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Abstract

When using tableaux algorithms to reason about Description Logics (DLs), new informa-
tion is inferred from the models considered while trying to achieve knowledge satisfiability. By
focusing the ontology change problem, we consider an environment where DLs are the logical
formalization to express knowledge bases in the web, and the integration of distributed ontologies
is developed under new extensions of the belief revision theories originally exposed in [1]. Hence,
a reinforced theory arises in order to properly apply change operations over models, considering
new inferred information and assumed beliefs in each possible world. As a result, a new type of
contraction operator is proposed and its success postulate analyzed.

Keywords: Belief Revision, Description Logics, Tableau Calculi, Ontology Change.

1 Introduction

Our main research interest relays in topics like Ontology Integration and Ontology Merging [4], for
what we have proposed in [7] to use theory change formalizations in order to consistently join termi-
nologies, redefining or reinforcing sub-concepts. But following the reasoning methods exposed for
DLs, like satisfiability, solved by tableaux algorithms originally defined in [8], a new area of interest
arises. A set of knowledge base extensions is obtained from the models considered during the exe-
cution of the DL reasoning service. Here, is imperative to redefine the formalizations of the theory
change in order to revise beliefs on each extension and transitively in the knowledge base itself.

A motivating environment in which our proposal seems relevant may be the case of large databases
(closed world assumption) managing incomplete information. This means that for some systems,
maybe some unnoticed information is inferred from the knowledge base. Moreover, it is possible
to have critical information deduced from the base that may take over more undesirable deductions.
In order to avoid this kind of scenarios, a database manager could classify those basic beliefs that
should not be inferred from the base, and present them as complex queries to the base. In case that
some query is verified, he could have the alternative to correct the knowledge that helps to get this

*This article assumes some background knowledge about description logics and belief revision from the reader.
Partially financed by CONICET (PIP 5050), Universidad Nacional del Sur (PGI 24/ZN11) and Agencia Nacional de
Promocién Cientifica y Tecnolégica (PICT 2002 Nro 13096).
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deduction, i.e., to contract some beliefs in order to avoid problematic deductions. Moreover, this
could motivate the writing of some kind of basic rules, possibly exposed as axioms representing some
basic knowledge to always be held no matter the upgrade needed to be done to the base.

This is the situation in which we focus our work, anticipating or foretelling undesirable side-
effects and / or clashes in large database systems. While some slight details could pass unnoticed by
the ordinary people’s inspection, the proposed theory could inspect possible worlds by looking some
specific assumed beliefs in order to infer new knowledge from the basic knowledge representation.
The remainder of this work is disposed as follows, Sect. 2 gives a brief description of tableau-based
algorithms and their behavior by achieving satisfiability. Sect. 3 gives a brief overview of kernel
contractions in the theory change introducing Sect. 4, which explains the proposed theory where
some of the basic definitions for kernel contractions were adapted to deal with model based reasoners.
Finally, Sect. 5 concludes making an analysis of the proposal.

2 DLs Reasoning Algorithms

Relevant inference problems usually are reduced to the consistency problem for ABoxes, provided
that the DL at hand allows for conjunction and negation. However, for those description languages
of DL systems that do not allow for negation, subsumption of concepts can be computed by so-called
structural subsumption algorithms, i.e., algorithms that compare the syntactic structure of (possibly
normalized) concept descriptions.

While usually very efficient, they are only complete for rather simple languages with little ex-
pressivity. In particular, DLs with (full) negation and disjunction cannot be handled by structural
subsumption algorithms. For such languages, so-called tableau-based algorithms have turned out to
be very useful.

2.1 Properties for Reasoning

Let first give a very brief description of some important reasoning properties of description logics.
Given a terminology 7, if there is some interpretation of a concept that satisfies the axioms in 7 (a
model of 7), then the concept denotes a nonempty set for the interpretation, furthermore this concept
is known to be satisfiable w.r.t. 7. Otherwise it is called unsatisfiable. Formally,

(Satisfiability) [2] A concept C' is satisfiable w.r.t. T if there exists a model Z of 7 such that C7 is
nonempty. In such a case we say that 7 is a model of C.

Checking (un)satisfiability of concepts might be considered a key inference given that a number of
other important inferences for concepts can be reduced to it. For instance, in order to check whether a
domain model is correct, or to optimize concepts, we may want to know whether one concept is more
general than another. This is called the subsumption problem. A concept C'is subsumed by a concept
D if in every model of 7, C'is a subset of D.

(Subsumption) [2] A concept C'is subsumed by a concept D w.r.t. T if C* C D? for every model Z
of 7. In such a case we write C Ty Dor7 = C C D.

A new kind of reasoning algorithms in DLs raised from the approach of considering satisfiability
checking as the main inference. These algorithms are known as tableaux and can be understood as a
specialized tableau calculi.
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2.2 Basics for Tableaux Algorithms

Instead of directly testing subsumption of concept descriptions, these algorithms use negation to re-
duce subsumption to (un)satisfiability of concept descriptions: C' C D iff C 1 —D is unsatisfiable.

We illustrate the underlying ideas by two simple examples taken from [2]. Let A, B be concept
names, and let R be a role name. As a first example, assume that we want to know whether (3R.A) M
(3R.B) is subsumed by IR.(AM B). This means that we must check whether the concept description
C = (3R.A) M (3R.B) M —=(3R.(AM B)) is unsatisfiable.

Pushing all negation signs as far as possible into the description yields Cy = (3R.A) M (IR.B) N
VR.(—AU—-B), which is in negation normal form, i.e., negation occurs only in front of concept names.
Then, we try to construct a finite interpretation Z such that CZ # (). This means that there must exist
an individual in A that is an element of CZ. The algorithm just generates such an individual, say
b, and imposes the constraint b € CZ on it, this means that b must satisfy all the three interpreted
conjunctions that composes Cj.

From b € (3R.A)? we can deduce that there must exist an individual ¢ such that (b,c) € R? and
c € AL, Analogously, b € (3R.B)* implies the existence of an individual d with (b,d) € R? and
d € BZ. In this situation, one should not assume that ¢ = d. Thus:

e For any existential restriction the algorithm introduces a new individual as role filler, and this
individual must satisfy the constraints expressed by the restriction.

Since b must also satisfy the value restriction VR.(—AL—B), and ¢, d were introduced as R-fillers
of b, we obtain the additional constraints ¢ € (A L —B)% and d € (~A U —~B)Z%. Thus:

e The algorithm uses value restrictions in interaction with already defined role relationships to
impose new constraints on individuals.

Now ¢ might be such that ¢ € (=A)* or ¢ € (=B)*. Assume the first possibility leads to an
obvious contradiction, so we must choose the second one ¢ € (—=B)%. Analogously, we must choose
d € (=A)T in order to satisfy the constraint d € (—A LU —~B)? without creating a contradiction to
d € B%. Thus:

e For disjunctive constraints, the algorithm tries both possibilities in successive attempts. It
must backtrack if it reaches an obvious contradiction, i.e., if the same individual must satisfy
constraints that are obviously conflicting.

In the example, we have now satisfied all the constraints without encountering an obvious contra-
diction. This shows that Cj, is satisfiable, and thus (3R.A) M (3R.B) is not subsumed by IR.(AM B).
The interpretation generated by the algorithm is AT = {b, ¢, d}; R* = {(b,c), (b,d)}; AT = {c} and
BT = {d}.

In our second example, we now want to know whether (3R.A) M (IR.B)MN < 1R is subsumed
by JR.(A M B). The tableau-based satisfiability algorithm first proceeds as above, with the only
difference that there is the additional constraint b € (< 1R)Z. In order to satisfy this constraint, the
two R-fillers ¢, d of b must be identified with each other. Thus:

e [fan at-most number restriction is violated then the algorithm must identify different role fillers.

The individual ¢ = d must belong to both A% and BZ, which together with ¢ = d € (=AU —-B)*
always leads to a clash. Thus, the search for a counterexample to the subsumption relationship fails,
and the algorithm concludes that (3R.A) M (IR.B)N < 1R C 3R.(AMN B).
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3 Kernel Contractions

A belief base is a knowledge state represented by a set of sentences not necessarily closed under
logical consequence. Similarly, a belief set is a set of sentences closed under logical consequence. In
general, a belief set is infinite, being this the main reason of the impossibility to deal with this kind
of sets in a computer. Instead, it is possible to characterize the properties that must satisfy each of the
change operations on finite representations of a knowledge state.

The classic operations in the theory change [1] are expansions, contractions, and revisions. An ex-
pansion, noted with “+”, adds a new belief to the epistemic state, without guaranteeing its consistency
after the operation. A contraction, noted with “—”, eliminates a belief o from the epistemic state and,
some of those beliefs that make possible its deduction. The sentences to eliminate might represent
the minimal change on the epistemic state. Finally, a revision , noted with “x”, inserts sentences to
the epistemic state, guaranteeing consistency (if it was consistent before the operation). This means
that a revision adds a new belief and perhaps it eliminates others in order to avoid inconsistencies.

The kernel contraction operator is identically applicable to belief bases and sets. It consist of a
contraction operator capable of the selection and elimination of those beliefs in K that contribute to
infer a.

Definition 3.1 - Set of Kernels [6]: Let & be a set of sentences and « a sentence. The set K -q,
called set of kernels is the set of sets K’ such that (1) K’ C K, (2) K’ «, and (3) if K” C K’ then
K" ¥ o. The set K- is also called set of a-kernels and each one of its elements are called o-kernel.

For the success of a contraction operation, we need to eliminate, at least one element of each
a-kernel. The elements to be eliminated are selected by an incision function.

Definition 3.2 - Incision Function [6]: Let K be a set of sentences and “o” be an incision func-
tion for it such that for any sentence « it verifies, (1) o(K*a) C |J(K*a) and (2) If K’ € Kt
and K’ # () then K' No(K*a) # 0.

Definition 3.3 - Kernel Contraction Determined by “c” [6]: Let K be a set of sentences, a a
sentence, and K-« the set of a-kernels of K. Let “o” be an incision function for K. The operator
“ —, 7, called kernel contraction determined by “c”, is defined as, K —, a = K\o(K*a).

13 b

Finally, an operator “ — ” is a kernel contraction operator for K if and only if there exists an
incision function “o” such that X — o« = K —, « for all sentence o.

4 Model Contractions

In formalisms like description logics, the reasoning service is model based, i.e., in order to make
deductions the reasoning service looks into every possible world, this means that new deductions are
made not only by a classical inference operator “=”, but also by applying it over every model of the
base. Therefore, and considering the motivation exposed in the introductory section of this paper,
our interest relays in checking satisfiability for a given possibly complex query «, and considering an
affirmative response, breaking thereafter its trueness by applying a base contraction by « .

In this sense, let first analyze the scope of a modeling inference operator “|=" such that,

(Entailment) > = o iff M(X) C M({a})

where M (X) makes reference to the set of models of a knowledge base ¥, and M ({«a}) identifies
the set of models for a valid sentence « of the language.

VIIl Workshop de Agentes y Sistemas Inteligentes 1527



XIll Congreso Argentino de Ciencias de la Computacion

Afterwards, a query « to the base ¥, noted as ¥ =’ a, is solved by using a satisfiability checking
process. This is done by generating all possible interpretations that satisfies every sentence in the
base Y., i.e., finding every model for the base . Afterwards, the reasoning process checks for every
element in M (X), i.e., if every model of the base, let say M, is also a model of «. This is exactly
the entailment definition.r If this is true, the query is said to be verified and ¥ = «, i.e., that the base
infers «, being YES the answer for the query. If the base verifies -« then it is said that the query is not
verified, being NO its answer. The third possibility would be known as an indecision and answered
with an UNKNOWN if it is not verified o nor —av.

As seen in Sect. 2.2, new knowledge may be inferred from assumptions made as a consequence
of the applied satisfiability process following a tableau-based algorithm. From now on we focuss
our attention in checking and adapting the theory change definitions cited in Sect. 3 applied to these
extensions.

4.1 Extended Set of Kernels

Following the definitions cited in Sect. 3, a proof for a belief « is given by a set of minimal proofs
or a-kernels. But this proofs are enclosed inside the knowledge base Y. itself. By using model based
reasoning services, beliefs outside the scope of the base are assumed, exceeding the basic set of ker-
nels given in Def. 3.1. Thereafter some definitions of the belief revision model should be redefined in
order to be adapted to this new theory. In this sense, let first refer to each model M, as an extension
of the base Y from now on noted as ¥; identified as its i?* extension as follows.

Definition 4.1.1 - Base Extension: Let X be a knowledge base and M(X) = {M;, ..., M,,} the
set of M; models of X, where 1 < i < n, i.e., |/M(X)| = n. The i*" base extension with respect to
the model M, is identified as ;.

A model M; may include several minimal proofs K for a belief «, i.e., K C M;, where
M, € M(X). This also means that every a-proof K is part of a base extension ¥; and indeed,
K is also an element of the set of proofs of that base extension, i.e., K € y,a. Moreover, as part
of an a-proof K there are effective beliefs belonging to the base X (this is a subset Ky, C K') and
some other assumed beliefs that are not part of the base > but of some model M; of it (equivalently
a subset Kn, € K). Therefore, an a-proof K is such that K = Ky U K. This motivates the
following definition by reinforcing the original set of kernels and their components.

Definition 4.1.2 - Extended Set of Kernels: Let > be a knowledge base and « be a sentence. The
condition ¥ |= a holds iff there exists a set X« (namely extended set of kernels) of non-empty sets
it o (called i set of extended a-kernels) where each ;' «v is a set of sets K (namely extended
a-kernel) such that the following conditions hold:

(1) K = Kx, U Ky, such that
i. Ky CX

(2) K+a

(3) If K' C K then K' ¥ «

The following observation relates an extended set of kernels ¥1-« and the set of models M ()
for a knowledge base > in terms of cardinality.
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Observation 4.1.3: If Y-« is an extended set of kernels then |Y1a| = |[M(Z)).
Proof:
Supposing by the contrary that |X-a| = | M(X)| does not hold, then two possibilities arise:

(1) If |[Ztal < |[M(Z)| then there exists a model M; € M () such that there is no K C M;
where K I «. Therefore, the related i*" set of extended a-kernels is such that 3;,*-a = (), but as we
know by Def. 4.1.2 this is not plausible, thereafter 3, & Y+ .. Besides, by Def. 4.1.2 a condition
M(E) € M({a}) holds, therefore M; € M ({a}), then necessarily there is a K C M, where
K F o. (ABSURD).

(2) If |2+ a] > |M(D)] then there exists a it set of extended a-kernels such that ¥; %o € Yt a,
with K € ¥;*a, where K I~ «. This is verified in a model M; in which ¥; '« is applied, such that
M; & M(X). This implies that M, is not a model for X, but M; is a model for a due to the existence
of K C M, where K + «, therefore M(X) € M({a}). (ABSURD). R

An a-proof K in a model based system may or may not contain assumed beliefs. Note that a
knowledge base > deducing a, i.e., > = « may, in fact, also verify ¥ F «. This means that there is
at least one proof that does not need to use any assumed beliefs to achieve its validity. The following
definition is given in order to clearly identify the two different kinds of a-proofs in a model based
system.

Definition 4.1.4 - Possible (Effective) a-Proof: Let '« be an extended set of kernels as speci-
fied in Def. 4.1.2 for a given sentence «, and ;- « the i set of extended a-kernels K in it contained
such that X' = Ky, U K. Then an a-proof K is referred as a Possible (resp. of Effective) a-Proof
iff Ky, C K is such that K, # 0 (resp. of Ky, = 0).

Observation 4.1.5: If K is an effective a-proof in X then ¥ - «
Proof:

If K is an effective a-proof then by Def. 4.1.4 it follows that K, = () for K, C K, hence
K I «, and since K C X and the consequence operator verifies monotony', it follows X - o.. B

Remark 4.1.6: All considered examples in this paper are reduced in a sense of relevance consid-
ering the extended a-proofs. This means that, although it is true that |4l = [M(Z)], since it is
possible to have ¥, a, ¥, € X4« such that 3o C X+, those X« self contained by other
ith set of extended a-kernel are considered not relevant, and finally discarded.

The following example, borrowed from [5], shows the behavior of the new defined theory.

Example 1 : Given a knowledge base Y. as follows,

Jjohn
( FRIEND (john, susan) FRIEND FRIEND
FRIEND (john, andrea)

v LOVES (susan, andr@a) andrea | LOVES Suson’
LOVES (andrea, bill) Female
Female(susan) s

| —Female(bill) ) FOVES

bill : — Female

!(Monotony) If ' C X then C,,(¥') C C,, (), for a given operator C,, such that o € C,,(2) iff X+ a.
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we want to know if john have a Female FRIEND who LOVES amale (i.e., not Female) person. This
is a query ¥ =7 « such that  is IFRIEND.(Female M (3LOVES.—Female))(john). Following
the given tableau specifications as a model based reasoning service we have two different models
in order to achieve satisfiability of «, furthermore, the extended set of kernels would be such that
Yiha = {Elﬂa, Zgﬂa}, where each ¥;*« is directly related to each model M,. Note that in this
example there is only one a-proof K in each extended set of a-kernels.

M) Female® = {}, ~Female’ = {andrea}
Y1t a = {{FRIEND (john, susan), Female(susan), LOVES (susan, andrea), —Female(andrea)}}
Ky, = {—Female(andrea)}

Ms) Female® = {andrea}, ~Female® = {}
Yotta = {{FRIEND (john, andrea), Female(andrea), LOVES (andrea, bill), ~Female(bill)}}
K, = {Female(andrea)}

O

4.2 Model Selection & Model Incision Function

Let think about an incision function cutting beliefs from a set of kernels in order to achieve a con-
traction of X by «, i.e., we want to get some applied contraction operator “ © ” based on an incision
function “o” such that the query « turns to fail in the resultant knowledge base, this means that
YOl

In order to achieve such an operation we only need to select one model, i.e., an extension Y;, from
which to break every a-proof in it such that the erasure is to be done from every K in 3;~-« for some
1. Moreover, those deleted beliefs from an a-proof should be “effective” beliefs, i.e., beliefs from
K, not assumed ones. The intuition in this is that no assumed belief could be cut off the knowledge
base just because it is not part of the base. No justification can be supported in order to modify the
knowledge base by making a specific possible world the new epistemic state.

In this sense, let first define a model selection function p, that following some preference criterion
among the considered models, it takes the “most conservative selection” such that among every con-
sidered model, the selected one is the best choice to make a suitable further incision. Formally,

Definition 4.2.1 - Model Selection Function: Let 3 be a knowledge base and Y-« an extended
set of kernels for a valid sentence «, then a function “p” is a model selection function determined by
some preference criterion such that p(X*a) = ¥, where ;% is valid in a model M; consid-

ered the “less relevant model” of 3.

Inspired in Def. 3.2, we propose a “model incision function” determined by a model selection
function as follows,

Definition 4.2.2 - Model Incision Function: Let > be a knowledge base, Y« an extended set
of kernels for a valid sentence «, and p a model selection function, then a function “c” is defined as a
model incision function such that it verifies,

(1) o(p(E"*a)) CU(p(E ) NE
(2) If Ky C K € p(Xta) then Kx No(p(Xta)) # 0

Example 2 : Following the proposed definition for the model incision function, let continue with
Ex. 1. As explained before, an incision function cuts beliefs only from one base extension in order
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to break all proofs in the possible world by it determined. In this sense, suppose a model selection
function selects the first base extension as the most suitable model, such that p(X*1ta) = 34
Therefore, a model incision function would be applied to it in order to cut beliefs from every proof in
the model M. Finally a possibility would be o(p(X1a)) = (X1 a) = { Female(susan)}. 20

4.3 Model Contraction Operator

In what follows let define the “model contraction operator” by reinforcing the kernel contractions
as exposed in Def. 3.3, then a model contraction operator “ © ” is determined by a model incision
function “o” as follows,

Definition 4.3.1 - Model Contraction Determined by o: Let > be a knowledge base, « be a sen-
tence, “o” be a model incision function determined by a model selection function p for ¥, and X«
be the extended set of a-kernels of > to which the function p is applied. The operator “ © ,”, referred
as model contraction determined by “c”, is defined as,

20,0 =X\o(p(S"a))

Finally, an operator “ © ” is a model contraction operator for ¥ if and only if there exists a model
incision function “c” such that ¥ © a = ¥ © ,« for all sentence «.

Example 3 : Let conclude with the Ex. 1, and finally apply the contraction operator © to the selec-
tion made before in Ex. 2, where o(p(X1a)) = {—~Female(susan)}. Then from Def. 4.3.1 follows
that, ¥ O ;a = X\o(p(Xta)) = S\{Female(susan)}. O

Remark 4.3.2: Note that in Ex. 3, the operator “ © ” successfully achieves the contraction of «
such that ¥ © ,« [~ «. This is directly related to the introductory equivalence defined in Sect. 4 in
which a necessary condition, in order to verify X |= «, is that « needs to be modeled by every model
in X, or equivalently M(X) C M({a}).

Example 4 : Let « be the same query used in previous examples such that « = IFRIEND.(Female I

(ILOVES.—Female))(john), and let ¥ be a knowledge base such that,
( FRIEND (john, susan) ) FRIEND .
FRIEND (john, andrea) LO VES
FRIEND (john, bill) 0 VS
,.'(J VE S ;r)hn — Female

LOVES (susan, andrea)
LOVES (andrea, bill) W wﬂvf)

LOVES (andrea, john)

(

(
LOVES (susan, bill) gnd;w B LOV}:,S susan:
LOVES (bill, john) Female
LOVES (bill, andrea) \ LOI’ES L()pLg /

LOVES (susan, john)

LOVES
M
—Female(john) bill

Female(susan)
Ve

\

The following are the interpretation sets related to each model M;:

ZNote that the incision made does not relay on any epistemic condition and has being arbitrarily taken.
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M) Female® = {andrea, bill}, ~Female® = {}  My) Female® = {bill}, ~Female® = {andrea}
Ms) Female® = {andrea}, —~Female® = {bill} ~ My) Female® = {}, ~Female’ = {andrea, bill}

Finally, the extended a-kernels ;- in each model M, would be:

Yl Yola
FRIEND (john, susan), Female(susan),
FRIEND (john, susan), Female(susan), LOVES (susan, john), ~Female(john) }
{ LOVES (susan, john), ~Female(john) } FRIEND (john, bill), Female(bill),
FRIEND (john, andrea), Female(andrea), { LOVES (bill, john), = Female(john) }
{ LOVES (andrea, john), = Female(john) } FRIEND (john, bill), Female(bill),
FRIEND (john, bill), Female(bill), { LOVES((bill, andrea), —~Female(andrea) }
{ LOVES (bill, john), ﬁFemale(]ohn)} FRIEND (john, susan), Female(susan),
{ LOVES (susan, andrea), —Female(andrea) }

ZgJ'LOz E4J'L04
FRIEND (john, susan), Female(susan),
{ LOVES (susan, john), ~Female(john) } FRIEND (john, susan), Female(susan),
FRIEND (john, susan), Female(susan), { LOVES (susan, john), ~Female(john) }
{ LOVES (susan, bill), = Female(bill) } FRIEND (john, susan), Female(susan),
FRIEND (john, andrea), Female(andrea), LOVES (susan, andrea), ~Female(andrea) }
{ LOVES (andrea, bill), ~Female(bill) } FRIEND (john, susan), Female(susan),
FRIEND (john, andrea), Female(andrea), { LOVES (susan, bill), = Female(bill) }
{ LOVES (andrea, john), = Female(john) }

A model selection function would select one of the considered base extensions in order to cut
beliefs from each a-proof in it contained by applying a model incision function “o”. In such a case,
let consider p(X*ta) = ¥4« as the selected i set of extended a-kernels, then the model incision
function determined by “p” would be o(p(Xta)) = o(X, ) = {Female(susan)}. 3 Finally, the
application of a model contraction would be ¥ © ,a = X\ {Female(susan)}. O

Remark 4.3.3: In the Ex. 4 it is shown that if the base deduces by itself «, i.e., that there exists
an effective a-proof, therefore the respective proof would be part of every set of extended kernels.

4.4 Anti-Shielding Model Contraction

The proposal of a contraction operation not verifying the success postulate is discussed in several
works, in order to analyze the success of a model contraction, let first propose the success and inclu-
sion postulates, inspired in the AGM postulates for contractions originally defined in [1].

(Success) If I/ v then X © a [~ «
(Inclusion) X © o« C X

Although the success and inclusion postulates have being verified in previous examples, this is
not always possible. Moreover, while inclusion is always verified by a model contraction as exposed
before, success does not. In a model contraction as previously specified, some information in a
knowledge base may generate the non-satisfiability of the success postulate. This information is

3As seen before, we adopt an incision which minimizes the quantity of beliefs to be cut off.
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being referred as shielding set * since it represents an epistemic state supporting (in “background’)
an inference of « even after its model contraction. This is clearly shown by the following example:

Example S : Let X be a knowledge base as exposed below, and « be the same query used in Ex. 1
such that « = IFRIEND.(Female M (ILOVES.—Female))(john).

( FRIEND (john, susan)
FRIEND (john, andrea)
FRIEND (john, sasha) FRIEND
LOVES (susan, andrea) ,

S ={ LOVES(andrea, bill) andrea LOVES

LOVES (sasha, susan)

Female(susan) LOVES

—Female(bill)

Female(sasha)

J bill : — Female sasha:
Female

Therefore, the extended a-kernels ;- would be:

M) Model M, is such that = Female? = {andrea}, Female® = ()

sl FRIEND (john, susan), Female(susan),
L= LOVES (susan, andrea), ~Female(andrea)

My) Model M, is such that — Female® = (), Female® = {andrea}

Sl FRIEND (john, andrea), Female(andrea),
2 YT\ LOVES(andrea, bill), = Female(bill)

A model selection function p may solve the selection as p(X*a) = ¥ a, then the model inci-

sion function “o” determined by “p” would be o(p(X*a)) = o(3,a) = {Female(susan)}, and

therefore, the application of a model contraction would result as ¥ © ,a = X\{ Female(susan)}.
Note that the success postulate does not hold due to the existence of a shielding set H:

H = {FRIEND(john, sasha), Female(sasha), LOVES(sasha, susan)}

where H U {—Female(susan)} I «, such that —Female(susan) is, after the application of the model
contraction, a new assumed belief that helps to verify the query «, and as seen before, its opposite
Female(susan) also helps to verify the same query «.. So by the application of the contraction as
before, we have just generated a new possible world, and afterwards the original query applied to the
resultant knowledge base ¥ © « = « does still hold.

Note that although the success postulate does not hold, there is a “weak’ version always verified:

(Weak-Success) If I/ athen X © o F/ «

Observation 4.4.1: A model contraction operator “ © ” determined by a model incision function
“0” does verify weak-success.
Proof:

*The notion of shielding was borrowed from [3], where a contraction operator not verifying success was proposed.
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Two possibilities arise relaying on the existence of effective a-proofs in . Suppose there is
no effective a-proof then from Obs. 4.3.3, ¥ I/ « holds, and since the classic consequence “+”
verifies monotony and “ © ” verifies inclusion it follows that ¥ © « I# a.. For the other case in which
we suppose that there exists an effective a-proof K in ¥, such that K € p(X*a), it follows that
Ky = 0 for Ky C K and therefore K = Ky. Hence, from Def. 4.2.2 an incision function “c”
verifies Ky, N o(p(Eta)) # ), and since X © a = Y\o(p(X+ta)) it follows that Ky, € ¥ O a.
Finally > © « has no effective a-proof and therefore > © o t/ o. B

The latter example motivates the proposal of a new postulate in order to avoid any shielding set in
the resultant knowledge base > © a.

(Anti-Shielding) If € Y and 5 € ¥ © awthen H U {—f} £ aforany H C ¥ O «

Definition 4.4.2 - Anti-Shielding Model Contraction: Let “ © ” be a model contraction operator
satisfying the anti-shielding, then it is referred as anti-shielding model contraction operator.

The latter postulate may not only be a property satisfied by some model contractions, this means
that by considering the anti-shielding postulate at the time the incision function is being applied, we
could always achieve an anti-shielding model contraction operator “ © . A model contraction satis-
fying anti-shielding is always a desirable operator due to the following observation:

Observation 4.4.3: An anti-shielding model contraction operator “ © ” does verify success.
Proof:

If “ © ” verifies anti-shielding it follows that for any § € Y and § ¢ ¥ © a then H U {3} £ «
for any H C Y © «. This proof is shown by supposing to the contrary that success is not verified
(i.e., X O a FE a).

By Obs. 4.4.1 we know that any model contraction operator does always verify weak-success
(i.e., X © at/ o), and hence no effective a-proof exists in > © «. This means that there are only
possible a-proofs in ¥ © «, thus, we have at least two models M, and M with assumed beliefs
¢ € M, and —p € M. Therefore, there exist at least two possible a-proofs K € ((X © a);*«) and
K' € (¥ © ) a) such that K = Ky ¢ ,) U K, and K’ = K{E O Y K, where p € Ky,
and ~¢ € K j\,[],.

This situation is always captured by a model contraction operator, this means that ¢ was not an
assumed belief in 3 (i.e., ¢ € Y), and it has being cut off such that ¢ ¢ > © «. Moreover, since
Kéz Ol Ky, - aand ~p € K}, , we have that K(’2 Ol {—¢} E a. Note that assuming

f=¢pand H =K EE © o) We achieve the absurd H U {=0} [ a, contradicting anti-shielding.

Finally, success is verified (i.e., ¥ © a £ ). B

5 Conclusions & Future Work

Some of the theory change classic definitions and postulates exposed in [1] have being generalized in
[4] in order to match extra-classic logics like DLs. Considering DLs reasoning services like tableau-
based algorithms to solve satisfiability, not only set us up in a more direct theory formalization, but
also allow us to work purely description languages with no need to translate beliefs to fragments
of first order logic, as we have done before in [7]. Tableaux algorithms are nowadays probably the
most important reasoning algorithms used in the area. A distinctive feature of this reasoning service
is the way it reasons about incomplete information, inferring new beliefs by combining assumed
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ones (from the generated models) and effective knowledge (from the base). All this happens while
proving clauses’ satisfiability, and indeed, while contracting a sentence from the base. By this, we
have a completely different way of reasoning about knowledge due to a multiple generation of base
extensions. This all is what motivates the definition of a model contraction and its several components.

Basically, a model contraction is a kind of kernel contraction reinforced in a way such that possible
worlds are considered when proving knowledge satisfiability. In this sense, the set of deductions
made by this type of reasoning service exceeds the traditional deductions made in a knowledge base.
Therefore, a set of kernels in a model contraction (namely extended set of kernels) should consider
assumed information, i.e., those beliefs that are part of some possible worlds only. Moreover, an
incision function should cut beliefs off in a given model in order to break a proof, for this matter a
selection function is defined in order to decide which model is preferable to be incised. Finally, a
contraction eliminates those incised beliefs from the knowledge base thus achieving the elimination
of the proof in some possible world. Hence, the sentence at issue is no longer verified.

A first approach to some model contraction postulates is given, concentrating this investigation
mostly on the success postulate. Here a new type of information sets is recognized as shielding,
which is a kind of “protected proof” for a sentence « standing in “background”. Thereafter, a spe-
cial postulate is proposed in order to deal with this tradeoff, hence achieving success by the model
contraction.

As said before, kernel contractions seem to be a special case of model contractions where every
required proof is an effective-a proof. In this sense, a deeper investigation is being taking over
in order to give a formal characterization of model contractions by means of kernels contractions,
relating postulates and axiomatic representations.
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