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Abstract

An agent recieves information from the environment which usually includes other
agents. Some of those agents could be providers of data. It is natural for the agent to
maintain a certain order among the informants based on the reliability or plausibility they
show. In a dynamic environment that order might change.

In this work we present a model for representing changes on plausibility relations.
The central idea is that the beliefs of an agent are provided by a set of informants, for
which there is a plausibility relation. This relation establishes if some informants are more
reliable than others. We propose change operators for the plausibility relation. We give
postulates for these operators and define their construction.
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1 Introduction

Current reasoning systems attempt to model an agent’s knowledge and interaction with its
environment in a symbolic manner. This environment, its world is generally dynamic and
changing due to natural evolution or the actions of other agents that are a part of it. In
consequence, an agent that is a part of a reasoning system must have the following components:
a knowledge base where its knowledge of the world is stored, a communication mechanism
with the environment and other agents in it, and a means of modifying its knowledge of the
environment.

Knowledge may be represented by a logic language which is propositional, first order, modal
or extentions of these. Each one of these alternatives has advantages as well as disadvantages.
The higher the expressive power of a given language, the more computational problems there
are regarding complexity and decidability.

Communication mechanisms can be varied, depending on the environment being modeled.
They can be multimedia mechanisms such as microphones, speakers, video cameras, infrared
sensors, motion detectors and even wired or wireless systems where information is transmitted
without any kind of preprocessing. They are irrelevant, however, for the purpose of this work.



Mechanisms for modifying knowledge may be modeled by what is known as Belief Change
Theory. Belief Change Theory assumes that the underlying language is at least propositional.
An agent’s knowledge is represented as a set of sentences and new information as a single
sentence. In turn, every change operator takes a set of sentences and a single sentence and
produces a new set of sentences as a result.

This paper is organized as follows. Section 2 introduces the main concepts related to beliet
revision. Section 3 presents the concept of plausibility and its application in belief revision
systems.  Section 4 defines revision of plausibility based relations, the operations involved,
their characteristic postulates and their construction. Finally, section 5 includes this paper’s
conclusions as well future work.

We will adopt a propositional language L with a complete get of boolean connectives: “—",
AT, TR RS Formulae in £ will be denoted by lowercase Greek characters: o, 7.6,... ,w.
Sets of sentences in L will be denoted by uppercase Latin characters: A, B, C, ..., Z. The svin-
bol “T7 represents a tautology or fruth. The symbol “17 represents a contradiction or falsum.
We also use a consequence operator Cn. Cn takes sets of sentences in £ and produces new sets of
sentences. The operator Cn satisfies inclusion (A C Cr(A})), dteration (Cn(A) = Cn(Cn(A))),
and monotonicity (if A C I3 then Cn(A) C Cn(3)). To simplify notation, we write Cn(a) for
Cn({a}) where o is any sentence in L. We also write @ € Un(A4) as A - a. Moreover, belief
bases will be finite set of sentences.

2 Belief Change

Belief revision is the process by which an agent changes its set of beliefs, making a transition
from one epistemic state to another. When such an agent learns new information it may realize
that this information clashes with its old beliefs. In this case the agent has to rovise its belief
set and decide which of the old belicfs need to be climinated in favor of the new information.

One of the most fundamental approaches to the formalization of the dynamics of beliefs
is the AGM model [AGMS85], proposed by Carlos Alchourrén, Peter Gérdenfors and David
Makinson. In the AGM approach the epistemic states are represented by belief sets, that is,
sets of sentences closed under logical consequence.

Let K = Cn{K) be a belief set and a a sentence in a propositional langunage £. The three
main types of changes are the following [GR92]:

Expansion: A new sentence is added to an epistemic state regardless of the consequences
of the so formed larger set. If “4+7 is an expansion operator, then K+« denotes the belief
sct K cxpanded by o

Contraction: Some sentence in the epistemic state is retracted without adding any new
belief. If *—7 is a contraction opcrator, then K—«o denotes the belief set K contracted
by .

Revision: A new sentence is consistently added to an epistemic state. In order to make
this operation possible, some sentences may be retracted from the original epistemic state.
It “+™ is a revision operator, then Ko denotes the belief set K revised by .

Expansions can be defined as the logical closure of K and «:

K+a = On(KU{a})



It is not possible to give a similarly explicit definition of contractions and revisions using logical
and set-theoretical notions only. These operations can be defined using logical notions and some
selection mechanism. Contractions and Revisions are interdefinable by the following identities:

Levi Identity: Kxa = (K——a)ta.
Harper Identity: K—a = KN Kx—a.

Thus, given a definition for once of these operators we can obtain the other by using the above
identitics. Géardenfors [Gar88| proposed the following basic rationality postulates for contraction
operators:

(K~1) Closure: K—o = Cn(K—a).

(K~2) Inclusion: K—o C K.

(K™3) Vacuity: If o € K then K—a = K.

(K~4) Success: If ¥ « then o & K—a.

(K75) Recovery: K C (K—a)+a.

(K=6) Extensionality: If - o < [ then K—a = K—/J.

and the following basic rationality postulates for revision operators:

*1) Closure: Kxa = Cn{Kxa).

*2) Success: a € Ko

*

Inclusion: Kxo € K+,

*5) Consistency: If ¥ - then Kxa # L.

(K1)
(K*2)
(K*3)
(K*4) Vacuity: If K ¥ - then Kra = K-+
(K*5)
(K*6)

*6) Extensionality: If F o «—  then Kxa = Kxf.

All of these operations have some controversial postulates. A thorough presentation of the
different belief change models can be found in [Fal99].

3 Plausibility in the context of Belief Change

Among the operations for belief change, we have two that warrant special attention: con-
tractions and revisions. DBoth of these operations require the elimination of sentences from a
knowledge basc. Thercfore, in addition to a sct of sentences which represent an agent’s knowl-
cdge state, we need a selection mechanism to determine which beliefs are eliminated in the
change process and which are not. In order to make this possible, we use some method that
assigns an informational value to sentences. In a process of pure contraction the sentences with
the least informational value will be selected among the candidates for elimination. Models
that use this technique are known as information-theoretic approaches.

Usually, theories that assign informational value to beliefs are based on the Bayesian Model.
In this type of model, an agent’s epistemic state requires that each sentence be assigned a



measure of probability reflecting the belief’s degree of certainty. Then. if a belief must be
eliminated from an epistemic state, the one with the lowest value can be selected.

However, this kind of modification cannot be modeled within classic models for belief change.
This is because those beliefs which are accepted in an epistemic state (whether they are belief
hases or belief sets) are completely true. This is to say, they have a maximum degree of certainty
(a probability of 1). If this certainty value were changed, a new value as close to 1 as possible
should be assigned. It is not possible to represent this epistemic attitude in the classic models
of theory change.

The other possibility consists of assigning a different value to beliefs, one that represents
their epistemic importance to the agent (epistemic entrenchment). [GM88, GR92]. This mea-
sure is completely external to the belief, not referring to the confidence to be had in the belief.
What it represents is the importance (or weight ) that this belief can have on an agent’s decision
Processes.

Let us contrast this to the case of probability. When we assign a probability = to a belief
v, within a probabilistic model it is assumed that the probability of -« is 1 — 2. This does not
apply to episternic entrenchment because if an agent believes o it assumes maximum certainty
for this belief, even though its weight can be low for a given decision process.

We propose a model of plausibility in which, instead of assigning a degree of importance
to each sentence, we assume that there is an informant which provides it. This is to say, each
sentence in the knowledge base is provided by an informant.

Associated with cach knowledge base K, there is an informant set Ji. For cach informant
set Ji there is a plausibility relation Gy, . In order to simplify the notation we will eliminate
the subindex K for the informant set and the subindex Jx for the plausibility relation (J and
(G respectively). When we must carry out a change operation in which belief elimination is
necessary, we eliminate those beliefs provided by the less reliable informants. This translates
to informants which are lesser under the plausibility relation G.

This paper’s central idea is not the definition of change operators based on plausibility.
What we present arce change operators that allow the modification of cach informant’s degree
of credibility relative to the other informants in J. For cxample, if an informant provides
information that proves to be wrong, the agent may decide to decrement its relative degree
of credibility. If, on the other hand, an informant provides information that often turns out
to be true its credibility should be raised. Some interesting related work can be found in

[Par98, ResT6|.

4 Representation and revision of partial order relations

4.1 Representation of the informant relation
4.1.1 The concept of generator set

Let us assume that we have a universal set of informants, J, and that, of these informants, some
arc to be considered more reliable than others. This is to say, in any case in which two distinct
informants provide an agent with contradictory information the more trustworthy onc is to be
believed over the other. The agent must, therefore, have a mechanism by means of which the
set, J is ordered. To this end we present the following concept.

Definition 4.1.1: Given a set of informants J we will call any binary relation G C J? a
generator set over J. An informant 7 is less trustworthy than an informant j according to G if



(i,5) € G~ =

G” represents the reflexive transitive closure of GG. It is desirable for G* to be a partial order
over J, although according to the preceding definition this is not always the case. We address
this matter in the following definition.

Definition 4.1.2: A generator set G C J? is said to be sound if G* is a partial order over .
O]

Example 4.1.1:  For example the generator set Gy = {(i.7), (4, k), (i. D)} is sound. How-
ever Gy = Gy U {(k,4)} is not sound because (i, k) € G% and (ki) € G3. This violates the
antisymnetry condition for partial orders. O

Why is it desirable for a generator set to be sound? For a relation to be a partial order it must
obey reflexivity, antisymmetry and transitivity. Given a generator set G it is obvious that its
reflexive transitive closure, G*, will obey reflexivity and transitivity. However if antisymmetry
is not respected then there is at least one pair of distinet informants, ¢ and j such that both
(i,j) € G" and {j,i) € G*. This would mean that both ¢ is less trustworthy than j and
that j is less trustworthy than i. Given that these beliefs are contradictory, believing them
simultaneously would lead the believing agent to inconsistencies.

4.1.2 Some interesting properties of Generator Sets

The following are interesting properties associated with generator sets.
(G1l) : A generator set GG is sound iff G can be represented by a directed acyclic graph.

The fact that G may be represented by a directed graph is trivial. The fact that it must
be acyclic arises from the following argument. Let us assume that G contains a cycle of length
longer than one. Cycles of length one are ignored because arcs of the form (i,7) are to be
expected due to reflexivity. Since one such arc must be present in G for all ¢ € J these may be
ipnored. Now let 4, § € J, i & j be two vertices of said cycle. Then there exists a path from i to
j and from j to ¢. This would imply that both (¢, 7) € G* and (j,i) € G*. Since this violates
antisymmetry G* cannot be a partial order and therefore (¢ cannot be sound. DBy a similar
argument, the reverse implication may also be proven.

(G2) : If GG is a sound generator set and (j,1) ¢ G* then G U {(i, 7)} is a sound generator set.

Let us assume that G is a sound generator set. (j,4) ¢ G* and that GU{(7, )} is not sound.
If & is sound then it has no cvcle. And if G U {(i,j}} is not sound then it has a cycle and
it follows that (i, j) completed it. Therefore, there was a path from j to ¢ in G and hence
(7,1} € G*. This contradicts our earlier assumption.

4.2 The expansion operator

Let us assume that an agent learns that, of a pair of informants, one is more reliable than the
other. This would warrant the modification of its knowledge accordingly. For this purpose, we
define the operator & @ P(J%) x 72— P(J%). This operator adds new tuples to a generator sct



in order to establish relations between informants. Given a pair of informants and a generator
set, this function returns a new generator set in which said agents are now related. According
to this new generator set we may say that the first informant is “less reliable” than the second.

4.2.1 Postulates for the expansion operator

(E1) Success: (i,7) € (GO (i,4)"

Establishing new relations among informants is most likely a costly process for the agent.
Consequently a desirable property of expansions is that the new relation given will indeed be
added to the agents beliefs, and not lost somehow.

(E2) Inclusion: G* C (G & (i, 7))

Here the case of equality between the previous set and the new one occurs in the event of
an expansion by a relation which was already entailed by the generator set. This leads us to
the following postulate for expansions.

(E3) Vacuity: if (¢, j) € G* then (G % (¢, 7)) = G™.

What this postulate states is that there is no information to be lost or gained by the addition
of redundant data to the gencrator sct.

(E4) Commutativity: (G (kD) T (i.7) = (GO @ 1) T kD)

The order in which tuples are added to the generator set does not affect the final, closed
relation. This is important because sometimes we will use G & A as a shorthand for the
cxpansion of GG by cvery tuple in A. Such is the case of the following postulate.

(E5) Extensionality: if A* = B* then (G < A)* = (G & B)*

The expansion of a generator set by two sets whose reflexive transitive closure is equal yields
generator sets whose closure is also equal.

(E6) Conditional Soundness Preservation: if (7 is a sound generator set and (j,i) ¢ G~
then G & (4, j) is a sound generator sct.

4.2.2 Construction

In this subsection, we will introduce a construction of expansions on plausibility relations.

Definition 4.2.1: Given a pair of informants i, j € J and generator set G C 12, we define the
expansion of G by (i,7) as G O (i.7) = GU {(i. )} O

The following lemma summarizes some interesting properties of the operator.

Lemma 4.2.1: Let 4 be an expansion operator as defined in Definition 4.2.1. Then 4 satisfies
success, inclusion, vacuity, commautation, and extensionality. U



Expansion does not preserve soundness perse, but is conditioned as stated in the postulate.
This property is a consequence of the properties of sound generator sets and the definition of
expansion that we have provided.

4.3 The contraction operator

At the beginning of the previous subsection, we said that an agent may need to assert the fact
that one informant is less reliable than another. In a similar fashion the opposite may also
become true. This is to say, we may wish to reflect the fact that an informant is no longer more
reliable than another. For this purpose we define a contraction operator & : P(J2)x T2 — P(J%).

Asgsume we have a pair of informants ¢ and § and a generator st . The hasic task of the &
function is to construct a new generator set in which this is no longer the case while losing as
little information as possible. However we cannot simply remove the pair (7, j) from G. Care
must be taken to also remove pairs that, through transitivity, would imply the pair (i, j) in G*.
As long as there is a path in the generator set from i to j, (¢, 7) will be found in its transitive
closure. It is therefore necessary to eliminate a set of pairs so that no path is left from i to §
in . This sct is desirably minimal.

4.3.1 Postulates for the contraction operator

(C1) Inclusion: (G C (i,7))* C G*

If a tuple is entailed by a generator set, then its contraction by said tuple removes at least
one element from the set: the tuple itself. The sets are equal in the case in which (4, 7) € G*.
This is expressed in the following postulate.

(C2) Vacuity: if (i, j) ¢ G*then G2 (4, j) =G

That is, if a tuple is not a consequence of a given generator set then its contraction by said
tuple provokes no change.

(C3) Success: if i # j then (i,7) ¢ (G (1, )*

A tuple cannot be entailed by the generator set resulting from its contraction. In the casc
of i = 7, the tuple will trivially be in the reflexive transitive closure of any generator set due to
reflexivity.

(C4) Path Disruption: for all k € 7, if (i,k) € G* and (k. j) € G* then either {7, k) ¢
(@& @0) or (k1) ¢ (G 7))

Let k € J be such that both (i, k) and (k, j) are in G*, and assume that we contract G by
(i, 7). I both (i, k) and (k, 7} are still entailed then by transitivity (7, 7) would also be entailed.
This would go against the success postulate.

(C5) Recovery: if (i,7) ¢ G* then G* C ((G 2 (i.7)) O (i, 5))*



This postulate is a direct consequence of the vacuity postulate for contraction and the
inclusion postulate for expansion.

(C6) Reverse Recovery: if (i,7) € G* then ({(G& (4,51 < (4, 7)) € G*

Here the case of equality between the sets arises when the contraction of G by (i, 7) only
causes the deletion of this tuple and no other implying pairs must also be removed. If other
pairs were retnoved to avoid the appearance of (i, ) in the closure then they would not reappear
with the expansion of G & (4, 7) by (4, j).

(C7) Soundness Preservation: if GG is a sound generator set then G & (i, 7) is a sound gen-
crator set

4.3.2 Construction

In this subsection we will introduce a construction for contractions on plausibility relations.
However, before we do so, we will need to present a few concepts.

First let us briefly review the concept of path. We say that a set of tuples P is a path from
ito jif (i,j) € P, or (i,k) € P and there is a path from k to j in P. We say that P is a
nonredundant path from 4 to j if it is a path from i to 7 and there ig no path from 7 to 7 in
every I C P,

Definition 4.3.1: Given a pair of informants i, 7 € J and generator set G € 72, we define the
path sct from 7 to j in G, and we will note it Gy;, as

G, = {C C G : Cis anonredundant path from ¢ to j in G}
O

Notice that according to this definition the path set from ¢ to j in a gencrator set G is a sct
of sets. Each sct represents a path from ¢ to j. In the contraction of G by (4, 7), in order to
avoid the appearance of this tuple, none of these paths may remain complete. Therefore, we
need a selection function to decide which tuples will be erased from each path in Gy;.

Definition 4.3.2: Given a minimum clipping of Gy;, we say that v is a cut function for G;
if and only if:

L y{Gy) €G.
2. For cach C' € Gy, v(Gy;) NC # (.

i

Now we may present our definition of contraction.

Definition 4.3.3: Given a pair of informants i, 7 € J and generator set. G C 7?2, we define the

contraction of G by {i,j) as G O (i, j) = G\ ¥{(Gy) O

The following result gives a swmimary of the propertics of the contraction operator.



Lemma 4.3.1: Let & be a contraction operator as defined as in Definition 4.3.3. Then &
satisfies inclusion, vacuity, success, path disruption, recovery, reverse recovery and soundness
preservation. 0

Notice that here, in contrast to the case of expansion, the soundness preservation property of
contraction is not conditioned. This is due to the way we define contraction. Since contraction
is basically a process of climination, it is impossible for this operation to introduce cycles if
there were none to begin with.

4.4 Revision operator

Supposc that an agent learns that an informant is less reliable than another. The agent’s
current generator set should be modified to reflect this new information. However, it would be
convenient if the generator set were also modified, when necessary, so that the opposite can no
longer hold. That is to say, if up to now the agent believed that the second informant was less
reliable then this should be retracted.

For this purpose we define the revision operator & : P(J?) x 72 — P(J?). Assume we have
a pair of informants ¢ and 7 and a generator set &, and the agent now has reason to believe
that 7 is less reliable than 7. The basic task of the & operator is to construct a new gencrator
set, in which (i, j) is entailed but (7,4) is not.

4.4.1 Postulates for the revision operator

(R1) Success: {i,j) € (G = {i,5))"

This is basically a consequence of the definition given for revision and the success postulate
for expansion.

(R2) Inclusion: (G ® (i, j)* C (G ® (i,5))*

This is due to the fact that expansion simply ingerts the new tuple into the generator set
while revision may need to remove tuples before adding the new one. The border case of
equality presents itself when (j,4) ¢ G*, which leads us to our next postulate.

(R3) Vacuity: if (4,4) ¢ G* then G2 (i,j) = G & (4, 7)

This is a conscquence of our definition of revision and the vacuity postulate for contraction.
In this case, there is nothing to be contracted before expanding.

(R4) Path Disruption: for all & € J, if (j,k) € G* and (ki) € G then either (j, k) ¢
(G (i) or (ki) & (G )

This postulate is analogous to the one presented for contraction. Let & € T be such that both
(j. k) and (k, ) arc in G”, and assume that we revise G by (4, j). It both (7, k) and (k,7) are still
entailed then, by transitivity, (7,¢) would also be entailed. This would go against the success
postulate for the contraction performed previous to expansion according to our definition of

revision.



(R5) Soundness Preservation: if G is a sound generator set then G' @ (i, 7) is a sound gen-
erator set.

4.4.2 Construction

In this subsection, we will introduce a construction of revisions on plausibility relations.

Definition 4.4.1: Given a pair of informants 4, j € J and generator set G C 72, we define the
revision of G by (i.7) as G R (4,4) = (G (4,4)) O (i. 7). O

The following lemma enunciates some interesting properties of the operator.

Lemma 4.4.1: Let & be a revision operator ag defined in Definition 4.4.1. Then £ satisfies
success, inclusion, vacuity, path disruption, and soundness preservation. U

Again here, as in the case of contraction, soundness preservation is not conditioned. In the
case that the new tuple to be inserted, (¢, 7) were to complete a cycle, the previous contraction
of (4,4) would insure that there is no link between § and 4. Hence, it is impossible for revision
to introduce cycles.

5 Conclusions and Future Work

We have introduced a model for representing changes in plaugibility relations. We presented
different change operators on the plausibility relation, giving postulates for said operators as
well as defining their construction. If we view every belief in the episternic state of an agent as
provided by an informant, we can dynamically modify the order among beliefs throughout the
agent’s span of existence.

Clearly, what follows is to devise ways of handling the perception of changing plausibilities in
real sources of information. Such is the case of weather forecasting systems, predictors of stock
market behavior, ef cetera. From these examples we will seek to understand the complexitics
of dynamic updating in decision making and advising systems.
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