
Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 1

A PARALLEL APPROACH FOR BACKPROPAGATION LEARNING
OF NEURAL NETWORKS

CRESPO, M., PICCOLI F.,PRINTISTA M.1

GALLARD R.
,

2

,

Grupo de Interés en Sistemas de Computación3

Departamento de Informática

Universidad Nacional de San Luis
Ejército de los Andes 950 - Local 106

5700 - San Luis
Argentina

E-mail:{mcrespo,mpiccoli,mprinti,rgallard}@inter2.unsl.edu.ar
 {mcrespo,mpiccoli,mprinti,rgallard}@unsl.edu.ar

Phone: +54 652 20823
Fax : +54 652 30224

ABSTRACT

Learning algorithms for neural networks involve CPU intensive processing and
consequently great effort has been done to develop parallel implemetations intended for
a reduction of learning time.
This work briefly describes parallel schemes for a backpropagation algorithm and
proposes a distributed system architecture for developing parallel training with a partition
pattern scheme. Under this approach, weight changes are computed concurrently,
exchanged between system components and adjusted accordingly until the whole
parallel learning process is completed. Some comparative results are also shown.

KEYWORDS: Neutral networks, parallelised backpropagation, partitioning schemes,
pattern partitioning, system architecture.

1Members of the Research Group.

2Full Professor at the Informatics Department. Head of the Research Group.

3The Research Group is supported by the Universidad Nacional de San Luis and the
CONICET (Science and Technology Research Council).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 2

1. INTRODUCTION

Neural nets learn by training, not by being programmed. Learning is the process of
adjustment of the neural network to external stimuli. After learning it is expected that
the network will show recall and generalization abilities. By recall we mean the
capability to recognise inputs from the training set, that is to say, those patterns
presented to the network during the learning process. By generalization we mean the
ability to produce reasonable outputs associated with new inputs of the same total
pattern space. These properties are attained during the slow process of learning. Many
approaches to speedup the training process has been devised by means of
parallelism.
The backpropagation algorithm (BP) is one of the most popular learning algorithms
and many approaches to parallel implementations has been studied [7], [12], [13].
To parallelise BP either the network or the training pattern space is partitioned. In
network partitioning, the nodes and weights of the neural network are distributed
among diverse processors. Hence the computations due to node activations, node
errors and weight changes are parallelised. In pattern partitioning the whole neural net
is replicated in different processors and the weight changes due to distinct training
patterns are parallelised.
This paper shows the design of a distributed support for parallel learning of neural
networks using a pattern partitioning approach. Results on speedup in learning and its
impact on recall and generalization are shown.

2. BACKPROPAGATION NETWORKS

A backpropagation neural network is composed of at least three unit layers; an input,
an output and one ore more hidden (intermediate) layers. Figure 1 shows a three layer
BP network.

Input layer1

x1 x2 x3 xn

1 Hidden layer

Output layer

y1 y2 y3 ym

. . .

. . .

. . .

Given a set of p 2-tuples of vectors (x1 y1), (x2 y2), ..., (xp yp), which are samples of a
functional mapping y = φ (x) : x ∈ R N, y ∈ R M

Once an input pattern is applied as an excitation to the input layer, it is propagated
throughout the remaining layers up to the output layer where the current output of the
network is generated. This output is contrasted against the desired output and an error
value is computed as a function of the outcome error in each output unit. This makes
up the forward phase.

, the goal is to train the network in order
it learns an approximation o = y' = φ' (x). The learning process is carried out by using a
two phase cycle; propagation or forward phase and adaptation or backward phase [6],
[11], [12].

The learning process include adjusting of weights (adaptation) in the network in order

Fig. 1 - A Backpropagation Network

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 3

to minimise the error function. For this reason, the error obtained is propagated back
from each node of the output layer to the corresponding (contributors) nodes of the
intermediate layer. However each of these intermediate units receives only a portion of
the total error according to its relative contribution to the current output. This process is
repeated from one layer to the previous one until each node in the network receives
an error signal describing its relative contribution to the total error. Based on this
signal, weights are corrected in a proportion directly related to the error in the
connected units. This makes up the backward phase.
During this process, as the training is progressing, nodes in the intermediate levels are
organised in such a way that different nodes recognise different features of the total
training space. After training, when a new input pattern is supplied, units in the hidden
layers will generate active outputs if such an input pattern preserves the features they
(individually) learnt. Conversely, if such an input pattern do not contain those known
features then these units will be inclined to inhibit their outputs.
It has been shown that during training, backpropagation neural nets tend to develop
internal relationships between units, as to categorise training data into pattern classes.
This association can be either evident or not to the observer. The point here is that,
firstly, the net finds an internal representation which enables it to generate appropriate
responses when those patterns used during training are subsequently submitted to the
network and secondly, the network will classify those patterns never seen before
according to the features they share (resemblance) with the training patterns.

3. PATTERN PARTITIONING FOR PARALLEL BACKPROPAGATION

Pattern partitioning replicates the neural net structure (units, edges and associated
weights) at each processor and the training set is equally distributed among
processors. Each processor performs the propagation and the adaptation phases for
the local set of patterns. Also, each processor accumulates the weight changes
produced by the local patterns which afterward are exchanged with other processors to
update weight values.
This scheme is suitable for problems with a large set of training patterns and fit
properly to run on local memory architectures [1], [8], [10].
Different training techniques, or regimes, can be implemented in a backpropagation
algorithm to implement the learning process [6], [11], [12]. In this work, because it is
appropriated for a distributed environment, the choice was the set-training regime.
Under this technique weight changes are accumulated for all training patterns before
updating any of them, with a subsequent update all stage each time all patterns in the
training set were presented.

4. THE PARALLEL LEARNING ALGORITHM

Node I

Node J

Node F
Node K

Fig. 2. A Pattern Partitioning Scheme

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 4

To implement a pattern partitioning scheme, the whole neural network is replicated
among P processors and each processor carries out the learning process using Ts/P
patterns where Ts is the size of the training set. As shown in figure 2, weight changes
are performed in parallel and then the corresponding accumulated weight changes
vectors, awc, are exchanged between processors. Now we describe the basic steps of
a backpropagation learning algorithm under the set-training regime, also known as
per-epoch training4

. The superindexes h and o identify hidden and output units
respectively.

Batch-Training Algorithm

Repeat

 1. For each pattern xp = (xp1, xp2, ..., xpN

)

 1.1 Compute the output of units in the hidden layer:

net pj
h = w xji

h
pi

i

N

=
∑

1
+ Θ j

h

ipj = f (net pj
h)

 1.2 Compute the output of units in the output:

net pk
o = w ikj

o
pj

j

L

=
∑

1
+ Θ k

o

opk = f (net pk
o)

 1.3 Compute error terms for the units in the output layer:
δ pk

o = (ypk - opk netpk
o) f’()

 1.4 Compute error terms for the units in the hidden layer:

δ pj
h = f’(net pj

h) δ pk
o

kj
o

k
w∑

 1.5 Compute weight changes in the output layer:
ckj

o = ckj
o + η δ pk

o i
 1.6 Compute weight changes in the hidden layer:

pj

c ji
h = c ji

h + η δ pj
h x

 2. Send local c
i

h and co and Receive remote ch y co

.

 3. Update weights changes in the output layer:
wkj

o = wkj
o + (ckj

o (local)+ ckj
o (remote))

 4. Update weights changes in the hidden layer:
w ji

h = w ji
h +(c ji

h (local)+ c ji
h (remote))

Until (E = (1
21p

T

=
∑

k

M

=
∑

1
(ypk - opk)2

 (number of iterations < maximum number of iterations)

) < maximum accepted error) or

The subindexes p, i, j and k identify the pth input pattern, the ith input unit, the jth hidden
unit and the kth output unit respectively. wij is the weight corresponding to the
connection between unit j and unit i, cij

4 During an epoch, or batch, the submission of all patterns in the partition, the corresponding
computations and the accumulation of weight changes must be performed before weights
update takes place, then the next epoch begin.

 is the accumulated change for the weight

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 5

corresponding to the connection between unit j and unit i, Θ is the bias and N, L and M
identify the number of input, hidden and output units respectively. f denotes the
sigmoid function which is used to compute the activation of each node.

 5. PARALLEL LEARNING SUPPORT

 In this section we present a brief description of the underlying system architecture and

procedures supporting the parallel learning process, running on the processors
distributed in a LAN of workstations [3]. Each processor is allocated for a replicated
neural network. The parallel learning support presented here is independent of the
neural network structure.

5.1 System Architecture

Figure 3 shows the support system architecture, processes and interactions. The
parallel learning algorithm is independently initiated by a process at each LAN node.
The ProcW process, will be responsible of local learning processing and when needed
will request a service to exchange vectors awc. ProcW forks twice to create child
processes HI and HJ for communication with other LAN nodes.

The tasks performed by each process are:

• Main process ProcW runs the learning algorithm for the neural net NN. After each
epoch ProcW request the following services:
 Sending of the local awc vector.

Receiving of remote awc vectors.
To update the weights for every pattern in the partition it creates a current AWC
vector by gathering the local and remote awc vectors.

• Process ProcHI receives the awc vectors sent by remote ProcHJ processes.
• Process ProcHJ sends the local awc vectors generated during one ore more

epochs to the remote ProcHI processes.

ProcHJ

N
E
T
W
O
R
K

Receives Remote Weight
Vectors

Envia Vector Peso Local Sends Local Weight Vectors

Compute New
weight Vector

Local
Weight

Local Weight
Vector awc

Current Weight
Vector AWC

NN

Remote Weight
Vector

ProcW

ProcHI
 IPC1

 IPC2

Fig. 3. - Support System Architecture

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 6

These three processes execute independently but they communicate for exchanging
information. In order to allow the concurrent execution of learning and the external
communication with remote processes, a set of non blocking mechanisms where used
[4], [9], [14], [15].
This communication is handled via interprocess communication mechanisms (IPCs).
The interaction between processes ProcW and ProcHI is established via IPC1 when
after an epoch the learning process request to distribute its awc vector.
The interaction between processes ProcHJ and ProcW is established via IPC2 when
after an epoch the learning process request remote awc vectors to subsequently
determine the current AWC vector.

6. THE PARALLEL VERSION OF THE NND SUPERVISOR

In our research, Neural Network Devices (NND) are used to supervise load distribution in
Distributed Systems. In particular, for parallelising BP, the test case was chosen as a
reduced version of the one discussed elsewhere [2]. The neural network was built as a
Feed Forward Neural Net (FFNN) of 14 input nodes, 2 output nodes and one hidden
layer of 30 nodes with a total number of 527 interconnections.
The pattern space contains a total number of 2,376 patterns. For the experiments
discussed later only one third (about 800 samples) of the pattern space was enough to
obtain satisfactory results.
In previous works by creating prototypes we corroborate that claimed neural network
features such as fast response, storage efficiency, fault tolerance and graceful
degradation in face of scarce or spurious inputs make them appropriate tools for
Intelligent Computer Systems.
Now, parallel learning of prototypes reflecting different allocation policies are being
implemented and in a testing stage by means of a pattern partitioning scheme with a set-
training regime as explained in previous sections.

7. EXPERIMENTS DESCRIPTION

Our initial experiments in parellelising neural nets were divided into two stages;

1. To establish if strong correlation exists between data dependencies and goodness

of results expressed as the recall and generalisation abilities.

2. To compare goodness of results and speedup for diverse sizes of the training set.

In both analysis, to compare results, the neural net was trained sequentially and in
parallel. Under pattern partitioning, the pattern space was divided into three sets and
each set was assigned to one processor. Many series were performed and each one
consisted of many runs for η values of 0.05 and 0.1. The following relevant
performance variables were examined:

T: is the running time of the learning algorithm.
R = r/Size. Is the recall abitily of the neural net.
Were Size is the size of the submitted training set and r is the total number of patterns
recognised when only those patterns of the training set are presented, after learning,
to the network.
G = g/S. Is the combined recall and generalization ability.
Were S is the size of the total pattern space and g is the total number of patterns
recognised when all the patterns are presented, after learning, to the network.
Sp =Tseq / Tpar is the ratio between the sequential learning and the parallel learning
times.

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 7

RecB/C = Sp/(Rseq - Rpar

Gen

) is the benefit-cost ratio for recall. It indicates the benefit of
speeding up the learning process which is paid by the cost of loosing recall ability.

B/C = Sp/(Gseq - Gpar

) is the benefit-cost ratio for generalization. It indicates the
benefit of speeding up the learning process which is paid by the cost of loosing
generalization ability.

Partitioning schemes were applied as follows (See figures 4.a and 4.b).
In the first analysis stage, for sequential backpropagation (SBP) the training set Ts

• One third of T

 was
built by uniform selection of 30% of the pattern space S. As we decided to dedicate only
three separate processors, for parallel training (PBP) three random disjoint subsets were
selected according to the following criteria:

s

• 10% of S for each subset. (Experiment PBP-10-Ι)
 for each subset. (Experiment PBP-10-D)

In the second analysis stage, for sequential backpropagation (SBP) the training set Ts

was built by uniform selection of X% of the pattern space S. For parallel training (PBP)
three disjoint subsets of X/3% of S were selected. X was chosen as 30, 45 and 60.
(Experiments PBP-X/3).

SBP

 Total Patterns Set

30% of Patterns

PBP PBP

PBP

10%
10% 10%

Fig. 4.a - Dependent-Data Partitioning Approach

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 8

8. RESULTS

We show now some results from both investigation stages.

8.1 Stage I

To determine the possible existence of a strong correlation between data
dependencies and goodness of results, experiments SBP, PBP-10-D and PBP-10-Ι
were conducted. The issues studied through a large number of runs were; learning
time, recall, generalization and number of iterations needed to reach an acceptable
error value while training. The following figures and tables show the corresponding
mean values.

Experiment Learning Time Recall Generalization
SBP 1850 100 97

PBP-10-D 208.40 94.32 91.44
PBP-10-Ι 160.78 94.37 91.65

Learning Time

Experiments

S
e

c
o

n
d

s

0

500

1000

1500

2000

SBP PBP - 10 - D PBP - 10 - I

X/3%

SBP Total Patterns Set

PBP PBP PBP

X/3% X/3%

X % of Patterns

Fig. 4.b - Independent-Data Partitioning Approach

Recall and Generalization

Experiments

%

70
75
80
85
90
95

100

SBP PBP - 10 - D PBP - 10 - I

R
G

Fig. 5 - Values of T for Stage I under sequential
 and parallel processing.

Fig. 6 - Values of R and G for Stage I under
 sequential and parallel processing.

Table 1. Summary of T, R and G results in Stage I

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 9

As we can observe in the above table and figures important learning time reduction is
achieved without significant loss of recall and generalization capabilities of the neural
network. This results are attained by using either parallel partitioning approach.
However the independent data criterion (PBP-10-Ι) seems to provide better
performance values, possibly due to a more uniform distribution of data gathered.

As it is shown in figure 7, the substantial time reduction obtained under either parallel
approach arise from a lesser number of iterations to arrive to an acceptable error
value. When the learning process is performed in parallel, each replication of the
neural net is trained with fewer number of patterns and it learns not only due to its
individual work but also for the “experience” shared with other replicas.

8.2 Stage II

To compare goodness of results and speedup for diverse sizes of the training set
many tests were performed in experiments SBP-X and SBP-X/3 addressed to learning
time, recall, generalization, speed-up, and benefit-cost ratio. Here, parallel processing
was implemented under the independent data approach.

Experiment Learning time Recall Generalization
SBP-30 1850 100 97
PBP-10 160.78 94.37 91.65

SBP-45 2700 100 98
PBP-15 434.75 96.3 94.47

SBP-60 4268 100 99
PBP-20 935.44 97.12 96.89

Table 2. Summary of T, R and G results in Stage II

Learning Process Trace

Number of iterations

Er
ro

r

0.01

0.1

1

10

100

500 1000 1300 1600 2000 3000 4000 4500 5000

PBP-10-D
PBP-10-I
SBP

Fig. 7 Progress of the learning process under sequential and parallel processing

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 10

Speed-up
SBP-30 vs. PBP-10 SBP-45 vs. PBP-15 SBP-60 vs. PBP-20

11.51 6.21 4.56

The above table and figure indicate the Speed-up attained through parallel processing
when different sizes of the portions of the pattern space S are selected for training the
neural network. As the size of Ts

 increases then an effect of slowing the Speed-up
arises but this consequence is compensated by an improvement in quality of results.

Learning Time

Experiments

S
e
c
o
n
d
s

0

1000

2000

3000

4000

5000

SBP PBP

30 vs 10
45 vs 15
60 vs 20

Speed-up

Experiments

Sp

0
2
4
6
8

10
12

SBP-30 vs PBP-10 SBP-45 vs PBP-15 SBP-60 vs PBP-20

Recall

Experiments

%

93
94
95
96
97
98
99

100

SBP PBP

30 vs 10
45 vs 15
60 vs 20

Generalization

Experiments

%

86
88
90
92
94
96
98

100

SBP PBP

10 vs 30
15 vs 45
20 vs 60

Fig. 8 - Values of T for Stage II, under sequential
 and parallel processing

Fig. 9 - Values of R for Stage II under sequential
 and parallel processing.

Fig. 10 - Values of G for Stage II under sequential
 and parallel processing.

As we can observe in Table 2 and
Figure 8 considerable learning time
reduction is achieved also for diverse
sizes of the training set throughout
experiments of Stage II.This results are
attained by using the independet data
approach.
Figures 9 and 10 show the associated
loss in recall and generalization of the
neural network for different sizes of the
training set.
As anticipated, the amount of capabiliy
detriment decreases as the training set
size is incremented, and its values range
from 2.9% to 5.6% for recall and from
2.1% to 5.3% for generalization.

Fig. 11 - Speed-up values achieved through parallel processing.

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 11

Benefit/Cost Ratio SBP-30 vs. PBP-10 SBP-45 vs. PBP-15 SBP-60 vs. PBP-20

Recall B/C 3.836 1.678 1.583
Generalization B/C 2.994 1.779 1.857

The Benefit-Cost Ratio gives an indication of a benefit (speed-up) obtained by paying a
cost (detriment in recall or generalization). This performance variable could be of great
help when designing a parallel approach for training neural nets. It is clear that when
larger sizes for the training set are used the benefit decreases and consequently the
cost decreases. In any case, decision will depend on application requirements.

9. CONCLUSIONS

The time that it takes to train a neural network has long been an issue of research. The
length of training time depends, essentially, upon the number of iterations required. This
number depends on several interrelated factors. Some of them are; size and topology of
the network, initialisation of weights and the amount of training data used.
A means of training acceleration based in the last mentioned factor is a parallel
approach known as pattern partitioning.

Fig. 13 - Benefit-Cost Ratio for Generalization through parallel processing.

Benefit-Cost Ratio
for Generalization

G
e
n

 B
/C

1

2

3

SBP-30 vs PBP-10 SBP-45 vs PBP-15 SBP-60 vs PBP-20

Fig. 12 - Benefit-Cost Ratio for Recall through parallel processing.

Benefit-Cost Ratio
for Recall

R
ec

 B
/C

0

1

2

3

4

SBP-30 vs PBP-10 SBP-45 vs PBP-15 SBP-60 vs PBP-20

Proceedings CACIC 97
Procesamiento Distribuido y Paralelo. Tratamiento de Señales UNLP

Departamento de Informática - Facultad de Ciencias Exactas 12

In this paper we presented a feasible architecture for a system supporting parallel
learning of backpropagation neural networks using a pattern partitioning scheme with a
set-training regime. A preliminary set of experiments in our investigation, revealed that
the beneficial effects of parallel processing can be achieved with minor capability loss.
For the small neural net selected for the testing case a substantial acceleration ranging
from 4 to more than ten times was attained by using as few as three processors.
As the distributed approach to parallelise the learning process showed its effectiveness,
at the present time, tests with larger number of processors, different training set sizes
and variable communication intervals are being performed for different neural networks.

9. ACKNOWLEDGEMENTS

We acknowledge the cooperation of the project group for providing new ideas and
constructive criticisms. Also to the Universidad Nacional de San Luis and the CONICET
from which we receive continuous support.

10. REFERENCES

[1] Berman F., Snyder L. - On mapping parallel algorithms into parallel

architectures- Parallel and Distributed Computing, pp 439-458, 1987.
[2] Cena M., Crespo M. L., Gallard R. Transparent Remote Execution in LAHNOS

by Means of a Neural Network Device. Operating System Reviews, Vol. 29, Nro
1, ACM Press, 1995.

[3] Colouris G., Dollimore J., Kindberg T. -Distributed Systems: Concept and Design -
Addison-Wesley, 1994.

[1] Comer, D. E., Stevens, D. L. - Internetworking with TCP/IP - Vol. III - Prentice
Hall.

[1] Foster, Ian T. : Designing and Building Parallel Programs - Addison Wesley,
1995.

[2] Freeman, J., Skapura, D. Neural Networks. Algorithms, Applications and
Programming Techniques. Addison-Wesley, Reading, MA, 1991.

[3] Girau, B. - Mapping Neural Network Back-Propagation onto Parallel Computers
with Computation/Communication Overlapping.

[4] Kumar, V., Shekhar, S., Amin, M.- A Scalable Parallel Formulation of the
Backpropagation Algorithm for Hypercubes and Related Architectures. IEEE
transactions on Parallel and Distributed Systems, Vol. 5. Nro.10, October 1994.
pp 1073 - 1090.

[5] McEntire, P. L., O’Reilly, J. G., Larson, R. E. (Editors) : Distributed Computing:
Concepts and Implementations - Addison Wesley, 1984 .

[6] Petrowski, A., Dreyfus, G., Girault, C.- Performance Analysis of a Pipelined
Backpropagation Parallel Algorithm. IEEE. Trasactions Networks, Vol. 4,
November 1993. pp 970 - 981.

[7] Plaut, D., Nowlan, S., Hinton, G. Experiments on Learning by Backpropagation.
Tech. Report, CMU-CS-86-126, Carniege Mellon University, Pittsburg, PA, 1986.

[8] Rumelhart, D., Hinton, G., Willams, R. Learning Internal Representations by
Error Propagation. MIT Press, Cambridge, MA, 1986.

[9] Rumelhart, D., McClelland, J. Parallel Distributed Processing, vol. 1 y 2. MIT
Press, Cambridge, MA, 1986.

[10] Stevens, R.W.- Advanced Programming in the UNIX Envionment- AdDison-
Weslwy Publishing Company. 1992.

[11] Stevens, R.W.- UNIX Network Programing. Prentice Hall-Englewood Cliff. 1990.

