
A Comparison of Different Evolutive Niching
Strategies for Identifying a set of Selfsimilar
Contractions for the IFS Inverse Problem

Maŕıa L. Ivanissevich
Universidad Nacional de la Patagonia Austral,

Rı́o Gallegos, Argentina

A. S. Cofiño and J.M. Gutiérrez
Dept. of Applied Mathematics, University of Cantabria,

Santander, Spain

gutierjm@unican.es,
http://personales.unican.es/~gutierjm

Abstract

The key problem in fractal image compression is that of obtaining the IFS code
(a set of linear transformations) which approximates a given image with a certain
prescribed accuracy (inverse IFS problem). In this paper, we analyze and compare
the performance of sharing and crowding niching techniques for identifying optimal
selfsimilar transformations likely to represent a selfsimilar area within the image. The
best results are found using the deterministic crowding method. We also present an
interactive Matlab program implementing the algorithms described in the paper.

Keywords

Evolutive algorithms, fractals, iterated function system (IFS).



1 Introduction

In the last two decades Iterated Function Systems (IFS) have been established as intuitive
and flexible fractal models in several areas of computer graphics [1]. The main features of
IFS models are their simplicity and mathematical soundness: An IFS consists of a set of
contractive affine transformations, which express a unique image (the attractor) in terms
of selfsimilarities in a simple geometric way. These models have been applied to many
interesting problems, including fractal image compression [2]. This possibility is provided by
the Collage Theorem [3], which shows that any image can be closely approximated by the
attractor of an appropriate IFS model (encoded only with a few parameters, the coefficients
of the affine transformations).

The key problem in fractal image compression is that of obtaining the IFS code which
approximates a given image with a certain prescribed accuracy (inverse IFS problem). Some
attempts to solve this problem include “moment matching”, which reduce the problem to
solving a system of equations [4]; wavelets transforms, which use similarity preserving prop-
erties of continuous wavelets to find the appropriate transformations [5], etc., but none of
these techniques have prove to be efficient in general.

Other recent attempts to solve the inverse problem use evolutive algorithms, a new opti-
mization paradigm that models a natural evolution mechanism (see [6] for an introduction
to this field). Evolutive algorithms work with a population of individuals (in this case a pop-
ulation of IFS models) each one them representing a search point in the space of potential
solutions of the inverse problem. The population is able to adapt towards the optimum by
means of a random process of selection, and the application of genetic operators, such as re-
combination and mutation. Several schemes based on this idea have been recently proposed;
they only differ in the manner information is encoded and in the specific genetic operators
applied in the evolutive process. Two broadly accepted schemes are Genetic Algorithms
(GAs) [7, 8] and Evolutionary Strategies (ESs) [9].

Attempts for solving the inverse problem using GAs [10, 11, 12] and ESs [13, 14] have
achieved relative success. These algorithms work with a population of IFS models and,
therefore, perform a global optimization of the whole set of selfsimilar contractions of the
given image. It has been recently proposed [15] a more efficient approach to this problem
using an hybrid evolutive-genetic algorithm in two steps:

Step 1: An evolutive strategy is used for identifying selfsimilar contractive transformations of
a given image (the problem at this stage is obtaining the selfsimilar structures within
the image); the algorithm works with a population of affine transformations.

Step 2: An initial population of IFS models is created by randomly combining the obtained
selfsimilar transformations according to their fitness (selfsimilarity degree), and a ge-
netic algorithm is conducted to search the optimal IFS model among the different
combinations.



The main idea of the hybrid algorithm is using an appropriate set of transformations
(representing selfsimilar areas of the image) to form the IFS models, instead of considering
an initial random population. Gutiérrez et al. [15] use a simple (µ + λ)-ES algorithm for
identifying the set of selfsimilar transformations. However, the evolution of standard ESs is
quickly attracted to one of the local maxima of the fitness space forcing to perform successive
independent runs to find different selfsimilar transformations. Niching methods [8] help to
allow the concurrent existence of different solutions in the same evolutive population.

In this paper, we analyze and compare the performance of sharing and crowding niching
techniques applied to this problem. These techniques have been implemented in Matlab
program “Evolutive IFS”, which allows us comparing and understanding the different niche
algorithms in an easy and interactive form.

This paper is organized as follows. In Section 2 we introduce IFS and describe the inverse
problem. Some terminology and definitions on ESs are presented in Section 3. Section

2 Iterated Function Systems

An IFS is a set of affine contractive functions ti, i = 1, . . . , n, which transform a subset of the
plane S ⊂ IR2 onto smaller subsets ti(S). Then, it is possible to define one transformation,
T , in the subsets of the plane by

T (S) =
n⋃

i=1
ti(S). (1)

For an input set S, we compute ti(S) for each i, take the union, and get a new set T (S). It
can be easily shown that if the ti are contractive then T is also contractive and has a unique
fixed point in the space of all images called the attractor of the IFS, A = T (A). Equation
(1) gives an intuitive framework for modeling fractal selfsimilar images, since selfsimilarity
means that any portion of the object, if enlarged in scale, appears identical to the whole
object. This fact is shown in the three examples of Fig. 1, where the boxes indicate each of
the selfsimilar portions of the images.

Figure 1: Attractors of three IFS models: The Sierpinsky gasket, a lightning, and a fern.
The fixed points of each contraction are also shown.



From this figure we can see that besides mathematical objects, such as the Sierpinsky
gasket, selfsimilarity is also present in many real-world patterns; for instance the IFS model
resembling the lightning shown Fig. 1 is given by the following transformations:

t1(x, y) = (0.424x − 0.651y + 3.964 , −0.485x − 0.345y + 4.222),

t2(x, y) = (−0.080x − 0.203y − 4.092 , −0.743x + 0.205y + 3.957).

Each function in an IFS has six degrees of freedom, which can be represented in a number
of equivalent forms, such as:

ti(x, y) =
(

ai1 ai2

ai3 ai4

) (
x
y

)
+

(
bi1

bi2

)
(2)

=
(

ri1 cosθi1 −ri2 sinθi2

ri1 sinθi1 ri2 cosθi2

) (
x
y

)
+

(
bi1

bi2

)
. (3)

Some of these representations are particularly suitable for the application of crossover and
mutation genetic operators. In particular, in this paper we chose the representation given
in (3), consisting of parameters (ri1, ri2, θi1, θi2, bi1, bi2) with an intuitive geometric meaning
(see [14] for a detailed analysis of several representations).

Generating the attractor of an IFS model is an easy task (see [16]); however, the inverse
problem is a hard one. The “Collage Theorem” establishes a condition for a given image
I to be approximated by the attractor image A of an IFS model. This theorem gives
an upper bound for Haussdorff distance between both images d(A, I) by using I and the
transformations ti forming the IFS:

d(A, I) ≤ 1
1 − c

d(I,
⋃

ti(I)), (4)

where c is the contraction factor of the IFS formed by t1, . . . , tn. This theorem gives a
method for solving the IFS inverse problem by means of the following optimization problem:

(OPT.1)
{

Minimice f (t) = d(I, ∪n
i=1ti(I)),

Subject to t = (t1, . . . , tn), being contractions. (5)

We can also consider the simpler problem of obtaining a single selfsimilar transformation
t (as those shown in Fig. 1 for the Sierpinsky, lightning and fern IFS models). In this case
we have the following optimization problem:

(OPT.2)
{

Minimice f(t) = d(I, t(I)),
Subject to t, being a contraction.

(6)

Evolutive algorithms have been quite successful on solving these kind of optimization
problems, where standard mathematical algorithms are hard to apply.



3 Evolutive Algorithms and the Inverse IFS Problem

Evolutive algorithms work with a population of individuals which are iteratively adapted to-
wards the optimum by means of a random process of selection, recombination and mutation.
During this process, a fitness function measures the quality of the population, and selection
favors those individuals of higher quality. Most of the evolutionary algorithms described in
the literature for solving the IFS inverse problem follow the optimization problem (OPT.1);
in this case, each individual is an IFS model consisting of a number of transformation and
its fitness is given by some convenient measure of similarity between the target image and
the IFS attractor.

However, as shown by Gutiérrez et al. [15], the inverse problem can be solved more
efficiently by first obtaining an appropriate set of transformations by solving (OPT.2) and
then using the obtained transformations to feed an initial population in (OPT.1). This
method is illustrated in Figure 2, which shows the results of theses two steps when applied
to the Sierpinsky carpet (see [15] for details about the implementation).

Figure 2: Two-steps hybrid algorithm.



In this paper we shall analyze in detail (OPT.2), improving the simple ES used in [15]
by considering different niching schemes. We first describe the particular definition of the
components of ESs used in this paper:

• A convenient coding of individuals. The population if now formed by linear contractive
transformations. For each individual ti, we consider a vector of real numbers of the
form

(ri1, ri2, θi1, θi2, bi1, bi2, σi1, σi2, σi3, σi4, σi5, σi6).

where the first six components are the parameters of the transformation (individual pa-
rameters) and the last six components correspond to standard deviations for individual
mutations (strategy parameters).

• A reproduction mechanism. Starting from an initial random population obtained by
constraining the scaling factors to be lower than one and the translations to be in
the range of the figure dimensions, the ES proceeds by iteratively reproducing the
population individuals, by the simple criterion of proportionality to their fitness,
P (tk) = f(tk)/

∑
i f (ti), together with a linear scaling according to the best and worst

individuals. The genetic operators act on the reproduced individuals obtaining a new
population.

In order to deal with the constraints given in (6), each of the transformations is checked
to be a contraction and in case it violates this condition, the individual is assigned a
negative fitness value, discarding it from the new population.

• Recombination and Mutation operators. We use discrete recombination for individual
parameters (an offspring individual is formed by selecting at random the components
from either the first or second parent) and intermediate recombination for strategy
parameters (the standard deviations of an offspring random values between the corre-
sponding components of the parents).

Mutation is applied to the individual parameters of a transformation ti, by adding an
individual (0, σik) normally distributed random number to the k-th parameters. No
mutation is applied to the strategy parameters.

• A fitness positive function to be maximized. For a given transformation ti, the fitness
function is computed by evaluating the similarity between the original image, I , and
the transformed image, ti(I). The performance of the evolutive algorithm will depend
on the definition of a computationally efficient metric for this problem; since the Hauss-
dorff distance may be inefficient for computational purposes, we have considered the
simple Hamming distance instead, obtaining satisfactory results.

In this paper we assume I to be a selfsimilar image, i.e., the attractor of some IFS
model. Then, using a normalized Hamming distance, the fitness function f (t) = 1 −
d(I, t(I)) is known to have a global maximum at 1, and may have several local maxima.



This fact is illustrated in Figure 3, which shows transformations associated with global
and local maxima of the fitness function. Note how the transformations shown in Fig.
3(b) correspond to local minima of the Hamming distance, since no tiny modification
of the transformation parameters allow decreasing the Hamming distance between the
resulting attractor and the Sierpinsky carpet.

Figure 3: Some transformations of the Sierpinsky gasket corresponding to global (a) and
local (b) maximum of the fitness, regarding the Hamming distance used in this paper.

Evolutive strategies allow to find global or local maxima, by using a population with
µ parents, with λ offspring for each in every evolutive cycle. (µ, λ) indicates a strategy
where parents are discarded from the next generation, whereas strategies of the form (µ+λ)
introduces competition between parents and offspring to form a new population (elitism).

Figure 4 shows the results of two independent experiments (families 1 and 2) performing
100 cycles of a (20+10) ES. In the first experiment we get one of the global optima (a
selfsimilar region of the image), whereas in the second experiment the algorithm gets stuck
into a local maximum.

Figure 4: View of the IFS Evolutive Matlab window after running two independent ESs.



We performed several experiments with these ESs and in all cases we found that one of
the parents quickly dominates the the population and this finally converges to a single local
or global maximum (see Fig. 4). This behavior stimulated the development of algorithms
able to form and maintain stable subpopulations (also known as niches due to the evolu-
tive metaphor). In the next section, we analyze the performance of the standard niching
algorithms when applied to this problem.

4 Niching for Multimodal Fitness Functions

The main goal of niching methods is creating and maintaining several subpopulations, ideally
one per local or global maximum of the fitness function, avoiding the convergence of the whole
population to a single maximum.

One of the niching methods which has proven effective is fitness sharing [8]. Sharing
reduces the fitness of the population elements according to the number of individuals con-
centrated around the given element (a niche), so that the population is balanced among
multiple niches. The modified fitness of an individual ti, called the shared fitness sf is given
by:

sf (ti) =
f(ti)
m(ti)

(7)

where f() is the original fitness function and m(ti) is a function which determines the niche
associated with transformation ti. In our case, we are interested in spreading the transfor-
mations over the original image, so different selfsimilar regions can be found; to this aim we
have considered the following sharing function:

m(ti) =
m∑

j=1
sh(dij) (8)

where dij is the distance between the translation vectors of transformations ti and tj and

sh(dij) =
{

1 − dij

σs
if dij < σs

0 otherwise
(9)

A difficulty of this method is choosing an adequate σs value, since this requires prior knowl-
edge of the number of maxima and their distribution in the solution space.

Other efficient niching technique is crowding [17], which attempts to form and main-
tain niches by replacing population elements with similar individuals. The probabilistic
implementation of this method reproduces and kills a fixed proportion of individuals each
generation; each new individual must replace one of the existing elements, preferably the
most similar one. However, stochastic replacement errors are not desirable and a deter-
ministic implementation is most convenient in this case. Deterministic crowding works by
forming m/2 pairs from m population elements every cycle. After performing the genetic



Figure 5: View of the IFS Evolutive Matlab window after 20 cycles of the evolutive process.

operations, each one of the resulting children compete against one of the parents (using a
similarity criteria for deciding which one) in order to be included in the population.

In this case, by analogy with the criterion adopted for sharing methods, we have also
used the translation vectors of the transformations for calculating similarity.

Several experiments were performed with the aim of comparing the performance of the
above niching algorithms. Sharing allowed to maintain population diversity, but due to
the large number of different local maxima (see Fig. 3) the niches fluctuated on the image
and no improvement of the transformations were reached in the long run. The best results
were obtained with the deterministic crowding, which allowed obtaining in a single run good
approximations of the global maxima, as well as other local maxima of the image.

Figure 5 shows a view of the implemented Matlab program after performing 20 cycles
of a deterministic crowding algorithm for the Sierpinsky models with a population of 20
individuals. From this figure we can see that, at this stage, the transformations cover almost
the window area. Figure 6 shows the results after 500 cycles; it can be seen how the algorithm
maintained diversity within the population, allowing to obtain selfsimilar transformations of
the model. Therefore, using this algorithm we can obtain in a single run a set of appropriate
transformations to feed a genetic algorithm and solve the inverse problem, as described in
the introduction of this paper.



Figure 6: View of the IFS Evolutive Matlab window after 500 cycles of the evolutive process.

References

[1] Turner, M.J. and Blackledge, J.M., Andrews, P.R.: Fractal Geometry in Digital Imaging.
Academic Press, 1998.

[2] Fisher, Y.: Fractal Image Compression: Theory and Application. Springer Verlag, 1995.

[3] Barnsley, M.F.: Fractals everywhere, second edition. Academic Press, 1990.

[4] Abiko, T., Kawamata, M.: IFS coding of non-homogeneous fractal images using Gröbner
basis. Proc. of the IEEE International Conference on Image Processing (1999) 25–29.

[5] Berkner, K.: A wavelet-based solution to the inverse problem for fractal interpolation
functions, in L. Véhel et al. editors. Fractals in Engineering’97. Springer Verlag, 1997.

[6] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, second
edition, Springer-Verlag, 1994.

[7] Holland, J.H.: Adaptation in natural and artificial systems. The University o Michigan
Press, 1975.

[8] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning,
Addison Wesley, 1989.

[9] Rechenberg, I.: Evolution strategie: Optimierung technischer systeme nach prinzipien
der biologischen evolution. Frommann-Holzboog Verlag, 1973.



[10] Lutton, E. et al.: Mixed IFS - resolution of the inverse problem using genetic program-
ming. INRIA Rapport 2631, 1995.

[11] Shonkwiler, R., Mendivil, F., Deliu, A.: Genetic algorithms for the 1-D fractal inverse
problem. Proceedings of the Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann, 495–501, 1991.

[12] Goentzel, B.: Fractal image compression with the genetic algorithm. Complexity Inter-
national 1, 111-126, 1994.

[13] Nettleton, D.J., Garigliano, R.: Evolutionary algorithms and a fractal inverse problem.
Biosystems 33, 221-231, 1994.

[14] Evans, A.K. and Turner, M.J.: Specialisation of evolutionary algorithms and data struc-
tures for the IFS inverse problem, in M.J. Turner editor. Proceedings of the Second IMA
Conference on Image Processing: Mathematical Methods, Algorithms and Applications,
1998.

[15] Gutiérrez, J.M., Cofiño, A.S., and Ivanissevich, M.L. An Hybrid Evolutive–Genetic
Strategy for the Inverse Fractal Problem of IFS Models. in Lecture Notes in Artificial
Intelligence, Springer-Verlag, in press.

[16] Gutiérrez, J.M., lglesias, A. ,Rodŕıguez, M.A. and Rodŕıguez, V.J.: Generating and
Rendering Fractal Images. The Mathematica Journal 7(1), 6–14, 1997.

[17] Mahfoud, S.W.: Crowding and preselection revisited, in Proc. PPSN-92, Elsevier, 1992.

[18] Yin, X. and Germay, N.: , A fast genetic algorithm with sharing scheme using cluster
analysis methods in multimodal function optimization, Proc. I.C. Artificial Neural Nets
and Genetic Algorithms, 450–457, 1993.


