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Abstract. Manipulating and retrieving multimedia data has received increasing
attention with the advent of cloud storage facilities. The ability of querying by
similarity over large data collections is mandatory to improve storage and user
interfaces. But, all of them are expensive operations to solve only in CPU; thus,
it is convenient to take into account High Performance Computing (HPC) tech-
niques in their solutions. The Graphics Processing Unit (GPU) as an alternative
HPC device has been increasingly used to speedup certain computing processes.
This work introduces a pure GPU architecture to build the Permutation Index
and to solve approximate similarity queries on multimedia databases. The empir-
ical results of each implementation have achieved different level of speedup which
are related with characteristics of GPU and the particular database used.

Keywords: Multimedia database, Metric Space, Approximate Similarity Query,
High Performance Computing, Graphics Processing Unit.

1 Introduction

Due to an increasing interest in manipulating and retrieving multimedia data, nowadays
the problem of similarity searching receives much attention. The metric space model is
a paradigm that allows to modelize all the similarity search problems. Metric databases
permit storing objects from a metric space and performing similarity queries over them
efficiently; that is, in general, by reducing the number of distance evaluations needed. A
metric space (X, d) is composed of a universe of valid objects X and a distance function
d : X ×X → R+ defined among them. The distance function determines the similarity
(or dissimilarity) between two given objects and satisfies several properties which make it
a metric. In metric database there are two main queries of interest[1–3]: Range Searching
and the k Nearest Neighbors. Given a dataset of | U |= n objects, queries can be trivially
answered by performing n distance evaluations, but sequential scan does not scale for
large problems. Therefore, the goal is to preprocess the dataset such that queries can
be answered with as few distance computations as possible. Moreover, for very large
metric database is not enough to preprocess the dataset by building an index, it is also
necessary to speed up the queries by using high performance computing.

There are different indices that store different information about distances [3]. An
index helps to retrieve the objects from U that are relevant to the query by making
much less than n distance evaluation during searches. One of these indices is the Per-

mutation Index [4]. In order to employ high performance computing to speedup the
preprocess of the dataset to obtain an index, and to answer posed queries, the Graphics
Processing Unit (GPU) represents a good alternative. The GPU is attractive in many
application areas for its characteristics, especially because of its parallel execution capa-
bilities and fast memory access. They promise more than an order of magnitude speedup
over conventional processors for some non-graphics computations. The use of GPUs in
general-purpose computing is becoming a very accepted alternative.
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A GPU computing system consists of two basic components, the traditional CPU
and one or more GPUs (Streaming Processor Array). The GPU can be considered as
a manycores coprocessor ables to support fine grain parallelism (a lot of threads run
in parallel, all of them collaborate in the solution of the same problem) [5, 6]. GPU
is different than other parallel architectures because it shows flexibility in the local
resources allocation to the threads. In general, a GPU multiprocessor consists of several
streams multiprocessors, each of them has multiple processing units, records and on-chip
memory. Each stream multiprocessor can run a variable number of threads. There are
many tools to program the GPU, CUDA is one.

CUDA is a standard C/C++ extended by several keywords and constructs. Its pro-
gramming model is SPMD (Single Process-Multiple Data) with two main characteristics:
the parallel work through concurrent threads and the memory hierarchy. A CUDA pro-
gram consists of multiple phases executed on either CPU or GPU.

The paper is organized as follows: Section 2 describes all the previous concepts neces-
sary to understand our work and the state of art in the use of GPU to accelerate metric
indices, Section 3 introduces the sequential version of Permutation Index, Sections 4 and
5 sketch the characteristics of our proposal and its empirical performance. Finally, the
conclusions and future works are exposed.

2 Previous Concepts and Related Works

A metric space (X, d) is composed of a universe of valid objectsX and a distance function
d : X ×X → R+ defined among them. The distance function determines the similarity
(or dissimilarity) between two given objects and satisfies several properties such as strict
positiveness (except d(x, x) = 0, which must always hold), symmetry (d(x, y) = d(y, x)),
and the triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)). The finite subset U ⊆ X with
size n = |U |, is called the database and represents the set of objects of the search space.

There are two main queries of interest[1–3]: Range Searching and the k Nearest
Neighbors (k-NN). The goal of a range search (q, r)d is to retrieve all the objects x ∈ U
within the radius r of the query q (i.e. (q, r)d = {x ∈ U/d(q, x) ≤ r}). In k-NN queries,
the objective is to retrieve the set k − NN(q) ⊆ U such that | k −NN(q) |= k and
∀x ∈ k −NN(q), v ∈ U ∧ v /∈ k −NN(q), d(q, x) ≤ d(q, v).

When an index is defined, it helps to retrieve the objects from U that are relevant to
the query by making much less than n distance evaluation during searches. The saved
information in the index can vary, some indices store a subset of distances between
objects, others maintain just a range of distance values. In general, there is a tradeoff
between the quantity of information maintained in the index and the query cost it
achieves. As more information an index stores (more memory it uses), lower query cost it
obtains. However, there are some indices that use memory better than others. Therefore
in a database of n objects, the most information an index could store is the n(n− 1)/2
distances among all element pairs from the database. This is usually avoided because
O(n2) space is unacceptable for realistic applications [7].

Proximity searching in metric spaces usually are solved in two stages: preprocessing
and query time. During the preprocessing stage an index is built and it is used during
query time to avoid some distance computations. Basically the state of the art in this
area can be divided in two families [3]: pivot based algorithms and compact partition

based algorithms. In the first case, the index consists in a set of pivots {p1, . . . , pm} ⊆ U ,



which computes and keeps (in a data structure, usually like a tree) some (or all) distances
{d(p1, x), d(p2, x), . . . , d(pm, x)}, x ∈ U . The queries are solved considering all pivots. In
the second case, the space is divided into small and compact zones. A set of objects,
called centers, {c1, . . . , cs} ⊆ U are chosen and the rest of the elements are distributed
into the s zones defined in different ways by the centers ci. The index is composed by
the centers, the elements of each zone, and often some additional distances.

Other classification for proximity searching are the approximate and probabilistic
algorithms. In approximate algorithms one usually has a threshold ǫ as parameter, so
that the retrieved elements are guaranteed to have a distance to the query q at most
(1+ ǫ) times of what was asked for [8]. Probabilistic algorithms on the other hand state
that the answer is correct with high probability. Some examples are [9, 10]. In the next
section we detail a probabilistic method: Permutation Index [4].

GPGPU GPU is a dedicated graphic card for personal computers, workstations or
video game consoles. It is an interesting architecture to high performance computing.
GPU was developed with a highly parallel structure, high memory bandwidth and more
chip surface dedicated to data processing than to data caching and flow control. It offers
speedup to any standard graphics application[5].

Mapping general-purpose computation onto GPU implies to use the graphics hard-
ware to solve any applications, not necessarily of graphic nature. This is called GPGPU
(General-Purpose GPU), GPU computational power is used to solve general-purpose
problems[5, 6]. The parallel programming over GPUs has many differences from parallel
programming in typical parallel computer, the most relevant are: The number of process-

ing units, CPU-GPU memory structure and Number of parallel threads. Every GPGPU
program has many basic steps, first the input data transfers to the graphics card. Once
the data are in place on the card, many threads can be started (with little overhead).
Each thread works over its data and, at the end of the computation, the results should
be copied back to the host main memory.

Not all kind of problem can be solved in the GPU architecture, the most suitable
problems are those that can be implemented with stream processing and using limited
memory, i.e. applications with abundant parallelism.

The Compute Unified Device Architecture (CUDA), supported from the NVIDIA
Geforce 8 Series, enables to use GPU as a highly parallel computer for non-graphics ap-
plications [5, 12]. CUDA provides an essential high-level development environment with
standard C/C++ language. It defines the GPU architecture as a programmable graphic
unit which acts as a coprocessor for CPU. It has multiple streaming multiprocessors
(SMs), each of them contains several (eight, thirty-two or forty-eight, depending GPU
architecture) scalar processors (SPs).

The CUDA programming model has two main characteristics: the parallel work
through concurrent threads and the memory hierarchy. The user supplies a single source
program encompassing both host (CPU) and kernel (GPU) code. Each CUDA program
consists of multiple phases that are executed on either CPU or GPU. All phases that
exhibit little or no data parallelism are implemented in CPU. Contrary, if the phases
present much data parallelism, they are coded as kernel functions in GPU. A kernel

function defines the code to be executed by each thread launched in a parallel phase.
GPU computation considers a hierarchy of abstraction layers: grid, blocks and threads.

The threads, basic execution unit that executes kernel funtion, in the CUDA model are



grouped into blocks. All threads in a block execute on one SM and communicate among
them through the shared memory. Threads in different blocks can communicate through
global memory. Besides shared and global memory, the threads have their local variables.
All Thread− blocks form a grid. The number of grids, blocks per grid and threads per
block are parameters fixed by the programmer, and adjustable to improve performance.

Respect of memory hierarchy, CUDA threads may access data from multiple memory
spaces during their execution. Each thread has private local memory and each block has
shared memory visible to all its threads. These memories have the same lifetime that
the kernel. All threads have access to the same global memory and two additional read-
only memory spaces: the constant and texture memory spaces, which are optimized for
different memory usages. The global, constant and texture memory spaces are persistent
across launched kernel by the same application. Each kind of memory has its own access
cost, and the global memory accesses are the most expensive.

Metric Spaces and GPU In metric spaces, the indexing and query resolution are the
most common operations. They have several aspects that accept optimizations through
the application of high performance computing techniques. There are many parallel
solutions for some metric space operations implemented to GPU. Querying by k-NN has
concentrated the greatest attention of researchers in the area, so there are many solutions
that consider GPU. In [13–17] differents proposal are made, all of them improvement to
brute force algorithm (sequential scan) to find the k-NN of a query object. They differ
in which process part is parallelized or which methodology is applied.

Besides, different parallel implementations of scan sequential, there are others propos-
als, [13, 18, 19], that implement solutions for metric indices: List of Clusters, SSS-Index
and Spaguettis index.

In every previous researches, the authors report benefits, which are strictly linked to
the characteristics and architecture of the GPU.

3 Permutation Index

Let be P a subset of the database U , P = {p1, p2, . . . , pm} ⊆ U , that is called the
permutants set. Every element x of the database sorts all the permutants according
to the distances to them, thus forming a permutation of P : Πx = 〈pi1 , pi2 , . . . pim〉.
More formally, for an element x ∈ U , its permutation Πx of P satisfies d(x,Πx(i)) ≤
d(x,Πx(i + 1)), where the elements at the same distance are taken in arbitrary, but
consistent, order. We use Π−1

x (pij ) for the rank of an element pij in the permutation
Πx. If two elements are similar, they will have a similar permutation [4].

Basically, the permutation based algorithm is an example of probabilistic algorithm,
it is used to predict proximity between elements, by using their permutations. The
algorithm is very simple: In the offline preprocessing stage it is computed the per-
mutation for each element in the database. All these permutations are stored and
they form the index. When a query q arrives, its permutation Πq is computed. Then,
the elements in the database are sorted in increasing order of a similarity measure-
ment between permutations, and next they are compared against the query q following
this order, until some stopping criterion is achieved. The similarity between two per-
mutations can be measured, for example, by Kendall Tau, Spearman Rho, or Spear-

man Footrule metrics [11]. All of them are metrics, because they satisfy the afore-



RangeQuery(element q, radius r, fraction f)
1. Let A[1, n] be an array of tuples and U = {x1, . . . , xn}
2. Compute Π−1

q

3. For i← 1 to n do
4. A[i]← 〈xi, Sρ(Πxi

,Πq)〉
5. SortIncreasing(A) /* by second component of tuples */
6. For i← 1 to fn do
7. 〈x, s〉 ← A[i]
8. If d(q, x) ≤ r Then Report x

Algorithm 1: Range query of q with radius r in a permutation index, f database fraction.

mentioned properties. We use the Spearman Rho metric because it is not expensive
to compute and according to the authors in [4] it has a good performance to predict
proximity between elements. The square of the Spearman Rho Sρ metric is defined as
Sρ(x, q) = Sρ(Πx, Πq) =

∑m

i=1
|Π−1

x (pi)−Π−1
q (pi)|

2.
This distance Sρ(Πq, Πx) can be computed in O(m) time [11]. Therefore, during pre-

processing phase we first compute the mn distances d(x, pi), and then compute and sort
all the permutations for each element x in the database. This stage costs O(nm logm)
additional time, and requires O(nm logm) bits to store the whole index.

At query time we first compute the real distances d(q, pi) for every pi ∈ P , then we
obtain the permutation Πq, and next we sort the elements x ∈ U into increasing order
according to Sρ(Πx, Πq) (the sorting can be done incrementally, because only some of the
first elements are actually needed). Then U is traversed in that sorted order, evaluating
the distance d(q, x) for each x ∈ U . For range queries, with radius r, each x that satisfies
d(q, x) ≤ r is reported, and for k − NN queries the set of the k smallest distances so
far, and the corresponding elements, are maintained.

Algorithm 1 shows the process for a range query. The efficiency and the quality of
the answer obviously depend on f : as f grows the efficiency degrades, but the answer
quality improves. A way to obtain good values for f is discussed in [4].

4 GPU-CUDA Permutation Index

The Figure 1 shows the GPU-CUDA system to work with a permutation index: the pro-
cesses of indexing and querying. The Indexing process has two stages and the Querying
process four steps. In this last process, we pay special attention to one step: the sorting.
The next sections detail the characteristics of each process, their steps and peculiarities.

4.1 Building the Permutation Index

Building a permutation index in GPU involves at least two steps. The first step calculates
the distance among every object in database and the permutants. The second one sets
up the signatures of all objects in database, i.e. all object permutations. The process
input is a database where some of its elements are the permutants. At process end, the
index is ready to be queried. The idea is to divide the work in threads blocks, each
thread calculates the permutation object according to a global permutants set.

In the first task (Distances(O,P )), the number of blocks will be defined according
of the size of the database and the number of threads per block which depends of the
quantity of resources required by each block. At the step end, each threads block save
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Fig. 1. Indexing and Querying in GPU-CUDA permutation index.

in device memory its calculated distances. This stage requires a structure of size M ×N
(M : permutants number and N : database size) and an auxiliar structure of fixed size
defined in the shared memory of block (It stores the permutants, if the permutants
size is greater than auxiliar structure size, the process is repeated until all distances to
permutants are calculated).

The second step (Permutation Index(O)) takes all calculated distances in the pre-
vious step and determines the permutations of each object in database: its signature. To
stablish the object permutation, each thread considers an object in database and sorts
the permutants according to their distance. The output of second step is the Permutation

Index, which is saved in device memory. Its size is N ×M .

4.2 Solving Approximate Queries

The pemutation index allows to answer to all kinds of queries in approximated manner.
Queries can be “by range” or “k-NN”. This process implies four steps. In the first, the
permutation of query object is computed. This task is carried out by so many threads as
permutants exist. The next step is to contrast all permutations in the index with query
permutation. Comparison is done through the Footrule distance, one thread by object
in database. In the third step, it sorts the calculated Footrule distances. As sorting
methodology, we implement the Quick-sort in the GPU, its characteristics are explained
bellow. Finally, depending of query kind, the selected objects have to be evaluated. In
this evaluation, the Euclidean distance between query object and each candidate element
is calculated again. Only a database percentage is considered for this step, for example
the 10% (it can be a parameter). If the query is by range, the elements in the answer will
be those that their distances are less than reference range. If it is k-NN query, once that
each thread computes the Euclidean distance, all distances are sorted (using GPU-Qsort)
and the results are the first k elements of sorted list.

Considering the sorted algorithm, we describe an parallel Quicksort algorithm for
GPU, called GPU-Qsort. The designed algorithm takes into account the highly parallel
nature of graphics processors (GPUs) and the CUDA capabilities 1.2 or higher.

GPU-Qsort carries out the task into two stages: Local−Qsort andMerge−Reduction.
The first stage, Local-Qsort, has a data sequence as input and its output are N sorted
subsequences. Each subsequence is ordered by a threads block according to iterative
quicksort. Therefore, there are N threads blocks, where the number of threads by block



is fix and is determined in relation to the required resources by block. Each block chooses
a local pivot (it has to belong to input data list of block) and divides the data sequence
in two subsequences: one has the elements smaller than pivot and another has the ele-
ments greater or equal than pivot. The pivot is the median among three elements of data
subsequence: the first, middle and last element [20]. Each block works independently of
other blocks eliminating the need of synchronization among threads of different blocks.
In base to the selected pivot, all elements lower than the pivot are moved to a position
to the pivot’s left, and the greater or equal are shifted to the pivot’s right. The task is
made by using shared memory and each thread can determine itself the position for its
element in shared structure (using CUDA atomic functions).

The process is applied iteratively over two subsequences. It is possible if it uses an
stack. The stack saves all subsequences that still remain to be sorted. When there are
two ready subsequences to work, one is selected and the another is pushed in the stack.
If one subsequence is sorted, the subsequence in the top of stack is selected to work. The
iterative process ends when the stack is empty and the list is sorted. When the number
of elements in the sequence is lower than eight, it is sorted in sequential manner, because
the process overhead is too large compared to sequence size.

At the end of stage, each one of N blocks copies its sorted subsequence to device
memory. The output is N sorted subsequence.

For second stage of GPU-Qsort,Merge-Reduction, its input isN sorted list and the
output is whole sorted sequence. This phase makes a reduction, the reduction operation
is a merge of sorted lists. A block merges two list at a time. In consequence, log2N
iterations are necessary to find the final result. This stage requires ⌈N

2
⌉ blocks with one

thread per each and an auxiliary structure in device memory.
In both stages, different techniques are to optimize the performance, they are the

use of shared memory, anticipatory copies and coalesced access to global memory.

5 Analysis of Experimental Results

In this section we show and analyse the results for the solution of index building and
the different kinds of queries. Each reported value is the average of many executions
of corresponding algorithm that is detailed above. Our experiments considered differ-
ent database sizes: 4KB, 29KB, 68KB, and 84KB, on a metric database consisting of
English words and using the edit distance (that is, the minimum number of charac-
ter insertions, deletions, and substitutions needed to make two strings equal). For lack
of space we show only the results of sizes 29KB and 84KB, the other sizes yielded
similar results. The analysis was made for three generations of GeForce GPU whose
characteristics (Global Memory, SM, SP, Clock rate, Compute Capability) are GTX330:
(512MB,6,48,1.04GHz,1.2), GTX470: (1280MB, 14, 448, 1.2GHz, 2.0) and GTX550Ti:
(1024MB, 4, 192, 1.96GHz,2.1). The CPU is and intel core i3, 2.13 GHz and 3 GB of
memory. The results are expressed in Speed up (Sp = TimeSec

TimePar
).

In Figure 2 we show the accelerations obtained by our GPU parallel implementation
of Permutation Index. Although in all devices we achieve to improve the performance, the
better results are obtained in those devices with more resources and modern architecture.
In oldest device, the behavior is similar for all size database. In Fermi devices: GTX 470

and GTX 550 Ti, we can observe good profits when the database size is bigger. Moreover,
when the permutants number is greater, better performance is reached.
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Fig. 2. Speedup of Permutation Index on three different GPUs.

Figure 3 shows the obtained acceleration in range (3(a) and 3(b)) and k-NN (3(c) and
3(d)) queries. As it can be noticed Range queries shows improvements in its performance
for all databases, but as permutants number increases, minor speedup is obtained. In
k-NN queries better results are achieved with 16 and 32 permutants, for large k, and for
the smallest database.

The Figure 4 resumes the behavior of three operations: Index Creation(4(a)), Range
Query(4(b)) and k-NN Query (4(c)), for 64 permutants. Even though the best perfor-
mance is achieved by Index Creation Process, the profits of the query processes are
encouraging, because when they solve only one query (they do not use all GPU re-
sources), they speed up the solutions, in consequence, everything indicates that better
performance will get when multiple queries will be solve in parallel, even in those cases
without speed up.

6 Conclusions, Remarks and Future Work

The GPU is a massively parallel architecture, it has a high throughput because its
capacity of parallel processing for thousands of threads. With each new generation of
GPU, new parallel processing capabilities are incorporated. Therefore, it is adequate to
accelerate metric space solutions, because they are expensive to solve only in CPU.

In this work we show an implementation of one index, the Pemutation Index, used for
approximate similarity search on a database of words. However, it is possible to easily
extend our proposal to other metric databases of different data nature, such as vectors,
documents, DNA sequences, images, music, among others. The empirical evaluation has
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Fig. 3. Speedup of Queries on three different GPUs.
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demostrated improvements in the different architectures considered. Still we can optimize
some issues, for example solving many queries at the same time by taking advantage of
characteristics of GPU and its programming model.

In the future, we plan to make an exhaustive experimental evaluation considering
others kinds of database, comparing with other solutions that apply GPU in the scenario
of metric space approximate searches. We need also to evaluate retrieval effectiveness of
the answer of the Permutation Index, as the number of objects directly compared with
the query grows, by using Recall and Precission measures.
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