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Abstract. Large, complex computing systems have many similarities to 
biological systems, at least at a high level. They consist of a very large number 
of components, the interactions between which are complex and dynamic, and 
the overall behavior of the system is not always predictable even if the 
components are well understood. These similarities have led the computing 
community to look to biology for design inspiration. But computing systems 
are not biological systems. Care must be taken when applying biological 
designs to computing systems, and we need to avoid applying them when they 
are not appropriate. We review three areas in which we have used biology as 
an inspiration to understand and construct computing systems. The first is the 
epidemiology of computer viruses, in which biological models are used to 
predict the speed and scope of global virus spread. The second is global 
defenses against computer viruses, in which the mammalian immune system is 
the starting point for design. The third is self-assembling autonomic systems, 
in which the components of a system connect locally, without global control, 
to provide a desired global function. In each area, we look at an approach that 
seems very biologically motivated, but that turns out to yield poor results. 
Then, we look at an approach that works well, and contrast it with the prior 
misstep. Perhaps unsurprisingly, attempting to reason by analogy is fraught 
with dangers. Rather, it is critical to have a detailed, rigorous understanding of 
the system being constructed and the technologies being used, and to 
understand the differences between the biological system and the computing 
system, as well as their similarities. 

1 Introduction 

There is no doubt that computing systems are complex. They are arguably the most 
complex artifacts ever produced by humans. As computing systems become ever 
more complex, we naturally look to other fields to understand what tools and 
techniques we might bring to bear on the problems that we encounter. Computer 
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scientists have long looked to mathematics, and even physics, for algorithms and 
methodologies. We have also, though perhaps less often, looked to biology. 

But biological systems are quite different from computing systems, often 
radically so. We would not want to build a computer that counts on its fingers, or 
types on a keyboard. Why, even the term “biologically-inspired design” should make 
us a little nervous. We do not refer to the “mathematically-inspired design” of 
computing systems, or even to “physics-inspired design.” We refer to mathematical 
algorithms, or techniques borrowed from physics, that help us design better 
computing systems. What, then, is the role of biological inspiration? 

In the remainder of this paper, we turn our attention to three problems in 
computing systems in which people have used biology as an inspiration to 
understand and construct computing systems. The first is the epidemiology of 
computer viruses, in which biological models are used to predict the speed and scope 
of global virus spread. The second is global defenses against computer viruses, in 
which the mammalian immune system is the starting point for design. The third is 
self-assembling autonomic systems, in which the components of a system connect 
locally, without global control, to provide a desired global function. In each problem 
area, we look at an approach that seems very biologically motivated, but that turns 
out to yield poor results. Then, we look at an approach that works well, and contrast 
it with the prior misstep. Finally, we summarize the reasons why one biologically-
motivated approach fails, while another succeeds. We conclude that reasoning by 
analogy is dangerous, but that a deeper understanding of the differences, as well as 
the similarities, between biological and computing systems can help us avoid the 
pitfalls of biologically-inspired design. 

This is a cautionary tale. 

2 Computer Virus Epidemiology 

Ever since Len Adleman coined the term “computer virus” to describe a self-
replicating program [1], the temptation to use biological analogies for them has been 
overwhelming. Computer viruses authors have used techniques such a 
“polymorphism,” in which a virus changes its form with each succeeding generation 
in an attempt to evade detection, in much the same way as certain biological viruses 
mutate rapidly to evade the body’s defenses. Anti-virus programmers developed 
techniques such as looking in files for bit strings that were found in known viruses 
but not in normal programs, much like the mammalian immune system produces 
cells that bind to viruses but not to cells in the body. 

There has also been an overwhelming temptation to use models of biological 
virus spread to model computer virus spread. This temptation is understandable. 
Both kinds of viruses infect individuals, whether they are mammals or computers. 
Both spread from one individual to another via infection vectors, whether it is 
sneezing or sending files via email. 

In the late 1980’s, when computer viruses first became a serious problem, very 
little was known. Viruses spread on diskettes, which became infected when used on 
an infected computer and which could spread the infection when used on other 
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computers. But little was understood about their global spread. In 1998, Peter 
Norton, later of Norton AntiVirus fame, was alleged to have said that computer 
viruses were an urban myth, “[…] like the story of alligators in the sewers of New 
York. Everyone knows about them, but no one's ever seen them.” 

2.1 Getting It Wrong 

In 1991, Tippett asserted that the spread of computer viruses was like that of bacteria 
in a Petri dish – that without outside intervention their growth would tend to be 
exponential [2]. Though there was not a rigorous model behind these statements, 
they were based on the well-known fact that many population models exhibit 
exponential growth in their early phases. The reason for this is easy to see. The first 
infected individual might spread the infection to two other individuals, who in turn 
spread it to four more, and so on. The spread will be approximately exponential until 
a large fraction of the population is infected, at which time the infection will 
continue to spread, but more slowly due to the lack of uninfected targets. Assuming 
that everyone in the population is susceptible to the infection, the virus will 
ultimately infect 100% of the population. 

Armed with this alarming prediction, Tippett and others called for emergency 
action, fearing that a worldwide pandemic was just months away. But as early data 
on worldwide virus infections became available, it became clear that there were 
problems with this model. Virus spread was nowhere close to exponential. In fact, it 
was surprisingly slow. Few viruses that were collected by anti-virus companies were 
ever seen in real-world infections, and even those that were took up to a year to 
become worldwide problems. Viruses never reached 100% of the population, even 
after a fairly long time. In fact, their prevalence would reach a peak of at most a few 
percent of the population, and then it would decrease [3]. 

2.2 Getting It Right 

Two features of this simple model of infection are easily seen to be problematic. 
First, there is an assumption that infected individuals remain in the population 
indefinitely and continue to spread the infection. But infected computers do not stay 
infected forever. If the virus causes system problems, and most viruses did, users 
would be highly motivated to get rid of the virus. They might use anti-virus software, 
if it was clear that it was a virus. They might replace their boot records, which would 
have gotten rid of most boot viruses. They might have reformatted their hard drives 
and started over. Ultimately, users would have gotten rid of their computers and 
moved to new computers. Few of us are still using the computers that we used in 
1990! 

Second, there is an assumption that every individual is susceptible to infection. 
But, as the computer virus problem became worse, and more people started using 
anti-virus software regularly, this was no longer the case. Indeed, as anti-virus 
software gained the ability to actively prevent computer viruses from running on a 
system, and to stay up to date with the latest threats, many computers became 
immune to a virus before the virus could ever reach them. 
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A third feature of this simple model is perhaps more subtle. The model assumes 
that any infected individual has an equal chance of infecting any other individual. 
The model essentially assumes that the population is trapped in an elevator for 
several months, and that anyone sneezing has as much chance of infecting one of the 
individuals as another. In biological epidemiology, this is known as the 
“homogeneous mixing” assumption [4]. 

For rapidly-spreading diseases, such as influenza, in populations with a high 
degree of contact, such as cities, this is still a pretty good model. But computer users 
did not exchange diskettes in this pattern. They exchanged diskettes relatively 
infrequently, and often only within a group of close co-workers. Diskette exchanges 
between random people in the world occurred very infrequently. It turned out that 
the topology of how an infection may spread was a critical, and previously 
overlooked, feature of a successful model. 

Kephart et al. described models of the epidemiology of computer viruses that had 
a rigorous basis and took these features into account [5, 6]. In these models, standard 
biological epidemiology was used to describe individuals who were susceptible, 
those who were infected and contagious, and those who were both cured and 
immune. Individuals who were susceptible could become infected, and could later 
become both cured and immune. The models supported standard epidemiological 
results such as epidemic thresholds: if the virus is killed off faster than it spreads, 
there is no epidemic. This was a likely explanation for the observation that most 
viruses were never seen in real-world infections. They were too inept at spreading or 
never got the chance. Similarly, epidemics in the model never reached 100% of the 
population. They were killed off by disinfecting infected computers or by 
preventative measures. 

Instead of assuming homogeneous mixing, Kephart et al. modeled infections as 
spreading on a directed graph, in which the nodes were computers and the arcs 
denoted a pathway by which a particular computer could infect another. In very 
sparse graphs, which are likely the correct model for diskette-based virus spread, it 
was harder for an epidemic to start and easier for it to die off. In highly clustered 
graphs, representing more diskette sharing inside workgroups and less between them, 
viruses that were rampant in one part of the graph seldom leaked out to other parts of 
the graph, explaining the observation that some university computer labs had 
rampant, ongoing infections while more controlled environments rarely did. 

It turned out that virus epidemiology in computer systems bore deep and striking 
similarities to the biological world. The same models could represent viruses in both 
worlds. The thing that distinguished the directed graph models from the “exponential 
growth” model was that it was not a case of reasoning by analogy. It had a rigorous 
mathematical basis and an explicit set of assumptions that could be validated in the 
real world. It was inspired by biology, but grounded in the actual system at hand. 

3 A Digital Immune System 

The mammalian immune system is very complex, and has evolved over millions of 
years to protect individuals against a very large and ever changing array of threats. It 
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has a number of mechanisms, both innate and adaptive, to find and destroy foreign 
organic material that may pose a threat to the body. 

The immune system is an obvious place to look for inspiration in combating 
cyberspace threats such as computer viruses. Before we do so, let us look at some of 
the mechanisms that it uses. 

When viruses enter the bloodstream, some of them are engulfed and destroyed by 
macrophages (white blood cells), which then present antigens (proteins from the 
bacterium or virus) on their surface. Cells called T cells are capable of recognizing 
particular antigens by binding to them chemically. There are a vast number of T cells 
in the bloodstream, and collectively they are capable of recognizing a vast number of 
different antigens. When a particular T cell recognizes an antigen, it is stimulated to 
reproduce, so there are more T cells to find instances of that virus. It is also 
stimulated to produce antibodies that bind to the antigens on the surfaces of the virus. 
Viruses that are coated with antibodies are easier for macrophages to ingest. So, in 
response to an invading virus, the immune system produces a huge number of 
antibodies that help kill off that particular virus. 

T cells that happen to recognize proteins found in the body are weeded out at an 
early stage in their lives, so the body does not (usually) produce antibodies against 
itself. Only T cells that might recognize viruses and do not recognize the body’s cells 
(the “self”) are allowed to circulate [7]. 

3.1 Getting It Wrong 

We begin with the problem of detecting a computer virus in the first place. 
Forrest et al. suggest a method for detecting computer viruses that is very 

strongly rooted in the mammalian immune system [8]. Given a set of files that they 
want to protect on a PC, they divide the files into a collection of bit strings of a fixed 
length, say 32 bits long. They then generate 32-bit “detector” bit strings at random 
and discard those that have a match to the strings that make up existing files on the 
PC. This is very much like the immune system creating T cells, and weeding out 
those that attach to proteins in the “self.” Forrest et al. calculate the number of non-
self detector strings that will be needed in order to detect new or changed files (i.e. 
non-self files) with a given probability. 

A sufficient number of non-self detector strings is then generated, and the PC is 
scanned periodically to determine if any of the non-self strings are found within the 
files. This is very much like the immune system spreading T cells throughout the 
body, and reacting to any of them binding to non-self proteins. 

So far, this is very plausible. It is a general method for detecting changes in the 
system, that is, files that have come to look different than they were to begin with. 
This could well indicate the presence of a computer virus. 

Let us examine what it would take to implement this on a typical PC today. In 
doing so, we will make assumptions that more strictly parallel biology than Forrest et 
al. might advocate. The model that they report allows, for instance, only approximate 
matching of detector strings to strings in the files of the PC as a way of increasing its 
efficiency. Here we will assume exact matching. 
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In the experiments involving this method, the authors typically assume a rather 
high probability of failing to detecting a change. 0.02 is a typical probability that is 
used. We will set a stricter standard, as biology does. Let us suppose that we want to 
detect changes on a typical PC and we want the probability of failing to detect a 
single-bit change in one of the 32-bit strings in the files to be less than 2-32. This is 
not an unreasonable bound, given that a typical PC with 100GB of storage has ~240 
bits on it which, if we separate these into 32-bit strings for this method, yields 235 
such strings. If we randomly change all 235, we would only fail to detect 1000 of the 
changed strings.  

Using the equations developed in [8], we estimate that we will need nearly 1011 
detection strings that are each 32 bits long to achieve the required detection 
probability. If this were the mammalian immune system, that would be a small 
number of T cells. In a computer, however, that many detection strings would 
require nearly 400GB of storage, which is more than a typical PC has these days. 
Plus, scanning for the presence of 1011 detection strings would take quite some time! 

Functionally, this is a method of determining if new files have been added to the 
PC, or if existing files have changed. Let us consider another method of 
accomplishing this goal. Suppose we calculate a 32-bit hash, or checksum, for each 
file on the computer, and store it away along with the path and filename of the file. 
This will allow us to detect changes in files with a failure rate of 2-32 per file. To be 
fair, the two detection methods are not functionally identical. The hash method can 
detect deleted files, whereas the detector method cannot. The detector method has a 
higher probability of detecting multiple-bit changes. Nonetheless, it is an instructive 
comparison. 

If we keep 4 Bytes (32 bits) of hash per file, and ~32 Bytes of path and filename 
information, we need ~36 Bytes per file. A typical PC might have ~105 files on it, so 
we need less than 4MB of storage for our hash database. If all we want to do is detect 
changes to files on our PC, this is a much more economical way to do it. 

This surprising economy is not available to the mammalian immune system. 
While it is easy to implement hash functions for files on a computer, it is difficult to 
think of a way that evolution could have provided a hash function for protein 
sequences, or even what such a hash function would look like. Biology has vast 
numbers on its side, so producing billions of T cells is a natural approach. 
Computing has much more strict limits on its resources, but much more flexibility in 
its computations. 

A closer examination of the assumptions made by the detector model reveals a 
curiousity. It assumes that the makeup of the “self” that the method defends is 
constant. That is, it assumes that strings that initially matched strings in the “self” 
will match them in the future, and that strings that did not match strings in the “self” 
will not match them in the future. This is a good assumption in mammals, where the 
proteins that are expressed on the surfaces of cells are determined by the organism’s 
genetic makeup, and do not vary over time. 

It is not a good assumption, however, in computer files, which change all the 
time for valid, benign reasons. New files are created, existing files are updated, and 
old files are deleted. There is no static “self” in computers. Just because a file 
changes does not indicate the presence of a virus. Quite the contrary, the number of 
files that change due to viruses is much, much smaller than the number that change 
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for benign reasons. In this case, the computer world is very different from the 
biological world. 

In a subsequent paper based on this same approach [9], Somayaji et al. state: 
 
“Although we believe it is fruitful to translate the structure of the 
human immune system into our computers, ultimately we are not 
interested in imitating biology. Not only might biological solutions 
not be directly applicable to our computer systems, we also risk 
ignoring non-biological solutions that are more appropriate. A more 
subtle risk, however, is that through imitation we might inherit 
inappropriate ‘assumptions’ of the immune system.” 

 
This is the ongoing risk of biologically-inspired design. 

3.2 Getting It Right 

If we cannot rely on a distinction between self and non-self to recognize computer 
viruses, how can we recognize them? Perfect recognition of computer viruses – 
determining that an arbitrary program is a virus and never making a mistake – is 
equivalent to the halting problem [1, 10]. Nevertheless, there are a variety of 
heuristics that, in practice, turn out to be remarkably effective. Many viruses are 
variants of older, known viruses, and can often be found by scanning for strings that 
are found in known viruses but that are unlikely to be found in normal programs. 
Many viruses use a few common tricks, like self-encryption to attempt to hide from 
scanners, so noticing that a program uses one of these tricks may lead us to suspect it 
of being a virus. 

Unfortunately, all of these heuristics have false positives – they occasionally 
accuse a perfectly normal program of being a virus. It would be bad if the system 
acted on this accusation without being sure, erasing the accused file or, worse, 
attempting to remove the “virus” from the file. 

In a system described by Kephart et al. [11, 12], heuristics were used to identify 
files that might contain a virus, and a copy of these files was sent to a central virus 
analysis lab. Here, an important difference between biological and computing 
systems was exploited. In biological systems, lots of things replicate themselves: 
DNA, viruses, our body’s cells and entire organisms. Self-replication is one of the 
most important capabilities of all life. In computing systems, however, almost 
nothing that is really useful undergoes self-replication. Almost without exception, if 
it self-replicates, it is a computer viruses, and hence it is undesirable. So the virus 
analysis lab isolated the suspect virus in a virtual machine and tried to make the virus 
self-replicate. If it did, it was indeed a virus. 

Multiple replicas were gathered, so that the system could take into account any 
variation between them. The replicas were analyzed, and strings were extracted that 
detected all of the replicas but were very unlikely to be found in normal programs. 
The goal of this latter step was much the same as the goal of the immune system in 
producing T cells: create something that will recognize the virus but will not also 
recognize good cells/files. Because it would be infeasible to follow biology closely 
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and test the string against every file that exists or will exist on the Earth, a statistical 
characterization of a large collection of normal programs was used to estimate the 
probability that the string would be found in any normal program. Only strings with 
extremely small probabilities were used. At the same time, an algorithm for 
disinfecting the file – for removing the virus and returning the file to its original state 
– was derived. 

Once these detection strings and disinfection algorithms were extracted and 
tested, they were sent back to the infected system, which then used them as a highly 
specific way of finding and disinfecting that particular virus. At the same time, they 
were made available worldwide to protect computers that were not yet infected. In 
most cases, this was all done automatically, with quality that exceeded human 
analysis, and was complete from detection to cure in a few minutes. 

While this process bears some resemblance to the way the mammalian immune 
system works, it is really very different. In fact, it bears more resemblance to an 
early 20th century theory of the mammalian immune system called “instruction 
theory,” in which antigens themselves caused the formation of antibodies, but only 
after the antigen appeared and by somehow using parts of the antigen in antibody 
formation [13]. This theory was disproven shortly after it was proposed.  But 
computers are not mammals, and mechanisms that work poorly in biology may be 
just the ticket in computing. 

In computing, what constitutes “self” and “non-self” changes constantly, so 
observing a computer virus reproduce is one of the few sure ways to determine that it 
really is a virus and not just a normal program. Furthermore, crafting specific 
defenses for specific viruses works very well in computing system, where we cannot 
have billions of detectors for “non-self.” Once again, we see how critical it is to 
understand the differences between biological and computing systems, as well as the 
similarities. 

4 Self-Assembling Autonomic Systems 

Since the first paper outlining the vision of autonomic computing [14], biology has 
been used as an analogy for how large computing systems should work. The 
autonomic nervous system plays an important role in regulating critical systems in 
the body – such as breathing, heartbeat, digestion, and eye focus – without involving 
our conscious minds. This lets our conscious mind focus on conceptual problems 
with fewer distractions. By analogy, autonomic computing seeks to create computing 
systems that are largely self-regulating, allowing system administrators to tell the 
systems what to do at a high level, and then have the systems themselves figure out 
how to do it. 

The autonomic nervous system is one possible biological source of inspiration 
for autonomic computing. Let us examine another. 

In the early stages of embryonic development in mammals, cells divide to form a 
blastocyst, a roughly spherical collection of cells that start out nearly identical. As 
development proceeds, these cells reproduce and differentiate to form structures, 
such as arms and a spine, based on their own genetic information and their local 
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chemical environment. Remarkably, there is no central planning agent that tells the 
body how to develop.  

Nevertheless, trillions of cells acting in their local environments manage to 
develop into extremely complex structures such as eyes, muscles and brains. 
Consider the circulatory system, which must carry blood to all parts of the body. 
How does the developing circulatory system know where to grow new capillaries? 
The answer, of course, is that it does not, at least in the sense that there is no 
centrally managed plan for where they should be. Rather, cells that are getting 
insufficient oxygen generate growth factors that stimulate nearby capillaries to grow. 
Thus cells in regions of the developing body that are not yet getting enough oxygen 
stimulate capillary development in that region until they are getting enough oxygen, 
at which time they stop [15]. 

The mammalian body has countless mechanisms that direct its resources to 
places and for purposes that most benefit the body. Mechanisms that enable 
distributed self-assembly of complex features are among the most powerful. 

4.1 Getting It Wrong 

Let us focus on one important aspect of self-assembly in computing systems: 
determining where in the system to put a new server that has become available. We 
have a large computing center, with many application environments. Each 
application environment is a collection of the computing resources needed for a 
particular application – for a web server, for instance, or a portfolio analysis 
application. We want to figure out into which application environment we should put 
our new server, and how best it can be used within that environment. 

In the developing blastocyst, it does not matter where a new cell is placed. It 
develops according to what it senses of its local environment. Suppose we held 
slavishly to biology and did the same thing with our new server. There is no sense of 
“local environment” in our collection of application environments. Logically, they 
are all peers. So we let the server choose the first application environment that it 
finds in a directory of such things. 

We will even credit the application environment with good sense about how to 
use the server. Perhaps it is asked to become a web server to handle more customer 
requests. Perhaps it becomes a host for that processor-intensive portfolio analysis to 
achieve more accurate results. 

Of the biologically-inspired approaches that we have discussed so far, this one 
has the most obvious flaws. Clearly, choosing a random application environment into 
which to incorporate the server is unlikely to be the best choice. The chosen 
environment may be handling its traffic just fine, whereas another environment is 
starved for resources. 

Servers are not cells. Cells reproduce, and their population can grow nearly 
limitlessly to serve the needs of the developing organism. Servers, on the other hand, 
are a highly constrained resource. Putting a server to work on one application often 
means that it is not available for another application. 
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This approach is too distributed. By not taking advantage of global information, 
in this case information about the value of an additional server to the various 
applications that might make use of it, we are stuck with a very suboptimal result. 

4.2 Getting It Right 

A traditional approach to allocating a new server is for system administrators to 
examine the various application environments in detail and plan out, quite a long 
time in advance, where that new server is most needed. 

This can be made less burdensome for system administrators by allowing them to 
specify policies about how resources such as servers should be allocated. The web 
server application may be highly important for customer satisfaction, and the policy 
might be to allocate new servers to it until it is meeting its performance goals. 
Servers not needed for this application could be given to the less important but 
computationally intensive portfolio analysis application that can use as many servers 
as it can get. 

Research is underway to imbue servers with the ability to incorporate themselves 
into an application environment, once the choice of environment is made. They can 
find the other resources that they need to operate and hook themselves up without the 
need for manual intervention by system administrators [16]. 

This idea can be extended to the dynamic operation of the system. Suppose, in 
our previous example, that the load on the web application varies, that it is high 
during the day and low at night. A global resource arbiter can be given a policy that 
instructs it to give as many servers as needed to the web application, but to move any 
servers that it does not need to the portfolio analysis application. We would see 
servers moved to the financial application in the morning, and then moved back to 
the computationally intensive application in the evening. 

More generally, application environments can have a quantitative measure of the 
benefit that they could provide if given one or more additional servers. A global 
mechanism could then arbitrate between the environments to determine the best 
global allocation of all servers [17]. 

This keeps the best features of self-assembly while achieving globally optimal 
utilization of scarce resources. In large part, system administrators could be relieved 
of the burden of planning out, in detail, which environment should get which server 
at any given moment, and the burden of adding that server to that environment. 
Instead, administrators could set higher-level policies and let the system figure out 
how best to achieve them.  

Again, this is not the way cells work in the body. Cells do not transform 
themselves from liver cells to brain cells when we are working on hard math 
problems, nor do kidney cells become muscles when we run. But principles like self-
assembly from biological systems can be applicable to computing systems if we 
understand the differences between the systems. 
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5 Conclusions 

In this paper we reviewed three areas in computing in which people have drawn 
inspiration from biology. In the first, computer virus epidemiology, we saw that 
simple analogies with biological virus spread do not capture essential features of 
computer virus spread, but that a rigorous and biologically-based model can. In the 
second, we saw that following the workings of the biological immune system too 
closely can result in an unwieldy and inaccurate technology for detecting computer 
viruses, whereas a deep understanding of how computers differ from biological 
organisms can lead us to a digital immune system that works extremely well. In the 
third, we saw that a simple analogy with self-assembling biological systems results 
in decisions about where to place a new server in a data center that are clearly wrong, 
while an understanding of how global information differs between biological 
systems and our data center helps us use the best features of biological self-assembly 
and avoid suboptimal solutions. 

Biology does things for its own reasons. In the mammalian body, development 
must be consistent with evolution and the mechanisms available to it. We cannot 
grow a hand without growing an arm at the same time. And it must work with the 
materials available to it – cells but not electronic circuitry. 

In engineering, we face different constraints. We are able to harness incredible 
computational power, but we do not get access to trillions of self-reproducing parts. 
Hence the solutions that we adopt in engineering will often be very different from 
the solutions adopted by biology. 

Reasoning by analogy is dangerous. It tempts us to ignore the underlying 
assumptions that make a technique work in one field but fail in another. Instead, we 
must know the assumptions that are being made in both computing and biological 
systems. We must have a rigorous underlying model, preferably a mathematical 
model, of the systems that we are building. And we must know when a computing 
system does not behave like a biological system. In many cases, this knowledge can 
help us find a solution that is even better than those used in biological systems. 

We can be inspired by biology. Indeed, we should be. Biology is very inspiring 
and can often lead to new ways of thinking about computing systems. But we must 
avoid the temptation of letting it dictate our designs.  
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