM, captures the
operations that generate each design product during the SADP. Furthermore, it also
offers an explicit mechanism to manage the different model versions generated
during the SADP. Thus, it allows the tracing of the SADP and its resulting products,
setting the grounds for learning and future reuse of the design process. This is a
fundamental step towards the development of computational tools to support the
SADP and to guide designers in the different activities of a design project. A related
work [6] proposes a set of requirements which such tools should satisfy in order to
adequately support the evolution of software architectures. The approach presented
in this work meets a wide spectrum of those requirements: (i) First class
architectural concepts, represented by the extensible domain model proposed; (ii)
First class architectural design decisions, enabling specification of adequate
operations for software architecture design representing design decisions made by
the architect; (iii) Under-specification and incompleteness, allowed by the model
evolution through discrete situations (model versions) increasing the level of
abstraction; (iv) Explicit architectural changes, allowing capturing, managing and
tracing of products of SADP, using explicit history links between different versions,
which means that the operations applied through the design process are saved and,
therefore, it is possible to reconstruct the history from an initial model version; (v)
Support for modification, subtraction, and addition type changes, implemented by

15 M. Luciana Roldán, Silvio Gonnet, Horacio Leone

the primitive operations add, delete and modify. Those operations are also used in
the definition of higher level operations representing more complex design
operations like refining or styles application.

Fig. 9. Partial view of the sequence of operations applied to model version i

Situation calculus, the formal background of the framework, allows us to
represent the activities carried out during a SADP, and therefore, it enables the
designer to get a better understanding of the information on how the various design
objects (systems, components, connectors, functional requirements, quality
requirements, quality scenarios, assessment, etc.) have been obtained. Thus, the
history of operations performed on versions of design objects can be kept. Besides,
this conceptual framework also provides the foundations for the proposal of formal
means for detecting potential conflicts.

The framework could incorporate extensions to the Domain package, integrated
to the version administration model, defining other characteristics not included by
ADD or ACME. Furthermore, it uses an operational perspective where design
decisions can be modelled by means of design operations. This approach is
employed in other contributions [1, 4]. The structure of the conceptual framework
allows the easy definition of specific design operations, like applyControlLoop, by
instantiating the Operation model (Fig. 2). This extension is possible without
modifying the successor state axiom (Expression 3).

Model Version: Model Version i+1
Precedent Model Version: Model Version i
Applied Operations:

Operation: applyControlLoop
Model Version: Model Version i Actor: Architect1
Arguments:

Argument Name Value Data Type
Source Version Control&Diagnosis Component

Results:
 Object Version Modelling Concept Date Time
PolicyManagerv,1 Component TPolicyManager 01-06-2006 10:56
Reactor v,1 Component TPolicyManager 01-06-2006 10:56
......
RPMgr1 v,1 Responsibility 01-06-2006 10:56

Deleted versions:
Object Version Modelling Concept Date Time
Control&Diagnosis v,1 Component 01-06-2006 10:56
....
Rel_C&D_Diag v,1 Relation 01-06-2006 10:56

SubOperations:
(+) delegateResponsibility
(+) delegateResponsibility
...

Operation: refineResponsibility
Model Version: Model Version i Actor: Architect1
(+)
Operation: addConnector
Model Version: Model Version i Actor: Architect1
(+)

A Model for Capturing and Tracing Architectural Designs 16

References

1. A. Díaz Pace, A Planning-Based approach for the exploration of Quality-Driven design
alternatives in Software Architectures, Tesis Doctoral (UNICEN, 2004).

2. D. Garlan, R. T. Monroe, D. Wile, Acme: Architectural Description of Component-Based
Systems. Foundations of Component-Based Systems, edited by G.T. Leavens and M.
Sitaraman (Cambridge University Press, 2000), pp. 47-68.

3. N. Medvidovic, D. Rosenblum, D. Redmiles, J. Robbins, Modeling Software Architectures
in the Unified Modeling Language, ACM Transaction on Software Engineering and
Methodology, 11(1), 2-57 (2002).

4. L. Bass, P. Clements, R. Kazman, Software Architecture in Practice: Second Edition
(Addison-Wesley, 2003).

5. F. Bachmann, L. Bass, M. Klein, Preliminary Design of ArchE: A Software Architecture
Design Assistant, Carnegie Mellon University, Technical Report CMU/SEI-2003-TR-021,
2003.

6. A. Jansen, J. Bosch, Evaluation of Tool Support for Architectural Evolution, in:
Proceedings of the 19th IEEE International Conference on Automated Software
Engineering (2004), pp. 375-378.

7. A. Tang, J. Han, Architecture Rationalization: A Methodology for Architecture
Verifiability, Traceability and Completeness, in: 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (2005), pp. 135-144.

8. S. Gonnet, Un modelo integrado para la captura y administración del proceso de diseño,
Tesis Doctoral (UNL, 2003).

9. R. Reiter, Knowledge in Action: Logical Foundation for Describing and Implementing
Dynamical Systems (The MIT Press, 2001).

10. Object Management Group, OCL 2.0 Specification (2005), 2005-06-06.
11. E. Gamma, R. Helm, R. Johnson, K. Vlissides, Design Patterns. Elements of Reusable

Object-Oriented Software (Addison-Wesley, 1995).
12. M. Shaw, D. Garlan, Software Architecture, Perspectives on an Emerging Discipline

(Prentice-Hall, 1996).
13. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software

Architecture. A System of Patterns (John Wiley & Sons, 1996).
14. M. Shaw, Beyond Objects: A Software Design Paradigm Based on Process Control,

Carnegie Mellon University, Technical Report CMU-CS-94-154, 1994.

Acknowledgments
The authors wish to acknowledge the financial support received from CONICET, Universidad
Tecnológica Nacional and Agencia Nacional de Promoción Científica y Tecnológica (PICT
12628).

