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ABSTRACT 
 
Learning algorithms for neural networks involve CPU intensive processing and 
consequently great effort has been done to develop parallel implemetations intended for 
a reduction of learning time. 
This work briefly describes parallel schemes for a backpropagation algorithm and 
proposes a distributed system architecture for developing parallel training with a partition 
pattern scheme. Under this approach, weight changes are computed concurrently, 
exchanged between system components and adjusted accordingly until the whole 
parallel learning process is completed. Some comparative results are also shown. 
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1. INTRODUCTION 
 
Neural nets learn by training, not by being programmed. Learning is the process of 
adjustment of the neural network to external stimuli. After learning it is expected that 
the network will show recall and generalization abilities. By recall we mean the 
capability to recognise inputs from the training set, that is to say, those patterns 
presented to the network during the learning process. By generalization we mean the 
ability to produce reasonable outputs associated with new inputs of the same total 
pattern space. These properties are attained during the slow process of learning. Many 
approaches to speedup the training process has been devised by means of 
parallelism. 
The backpropagation algorithm (BP) is one of the most popular learning algorithms 
and many approaches to parallel implementations has been studied [7], [12], [13]. 
To parallelise BP either the network or the training pattern space is partitioned. In 
network partitioning, the nodes and weights of the neural network are distributed 
among diverse processors. Hence the computations due to node activations, node 
errors and weight changes are parallelised.  In pattern partitioning the whole neural net 
is replicated in different processors and the weight changes due to distinct training 
patterns are parallelised. 
This paper shows the design of a distributed support for parallel learning of neural 
networks using a pattern partitioning approach. Results on speedup in learning and its 
impact on recall and generalization are shown. 
 
2. BACKPROPAGATION NETWORKS 
 
A backpropagation neural network is composed of at least three unit layers; an input, 
an output and one ore more hidden (intermediate) layers. Figure 1 shows a three layer 
BP network. 

Input layer1

x1 x2 x3 xn

1 Hidden layer

Output layer

y1 y2 y3 ym

.  .  .

.  .  .

.  .  .

 

 
 
Given a set of p 2-tuples of vectors (x1 y1), (x2 y2), ..., (xp yp), which are samples of a 
functional mapping  y = φ (x) : x ∈ R N, y  ∈ R M

Once an input pattern is applied as an excitation to the input layer, it is propagated 
throughout the remaining layers up to the output layer where the current output of the 
network is generated. This output is contrasted against the desired output and an error 
value is computed as a function of the outcome error in each output unit. This makes 
up the forward phase. 

, the goal is to train the network in order 
it learns an approximation o = y' = φ' (x). The learning process is carried out by using a 
two phase cycle; propagation or forward phase and adaptation or backward phase [6], 
[11], [12]. 

The learning process include adjusting of weights (adaptation) in the network in order 

Fig. 1 - A Backpropagation Network 
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to minimise the error function. For this reason, the error obtained is propagated back 
from each node of the output layer to the corresponding (contributors) nodes of the 
intermediate layer. However each of these intermediate units receives only a portion of 
the total error according to its relative contribution to the current output. This process is 
repeated from one layer to the previous one until  each node in the network receives 
an error signal describing its relative contribution to the total error. Based on this 
signal, weights are corrected in a proportion directly related to the error in the 
connected units. This makes up the backward phase. 
During this process, as the training is progressing, nodes in the intermediate levels are 
organised in such a way that different nodes recognise different features of the total 
training space. After training, when a new input pattern is supplied, units in the hidden 
layers will generate active outputs if such an input pattern preserves the features they 
(individually) learnt. Conversely, if such an input pattern do not contain those known 
features then these units will be inclined to inhibit their outputs. 
It has been shown that during training, backpropagation neural nets tend to develop 
internal relationships between units, as to categorise training data into pattern classes. 
This association can be either evident or not to the observer. The point here is that, 
firstly, the net finds an internal representation which enables it to generate appropriate 
responses when those patterns used during training are subsequently submitted to the 
network and secondly, the network will classify those patterns never seen before 
according to the features they share (resemblance) with the training patterns. 
 
 
3. PATTERN PARTITIONING FOR PARALLEL BACKPROPAGATION 
 
Pattern partitioning replicates the neural net structure (units, edges and associated 
weights) at each processor and the training set is equally distributed among 
processors. Each processor performs the propagation and the adaptation phases for 
the local set of patterns. Also, each processor accumulates the weight changes 
produced by the local patterns which afterward are exchanged with other processors to 
update weight values.  
This scheme is suitable for problems with a large set of training patterns and fit 
properly  to run on local memory architectures [1], [8], [10]. 
Different training techniques, or regimes, can be implemented in a backpropagation 
algorithm to implement the learning process [6], [11], [12]. In this work, because it is 
appropriated for a distributed environment, the choice was the set-training regime. 
Under this technique weight changes are accumulated for all training patterns before 
updating any of them, with a subsequent update all stage each time all patterns in the 
training set were presented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. THE PARALLEL LEARNING ALGORITHM 
 

Node I 

Node J 

Node F 
Node K 

Fig.  2. A Pattern Partitioning Scheme 
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To implement a pattern partitioning scheme, the whole neural network is replicated 
among P processors and each processor carries out the learning process using Ts/P 
patterns where Ts is the size of the training set. As shown in figure 2, weight changes 
are performed in parallel and then the corresponding accumulated weight changes 
vectors, awc, are exchanged between processors. Now we describe the basic steps of 
a backpropagation learning algorithm under the set-training regime, also known as 
per-epoch training4

 

. The superindexes h and o identify hidden and output units 
respectively. 

Batch-Training Algorithm 
 
Repeat 
 
 1. For each pattern xp = (xp1, xp2, ..., xpN
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  1.4 Compute error terms for the units in the hidden layer: 
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  1.5 Compute weight changes in the output layer: 
ckj
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  1.6 Compute weight changes in the hidden layer: 
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 3. Update weights changes in the output layer: 
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o  + ( ckj
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 4. Update weights changes in the hidden layer: 
w ji
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21p

T

=
∑

k

M

=
∑

1
(ypk - opk)2 

              (number of iterations < maximum number of iterations) 

) < maximum accepted error) or  

 
The subindexes p, i, j and k identify the pth input pattern, the ith input unit, the jth hidden 
unit and the kth output unit respectively. wij   is the weight corresponding to the 
connection between unit j and unit i, cij

                                                           
4 During an epoch, or batch, the submission of all patterns in the partition, the corresponding 
computations and the accumulation of weight changes must be performed before weights 
update takes place, then the next epoch begin.  

 is the accumulated change for the weight 
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corresponding to the connection between unit j and unit i, Θ  is the bias and N, L and M 
identify the number of input, hidden and output units respectively. f  denotes the 
sigmoid function which is used to compute the activation of each node. 

  
 5. PARALLEL LEARNING SUPPORT 
  
 In this section we present a brief description of the underlying system architecture and 

procedures supporting the parallel learning process, running on the processors 
distributed in a LAN of workstations [3]. Each processor is allocated for a replicated 
neural network. The parallel learning support presented here is independent of the 
neural network structure. 

  
5.1 System Architecture 
 
Figure 3  shows the support system architecture, processes and interactions. The 
parallel learning algorithm is independently initiated by a process at each LAN node. 
The ProcW process,  will be responsible of local learning processing and when needed 
will request a service to exchange vectors awc.  ProcW forks twice to create child 
processes HI and HJ for communication with other LAN nodes. 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
  
 
 
 
 
 
 
The tasks performed by each process are: 
 

• Main process ProcW runs the learning algorithm for the neural net NN. After each 
epoch ProcW request the following services: 
 Sending of the local awc vector. 

Receiving of remote awc vectors. 
To update the weights for every pattern in the partition it creates a current AWC 
vector by gathering the local and remote awc vectors. 
  

• Process ProcHI  receives the awc vectors sent by remote ProcHJ processes. 
• Process ProcHJ sends the local awc vectors generated during one ore more 

epochs to the remote ProcHI processes. 
  

ProcHJ 

N 
E 
T 
W 
O 
R 
K 
 

Receives Remote Weight 
Vectors 

Envia Vector Peso Local Sends Local Weight Vectors 

Compute New 
weight Vector 

Local 
Weight  

 

Local Weight 
Vector awc 

Current Weight  
Vector AWC 

NN 

Remote Weight 
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ProcW 

ProcHI 
     IPC1 

     IPC2 

Fig. 3. - Support System Architecture 
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These three processes execute independently but they communicate for exchanging 
information. In order to allow the concurrent execution of learning and the external 
communication with remote processes, a set of non blocking mechanisms where used 
[4], [9], [14], [15]. 
This communication is handled via interprocess communication mechanisms (IPCs). 
The interaction between processes ProcW  and ProcHI is established via IPC1 when 
after an epoch the learning process request to distribute its awc vector. 
The interaction between processes ProcHJ and ProcW is established via IPC2 when 
after an epoch the learning process request remote awc vectors  to subsequently 
determine the current AWC vector. 
 
6. THE PARALLEL VERSION OF THE NND SUPERVISOR 
 
In our research, Neural Network Devices (NND) are used to supervise load distribution in 
Distributed Systems. In particular, for parallelising BP, the test case was chosen as a 
reduced version of the one discussed elsewhere [2]. The neural network was built as a 
Feed Forward Neural Net (FFNN) of 14 input nodes, 2 output nodes and one hidden 
layer of 30 nodes with a total number of  527  interconnections. 
The pattern space contains a total number of 2,376 patterns. For the experiments 
discussed later only one third (about 800 samples) of the pattern space was enough to 
obtain satisfactory results. 
In previous works by creating prototypes we corroborate that claimed neural network 
features such as fast response, storage efficiency, fault tolerance and graceful 
degradation in face of scarce or spurious inputs make them appropriate tools for 
Intelligent Computer Systems.  
Now, parallel learning of prototypes reflecting different allocation policies are being 
implemented and in a testing stage by means of a pattern partitioning scheme with a set-
training regime as explained in previous sections. 
 
7. EXPERIMENTS DESCRIPTION 
 
Our initial experiments in parellelising neural nets were divided into two stages; 
 
1. To establish if strong correlation exists between data dependencies and goodness 

of results expressed as the recall and generalisation abilities. 
  
2. To compare goodness of results and speedup for diverse sizes of the training set. 
 
In both analysis, to compare results, the neural net was trained sequentially and in 
parallel. Under pattern partitioning,  the pattern space was divided into three sets and 
each set was assigned to one processor. Many series were performed and each one 
consisted of many runs for η values of 0.05 and 0.1. The following relevant 
performance variables were  examined: 
 
T: is the running time of the learning algorithm. 
R = r/Size. Is the recall abitily of the neural net. 
Were Size is the size of the submitted training set and r  is the total number of patterns 
recognised when only those patterns of the training set are presented, after learning, 
to the network. 
G = g/S. Is the combined recall and generalization ability. 
Were S is the size of the total pattern space and g is the total number of patterns 
recognised when all the patterns are presented, after learning, to the network. 
Sp =Tseq / Tpar  is the ratio between the sequential learning and the parallel learning 
times. 
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RecB/C = Sp/(Rseq  - Rpar

Gen

) is the benefit-cost ratio for recall. It indicates the benefit of 
speeding up the learning process which is paid  by the cost of loosing recall ability.        

B/C = Sp/(Gseq  - Gpar

 

) is the benefit-cost ratio for generalization. It indicates the 
benefit of speeding up the learning process which is paid  by the cost of loosing 
generalization ability.        

Partitioning schemes were applied as follows (See figures 4.a and 4.b). 
In the first analysis stage, for sequential backpropagation (SBP) the training set Ts

• One third of T

  was 
built by uniform selection of 30% of the pattern space S. As  we decided to dedicate only 
three separate processors, for parallel training (PBP) three random disjoint subsets were 
selected according to  the following criteria: 

s

• 10% of S for each subset. (Experiment PBP-10-Ι) 
  for each subset. (Experiment PBP-10-D) 

 
In the second analysis stage, for sequential backpropagation (SBP) the training set Ts

 

  
was built by uniform selection of X% of the pattern space S. For parallel training (PBP) 
three disjoint subsets of X/3% of S  were selected. X was chosen as 30, 45 and 60. 
(Experiments PBP-X/3). 

 

SBP 

 Total Patterns Set 

30% of Patterns 

PBP PBP 

 
PBP 

10% 
10% 10% 

Fig. 4.a - Dependent-Data Partitioning Approach 
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8. RESULTS 
 
We show now some results from both investigation stages. 
 
8.1 Stage I 
 
To determine the possible existence of a strong correlation between data 
dependencies and goodness of results, experiments SBP, PBP-10-D and PBP-10-Ι 
were conducted. The issues studied through a large number of runs were; learning 
time, recall, generalization and number of iterations needed to reach an acceptable 
error value while training. The following figures and tables show the corresponding 
mean values. 
 

Experiment Learning Time Recall Generalization 
SBP 1850 100 97 

PBP-10-D 208.40 94.32 91.44 
PBP-10-Ι 160.78 94.37 91.65 
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SBP  Total Patterns Set 
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X % of Patterns 

Fig. 4.b - Independent-Data Partitioning Approach 
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Fig. 5 - Values of T for Stage I under sequential 
             and parallel processing. 
 

Fig. 6 - Values of R and G for Stage I under  
             sequential and parallel processing. 
 

Table 1. Summary of T, R and G results in Stage I 
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As we can observe in the above table and figures important learning time reduction is 
achieved without significant loss of recall and generalization capabilities of the neural 
network. This results are attained by using either parallel partitioning approach. 
However the independent data criterion (PBP-10-Ι) seems to provide better 
performance values, possibly due to a more uniform distribution of data gathered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As it is shown in figure 7, the substantial time reduction obtained under either parallel 
approach arise from a lesser number of iterations to arrive to an acceptable error 
value. When the learning process is performed in parallel, each replication of the 
neural net is trained with fewer number of patterns and it learns not only due to its 
individual work but also for the “experience” shared with other replicas. 
 
 
 
 
8.2 Stage II 
 
To compare goodness of results and speedup for diverse sizes of the training set  
many tests were performed in experiments SBP-X and SBP-X/3 addressed to learning 
time, recall, generalization, speed-up, and benefit-cost ratio. Here, parallel processing 
was implemented under the independent data approach. 
 
 

Experiment Learning time Recall  Generalization 
SBP-30 1850 100 97 
PBP-10 160.78 94.37 91.65 

 
SBP-45 2700 100 98 
PBP-15 434.75 96.3 94.47 

 
SBP-60 4268 100 99 
PBP-20 935.44 97.12 96.89 

 
 

Table 2. Summary of T, R and G results in Stage II 
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Fig. 7 Progress of the learning process under sequential and parallel processing 
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Speed-up 
SBP-30 vs. PBP-10 SBP-45 vs. PBP-15 SBP-60 vs. PBP-20 

11.51 6.21 4.56 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above table and figure indicate the Speed-up attained through parallel processing 
when different sizes of the portions of the pattern space S are selected for training the 
neural network. As the size of Ts

 

 increases then an effect of slowing the Speed-up 
arises but this consequence is compensated by an improvement in quality of results. 
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Fig. 8 - Values of T for Stage II, under sequential 
             and parallel processing  

Fig. 9 - Values of R for Stage II under sequential 
             and parallel processing. 
 

Fig. 10 - Values of G for Stage II under sequential 
             and parallel processing. 
 

As we can observe in Table 2 and 
Figure 8 considerable learning time 
reduction is achieved also for diverse 
sizes of the training set throughout 
experiments of Stage II.This results are 
attained by using the independet data 
approach. 
Figures 9 and 10 show the associated 
loss in recall and generalization of the 
neural network for different sizes of the 
training set. 
As anticipated, the amount of capabiliy 
detriment decreases as the training set 
size is incremented, and its values range 
from 2.9% to 5.6% for recall and from 
2.1% to 5.3% for generalization. 
 

Fig. 11 - Speed-up values achieved through  parallel processing. 
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Benefit/Cost Ratio SBP-30 vs. PBP-10 SBP-45 vs. PBP-15 SBP-60 vs. PBP-20 

Recall B/C 3.836 1.678 1.583 
Generalization  B/C 2.994 1.779 1.857 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Benefit-Cost Ratio gives an indication of a benefit (speed-up) obtained by paying a 
cost (detriment in recall or generalization). This performance variable could be of great 
help when designing a parallel approach for training neural nets. It is clear that when 
larger sizes for the training set are used the benefit decreases and consequently the 
cost decreases. In any case, decision will depend on application requirements. 
 
9. CONCLUSIONS 

The time that it takes to train a neural network has long been an issue of research. The 
length of training time depends, essentially,  upon the number of iterations required. This 
number depends on several interrelated factors. Some of them are; size and topology of 
the network, initialisation of weights and the amount of training data used.  
A means of training acceleration based in the last mentioned factor is  a parallel 
approach known as pattern partitioning. 

Fig. 13 - Benefit-Cost Ratio for Generalization through  parallel processing. 
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Fig. 12 - Benefit-Cost Ratio for Recall through  parallel processing. 
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In this paper we presented a feasible architecture for a system supporting parallel 
learning of backpropagation neural networks using a pattern partitioning scheme with a 
set-training regime. A preliminary set of experiments in our investigation, revealed that 
the beneficial effects of parallel processing can be achieved with minor capability loss. 
For the small neural net selected for the testing case a substantial acceleration ranging 
from 4 to more than ten times was attained by using as few as three processors. 
As the distributed approach to parallelise the learning process showed its effectiveness, 
at the present time, tests with larger number of processors, different training set sizes 
and variable communication intervals are being performed for different neural networks. 
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