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ABSTRACT 
 
Improvements in evolutionary algorithms (EAs) consider multirecombination, allowing multiple 
crossover operations on a pair of parents (MCPC, multiple crossovers per couple) or on a set of 
multiple parents (MCMP, multiple crossovers on multiple parents). Evolutionary algorithms have 
been successfully applied to solve scheduling problems. MCMP-STUD and MCMP-SRI are novel 
MCMP variants, which considers the inclusion of a stud-breeding individual in a pool of random 
immigrant parents In this paper the proposal is to generate the stud-breeding individual by means of 
a robust conventional heuristic, the CDS. In a multirecombined EA, setting of parameters n1 (num-
ber of crossovers) and n2 (number of parents) remained as an open question. In previous works; 
they were empirically determined, or a deterministic rule was applied. In this paper self adaptation 
of parameters  n1  and n2 is implemented, the idea is to code the parameters within the chromosome 
and undergo genetic operations. Hence it is expected that better parameter values be more inten-
sively propagated.   
The present paper discusses different multi-recombined methods and contrasts their performance 
when different parameter control methods are applied, to find the minimum makespan for selected 
instances of the FSSP. 
 
KEYWORDS: Evolutionary algorithms, Multiple Crossovers, Multiple Parents, Scheduling, Parame-
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1. INTRODUCTION. 
 
The flow-shop sequencing problem is generally described as follows: There are m machines and n 
jobs. Each job consists of m operations and each operation requires a different machine, all n jobs 
have to be processed in the same sequence on m machines. The processing time of each job in each 
machine is given. Frequently, the main objective is to find the sequence of jobs minimizing the 
maximum flow time, which is called the makespan [15]. The flow-shop problem has been proved to 
be NP-complete. Hence conventional and evolutionary heuristics have been developed by many 
researchers to solve the FSSP. In the category of conventional heuristics we can mention GUPTA, 
PALMER, NEH, and CDS. [10, 12, 13, 14, 15]. 
 
A new feature known as multirecombination applies several crossover operations on the set of (2 or 
more) parents. By means of multirecombination (MCPC and MCMP) better results were achieved. 
This implies higher quality of the best solution found throughout the evolutionary process, as well 
as an improved final population surrounding near optimal solutions. This later property also pro-
vides a sort of fault tolerance, because if eventually the dynamics of the system impedes using the 
best solution found then a better set of alternative solutions are available. The multirecombined 
methods were applied to FSSP [1] and contrasted on a series of suitable experiments against previ-
ous successful approaches of Tsujimura and Reeves. [18] Two variant MCMP-STUD [19] and 
MCMP-SRI [21] were recently proposed. Here, a stud (breeding individual) is selected for recom-
bining with a subset of parents from the old population. The members of this mating pool subse-
quently undergo multiple crossover operations. In the case of MCMP-SRI, the stud (breeding indi-
vidual) is generated by the CDS heuristics and the rest of the members of the parents pool are ran-
dom immigrant. 
 
Setting of parameters n1 (number of crossovers) and n2 (number of parents) in a multirecombined 
EA, remained as an open question in previous works; they were empirically determined or a deter-
ministic rule was applied. Self adaptation is a new field in evolutionary computation which advises 
to dynamically update parameters of the algorithm by evolving them as part of the chromosome 
structure. Previous work of Spears [16] suggested adaptive approaches to select the type of cross-
over operator to be applied to each couple during an evolutionary algorithm execution. 
In this paper self adaptation of parameters n1 and n2 is implemented, the idea is to codify the pa-
rameters within the chromosome and undergo genetic operations. Hence it is expected that better 
parameter values be more intensively propagated.   

 
The following sections discuss these new multi-recombined methods, describe parameter control 
methods and contrast their performance when they are applied to find the minimum makespan for 
selected instances of the FSSP. 
 
 
 
 
 
 
 
 



 

2. IMPROVED EVOLUTIONARY COMPUTATION APPROACHES 
 

Multiple crossover per couple (MCPC) [6,7] is a novel crossover method. It was applied to optimize 
classic testing functions and some harder (non-linear, non-separable) functions. For each mating pair 
MCPC allows a variable number of children. It is possible to choose for insertion in the next gen-
eration the best, a randomly selected or all of the generated offspring. In those earlier works it was 
noticed that in some cases MCPC found better results than those provided by SCPC. Also a reduced 
running time resulted when the number of crossovers per couple increased, and best quality results 
were obtained allowing between 2 and 4 crossover per couple. However in some cases the method 
increased the risk of premature convergence due to a loss of genetic diversity. To overcome this 
problem further successful approaches were undertaken [8]. Moreover, seeking for exploitation of a 
greater sample from the problem space, the multi-recombination was extended and applied to a set 
of more than two parents. 
 
In MCMP-STUD[19],  a mating pool is created by selection of n2 individuals from the old popula-
tion. Then the parent with minimum makespan (stud) mates every other parent in the pool. At that 
time partially mapped crossover (PMX) is applied to each couple and from the new offspring, after 
eventual mutation, the best one is selected for insertion in the next generation. The members of this 
mating pool subsequently undergo multiple crossover operations.  
 
In MCMP-SRI [21], the process for creating offspring is performed as follows (see figure 1). From 
the old population an individual, assumed as the stud, is selected by means of proportional selec-
tion. The number of n2 parents in the mating pool is completed with randomly created individuals 
(random immigrants). The stud mates every other parent, the couples undergo crossover and 2*n2 
offspring are created. The best of these 2*n2 offspring is stored in a temporary children pool. The 
crossover operation is repeated n1 times, for different cut points each time, until the children pool is 
completed. Finally, the best offspring created from n2 parents and n1 crossover is inserted in the new 
population. 
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Fig. 1. The stud and random immigrants multirecombination process. 



 

3. PARAMETER CONTROL 

Today a great interest exists in methods including mechanisms to control parameters used by evolu-
tionary algorithms during execution. Eiben, Hinterding and Michalewicz  [7,9,11,12] gave the fol-
lowing main categories of parameter control: 

 

Ø Deterministic Parameter Control: This is the case in which the parameter value is modified 
according with a deterministic rule, without any feedback of the searching process per-
formed by the strategy. 

Ø Adaptive Parameter Control: In this case some feedback information of the searching proc-
ess is used to determine the direction and magnitude of the change in the parameters. 

Ø Self-adaptive Parameter Control: Here the parameters to be adapted are coded within the 
chromosomes and undergo genetic operations. The best individuals of the population have 
better chances of survival and reproduction. Hence it is expected that better parameter val-
ues be more intensively propagated. 

 

As n1 (number of crossovers) and n2 (number of parents) to be applied to a couple, are parameters 
of the algorithm which are included as part of an individual, our present approach appertains to the    
last above mentioned category.  In that way we have three searching spaces: one corresponding to 
the objective function and the others associated to n1 (number of crossovers) and n2 (number of par-
ents) respectively.  

 

In Deterministic Parameter Control (DPC) [20], the parameter value is modified according to a 
deterministic rule based only on the current progress of the process indicated by the generation 
number. In the initial stages of the evolutionary process exploration is necessary while in the final 
stages exploitation of the relevant search space areas is advisable. Consequently, in our experi-
ments, n1 starts with a low value and then increases while n2 starts with a high value and then de-
creases during the evolutionary process. The deterministic rule is a lineal function of the current 
generation number. 

 
n1 = integer (n1 max * (currentgeneration /maxgen)) + 1 
n2 = n1 max - n1 + 1 

 
In this way n1 max determines dynamically both n1 and n2. 
 
In the case of Self Adaptation  Parameter Control (SPC) similar to previous implementations [8],  
n1  and n2 were encoded in two extra genes at the chromosome and these last two genes undergo 
one-cut point crossover operation.  
 
 
 
 
 
 



 

4. EXPERIMENTS AND RESULTS 
 
We tested four different approaches contrasting multirecombined methods when different parameter 
control methods were applied: MCPC-PMX, MCMP-CUSX, MCMP-STUD and MCMP-SRI with 
fixed n1 and  n2 parameter setting (FPS).  Then the same four methods were run with Deterministic 
Parameter Control (DPC) and Self Adaptation  Parameter Control (SPC).  
 
It worth noting that CUSX (controlled uniform scanning crossover) is a variant of USX (uniform 
scanning crossover ) which manage permutations ensuring the birth of feasible offspring. 
 
Approaches with Fixed  Parameter Setting (FPS) 
 
1. MCPC-PMX, multiple crossovers per couple using PMX. n1 = 3. 
2. MCMP-(CUSX), multiple crossovers on multiple parents using USX [1] (n1=2,  n2=6). 
3. MCMP-STUD, multiple crossovers on multiple parents, the best designated as the stud, with 

PMX, (n1= 6,  n2=8). 
4. MCMP-SRI, multiple crossovers on multiple parents, the best designated as the stud, with 

PMX, (n1= 6,  n2=8). 
 
The fixed values n1 and n2 were selected after a large number of trials. 
 
 Approaches with Deterministic Parameter Control (DPC) 
5. MCPC-PMX. 
6. MCMP-CUSX. 
7. MCMP-STUD. 
8. MCMP-SRI 

 
In all cases n1 max was set to 6. 
 
Approaches with Self Adaptation  Parameter Control (SPC),  9,10,11,12 the same as in DPC but the 
first individual in the initial population in (MCPC-PMX, MCMP-CUSX), and the stud-breeding 
individual (in MCMP-STUD and MCMP-SRI) was generated by CDS heuristic. 
 
Furthermore, every EA ran with a population of 100 individuals, elitism, maximum number of gen-
erations fixed at 100, and probabilities of crossover and mutation set to 0.65 and 0.3, respectively.  
 
All approaches were tested for six Taillard´s benchmarks [17] for FSSP.  We selected four instances 
for each of the following problem sizes: 20x5, 20x10, 20x20, 50x5, 50x10, and three instances for 
the 50x20 problem size. For each instance a series of ten runs was performed. As an indication of 
the performance of the algorithms the following variables were chosen: 
 
 
 
 
 
 
 



 

 
Ebest: (Abs(opt_val – best value)/opt_val)*100. It is the percentile error of the best found individ-
ual in one run when compared with the known (or assumed) optimum value opt_val. It gives us a 
measure of how far the best individual is from that opt_val. 
 
AvEbest: It is the average value of the error, over the total number of runs in one instance. 
 
Mean AvEbest: It is the mean average value of the error, over the total number of runs and in-
stances. 
 
 
Next tables and figures show results obtained for all problem sizes under each approach. Here, the 
values for the AvEbest and Mean AvEbest from the corresponding selected instances and experi-
ments are indicated.  
 

 
Fixed  Parameter Setting (FPS) 

 
Instance 

 

1. 
MCPC 
PMX 

2. 
MCMP 
CUSX 

3. 
MCMP 

Stud 

4. 
MCMP 

SRI 
20X5-1 1.667 4.593 1.651 2.293 
20X5-2 0.935 2.664 0.809 1.001 
20X5-3 3.043 11.175 7.095 6.883 
20X5-4 2.196 9.536 5.553 6.721 
Mean 

 
1.960 6.992 3.777 4.225 

 
Deterministic Parameter Control (DPC) 

 
Instance 5. 

MCPC 
PMX 

6. 
MCMP 
CUSX 

7. 
MCMP 

Stud 

8. 
MCMP 

SRI 

20X5-1 3.693 1.956 1.549 3.036 
20X5-2 1.744 1.376 1.163 1.354 
20X5-3 6.568 4.274 5.680 8.326 
20X5-4 6.102 4.022 5.553 8.213 
Mean 

 
4.527 2.907 3.486 5.232 
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Fig. 1: Mean AvEbest for 20 x 5 instances 

 

Self Adaptation Parameter Control (SPC) 
 

Instance 
 

9. 
MCPC 
PMX 

10. 
MCMP 
CUSX 

11. 
MCMP 

Stud 

12. 
MCMP 

SRI 

20X5-1 3.592 3.177 2.551 1.275 
20X5-2 2.031 1.685 2.653 1.487 
20X5-3 8.390 6.068 2.449 0.375 
20X5-4 7.595 5.893 2.152 2.109 
Mean 

 
5.402 4.206 2.451 1.132 

 
 
By observing table1 (cont.) and figure 1 we conclude that MCMP-SRI with SPC is the best per-
former, followed by MCMP-STUD with SPC. The worst performer was MCMP-CUSX with FPS 
showing that the method can be improved if parameter control is exerted. DPC and SPC degrades 
the performance of MCPC-PMX indicating that n1 max is too high for this problem size. MCMP-
STUD experiments a slight improvement in performance if DPC is applied compared with FPS, 
much better if SPC is applied. 
 

Table 1. AvEbest values for 20 x 5 instances Table 1. (cont) AvEbest values for 20 x 5 instances 



 

 
Fixed  Parameter Setting (FPS) 

 
Instance 

 

1. 
MCPC 
PMX 

2. 
MCMP 
CUSX 

3. 
MCMP 

Stud 

4. 
MCMP 

SRI 
20X10-1 3.167 11.700 2.655 8.180 
20X10-2 3.707 11.302 3.701 7.631 
20X10-3 3.991 10.836 3.737 7.908 
20X10-4 4.122 12.504 3.621 8.273 

Mean 
 

3.747 11.585 3.429 7.998 

 
Deterministic Parameter Control (DPC) 

 
 

Instance 
 

5. 
MCPC 
PMX 

6. 
MCMP 
CUSX 

7. 
MCMP 

Stud 

8. 
MCMP 

SRI 
20X10-1 6.941 4.893 4.949 8.723 
20X10-2 5.980 5.986 5.750 7.860 
20X10-3 6.604 5.568 5.321 9.559 
20X10-4 7.380 5.493 5.283 10.239 

Mean 
 

6.726 5.485 5.326 9.905 

 
Self Adaptation Parameter Control (SPC) 

   
 

Instance 
 

9 
MCPC 
PMX 

10 
MCMP 
CUSX 

11 
MCMP 

Stud 

12. 
MCMP 

SRI 
20X10-1 7.212 8.034 7.870 2.592 
20X10-2 6.281 6.227 7.715 2.257 
20X10-3 8.576 7.246 7.574 2.375 
20X10-4 8.440 8.077 8.585 3.015 

Mean 
 

7.627 7.396 7.936 2.559 
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Fig. 2: Mean AvEbest for 20 x 10 instances 

 
 
 
In table 2 and figure 2 we can see that 
MCMP-SRI with SPC is the best performer, 
followed by MCMP-STUD with FPS. The 
worst performer was again MCMP-CUSX 
with FPS showing that the method can be 
improved when parameter control is applied. 
DPC degrades the performance of MCPC-
PMX, MCMP-STUD and MCMP-SRI indi-
cating that n1 max is too high for this problem 
size in the first case and that a loss of the in-
herent balance between exploration and ex-
ploitation can occur in the second case. 
 
From table 3 and figure 3 we can notice that 
MCMP-STUD with either SPS or DPC are 
the best performers. As before, the worst per-
former is MCMP-CUSX with FPS, and the 
method improves when parameter control is 
applied. Also MCPC-PMX improves under 
DPC in this problem size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. AvEbest values for 20 x 10 instances 



 

 
 
 

 
Fixed  Parameter Setting (FPS) 

 
Instance 

 

1. 
MCPC 
PMX 

2. 
MCMP 
CUSX 

3. 
MCMP 

Stud 

4. 
MCMP 

SRI 
20X20-1 6.099 6.508 1.881 6.021 
20X20-2 5.971 7.695 2.495 6.914 
20X20-3 5.198 6.943 2.266 5.292 
20X20-4 6.001 7.382 2.564 6.932 

Mean 
 

5.817 7.132 2.301 6.290 

 
Deterministic Parameter Control (DPC) 

 
 

Instance 
 

5. 
MCPC 
PMX 

6. 
MCMP 
CUSX 

7. 
MCMP 

Stud 

8. 
MCMP 

SRI 
20X20-1 4.619 3.805 4.362 7.314 
20X20-2 4.552 4.995 4.686 8.052 
20X20-3 4.140 4.076 4.037 6.758 
20X20-4 4.669 5.083 4.148 7.526 

Mean 
 

4.495 4.490 4.308 7.413 

 
Self Adaptation Parameter Control (SPC) 

   
 

Instance 
 

9 
MCPC 
PMX 

10 
MCMP 
CUSX 

11 
MCMP 

Stud 

12. 
MCMP 

SRI 
20X20-1 5.211 6.143 2.630 6.670 
20X20-2 5.929 5.914 2.329 7.090 
20X20-3 4.484 5.997 2.190 5.924 
20X20-4 5.016 6.253 2.773 6.217 

Mean 
 

5.160 6.077 2.481 6.475 

 
 
 
 
 
 
 
 

 
 
 

 
Fixed  Parameter Setting (FPS) 

 
Instance 

 

1. 
MCPC 
PMX 

2. 
MCMP 
CUSX 

3. 
MCMP 

Stud 

4. 
MCMP 

SRI 
50X5-1 0.914 2.533 0.400 1.836 
50X5-2 2.350 4.718 1.334 4.478 
50X5-3 1.709 4.243 1.328 3.636 
50X5-4 2.708 4.878 1.109 4.507 
Mean 

 
1.920 4.093 1.043 3.614 

 
Deterministic Parameter Control (DPC) 

 
 

Instance 
 

5. 
MCPC 
PMX 

6. 
MCMP 
CUSX 

7. 
MCMP 

Stud 

8. 
MCMP 

SRI 
50X5-1 1.252 1.072 0.844 2.173 
50X5-2 1.941 2.297 1.595 4.682 
50X5-3 2.415 1.740 1.381 3.705 
50X5-4 3.144 1.854 1.516 4.547 

Mean 
 

2.188 1.741 1.334 3.777 

 
Self Adaptation Parameter Control (SPC) 

   
 

Instance 
 

9 
MCPC 
PMX 

10 
MCMP 
CUSX 

11 
MCMP 

Stud 

12. 
MCMP 

SRI 
50X5-1 1.098 1.292 0.224 1.630 
50X5-2 1.757 1.292 0.209 3.592 
50X5-3 2.304 1.222 0.282 3.167 
50X5-4 3.297 1.259 0.851 4.039 

Mean 
 

2.114 1.468 0.392 3.107 

 
 
 
 
 
 
 
 

Table 3. AvEbest values for 20 x 20 instances Table 4. AvEbest values for 50 x  5 instances 
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Fixed  Parameter Setting (FPS) 
 

Instance 
 

1. 
MCPC 
PMX 

2. 
MCMP 
CUSX 

3. 
MCMP 

Stud 

4. 
MCMP 

SRI 
50X10-1 9.150 13.478 3.950 11.478 
50X10-2 9.419 12.766 4.464 12.521 
50X10-3 11.512 15.119 4.892 14.085 
50X10-4 8.267 12.001 3.642 10.826 

Mean 
 

9.587 13.341 4.237 12.227 

Deterministic Parameter Control (DPC) 

Instance 5. 
MCPC 
PMX 

6. 
MCMP 
CUSX 

7. 
MCMP 

Stud 

8. 
MCMP 

SRI 

50X10-1 5.977 6.003 5.137 11.600 
50X10-2 7.272 7.503 5.439 12.656 
50X10-3 7.898 8.666 5.705 14.022 
50X10-4 6.191 6.090 4.184 11.622 

Mean 
 

6.834 7.066 5.116 12.475 

Self Adaptation Parameter Control (SPC) 

Instance 
 

9. 
MCPC 
PMX 

10. 
MCMP 
CUSX 

11. 
MCMP 

Stud 

12. 
MCMP 

SRI 

50X10-1 7.160 10.446 3.395 11.392 
50X10-2 8.316 10.650 4.060 12.172 
50X10-3 8.530 11.198 3.970 12.933 
50X10-4 6.687 9.191 4.885 10.082 

Mean 
 

7.673 10.371 4.077 11.644 
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In table 4 and figure 4 we can observe that 
MCMP-STUD with FPS, DPC or SPC are the 
best performers with similar average error 
values. The worst performer was again 
MCMP-CUSX with FPS, and the method 
improves when parameter control is applied. 
DPC slightly degrades the performance of 
both MCPC-PMX and MCMP-STUD. 
 

Fixed  Parameter Setting (FPS) 

 
Instance 

 

1. 
MCPC 
PMX 

2. 
MCMP 
CUSX 

3. 
MCMP 

Stud 

4. 
MCMP 

SRI 
50X20-1 9.257 14.379 3.853 12.895 
50X20-2 10.250 14.748 5.467 13.529 
50X20-3 10.701 15.379 5.782 14.119 

Mean 10.069 14.835 5.034 13.514 
Deterministic Parameter Control (DPC) 

Instance 5. 
MCPC 
PMX 

6. 
MCMP 
CUSX 

7. 
MCMP 

Stud 

8. 
MCMP 

SRI 

50X20-1 7.855 7.425 5.471 13.283 
50X20-2 8.861 9.276 6.923 13.812 
50X20-3 8.307 8.664 6.069 14.016 

Mean 8.341 8.455 6.154 13.703 
Self Adaptation Parameter Control (SPC) 
Instance 

 
9. 

MCPC 
PMX 

10. 
MCMP 
CUSX 

11. 
MCMP 

Stud 

12. 
MCMP 

SRI 

50X20-1 6.689 10.945 4.021 12.862 
50X20-2 8.248 11.456 3.786 13.241 
50X20-3 8.037 10.990 5.879 13.604 

Mean 7.658 11.130 4.562 13.236 
 
 

Fig. 3: Mean AvEbest for 20 x 20 instances Fig. 4: Mean AvEbest for 50 x 5 instances 

Table 6.  AvEbest values for 50 x  20 instances Table 5.  AvEbest values for 50 x  10 instances 
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From table 5 and figure 5 we can see that again MCMP-STUD with FPS, DPC or FPC are the best 
performers. The worst performer was again MCMP-CUSX with FPS, and the method improves 
when parameter control is applied. Both MCPC-PMX and MCMP-CUSX significantly improve 
under DPC and SPC in this problem size.  
A similar situation to the one in the last case, can be observed in table 6 and figure 6 for this prob-
lem size. Again MCMP-STUD with FPS, DPC and SPC are the best performers. MCMP-CUSX 
with FPS remains as the worst performer. Both MCPC-PMX and MCMP-CUSX improve under 
DPC and SPC in this problem size, and more significantly for the latter. 
 
5. CONCLUSIONS 
 
This paper introduced a parameter control method, the Self Adaptation Parameter Control, in multi-
recombined evolutionary algorithms for the Flow Shop Scheduling Problem. In Self Adaptation 
Parameter Control the idea is to code the parameters n1 (number of crossovers) and n2 (number of 
parents) within the chromosome and undergo genetic operations. Hence it is expected that better 
parameter values be more intensively propagated.Results achieved are contrasted against results 
obtained in previous work under other parameter control method, the  Deterministic Parameter 
Control.  
By analyzing results we can remark: 
For any of the considered performance variables MCMP-CUSX with deterministic parameter con-
trol (DPC) is the most sensitive method to DPC for any problem size. It is followed by MCPC-
PMX, which shows improvements in most cases, except in the smaller problem sizes. In all cases 
MCMP-STUD and MCMP-SRI improve their performance, and much better in smaller problem 
size. These different behaviours can be explained as follows. Results for FPS were obtained after a 
number of trials to find better parameter setting while for these preliminary tests with DPS all the 
algorithms ran with the same n1 max value. When SPC was applied a robust conventional heuristic, 
the CDS to generate one individual in the initial population for MCPC-PMX and MCMP-CUSX 
and as a stud-breeding-individual for MCMP-STUD and MCMP-SRI. Consequently: 
 
• MCPC-PMX was affected in the smaller problem sizes for excessive exploitation due to a high 

maximum number of crossover leading to premature convergence. As a consequence in some 
smaller problem sizes no improvements or even degradation can be expected. 

Fig. 5: Mean AvEbest for 50 x 10 instances Fig. 6: Mean AvEbest for 50 x 20 instances 



 

• MCMP-CUSX is intrinsically affected for a crossover method which preventing unfeasible off-
spring reduces the searching abilities of  the algorithm. Consequently, improvements are to be 
expected in many cases. 

• MCMP-STUD and MCMP-SRI are methods, which inherently balance exploration and exploi-
tation in the searching space when parameters are adequately selected so as a  consequence of 
applied self adaptation better results were obtained. 
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