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ABSTRACT 
 
Jobs to be delivered in a production system are usually weighted according to clients requirements 
and relevance. Attempting to achieve higher customer satisfaction trends in manufacturing are fo-
cussed today on production policies, which emphasizes minimum weighted tardiness. 
 
Evolutionary algorithms have been successfully applied to solve scheduling problems. New trends 
to enhance evolutionary algorithms introduced multiple-crossovers-on-multiple-parents (MCMP) a 
multirecombinative approach allowing multiple crossovers on the selected pool of (more than two) 
parents. MCMP-SRI is a novel MCMP variant, which considers the inclusion of a stud-breeding 
individual in a pool of random immigrant parents. Members of this mating pool subsequently un-
dergo multiple crossover operations. 
 
This paper briefly describes the weighted tardiness problem in a single machine environment, and 
summarizes implementation details and MCMP-SRI performance for a set of problem instances 
extracted from the OR-Library. 
 
1. INTRODUCTION 
 
The problem 1∑wj Tj [1, 4] is an important generalization of the 1∑ Tj . Various researchers 
have worked on this problem and have experimented with many different approaches. These ap-
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proaches range for very sophisticated computer-intensive techniques to fairly crude heuristics de-
signed primarily for implementation purposes.  Because branch and bound based method are pro-
hibitively time consuming even with only 20 jobs, it is important to have heuristics providing rea-
sonably good schedules with tolerable computational effort. 
 
Among other heuristics [14], evolutionary algorithms have been successfully applied to solve 
scheduling problems [15,16]. Current trends in evolutionary algorithms make use of  multiparent [5, 
6, 7] and multirecombinative approaches [8, 9,10]. The latter we called, multiple-crossovers-on-
multiple-parents (MCMP). Instead of applying crossover once on a pair of parents this feature ap-
plies n1 crossover operations on a set of n2 parents. In order to improve the balance between explo-
ration and exploitation in the search process [13], this work make use of a breeding individual 
(stud) which repeatedly mates individuals that randomly immigrates to a mating pool. Under this 
approach the random immigrants incorporate exploration (making unnecessary the use of mutation 
operations) and the multi-mating operation with the stud incorporates exploitation to the search pro-
cess. Next sections describe the weighted tardiness scheduling problem, the heuristic proposed and 
discuss the results obtained. 
 
2. THE WEIGHTED TARDINESS SCHEDULING PROBLEM 
 
The single-machine total weighted tardiness problem [1] can be stated as follows: n jobs are to be 
processed without interruption on a  single machine that can handle no more than one job at a time. 
Job j (j = 1,...,n)  becomes available for processing at time zero, requires an uninterrupted positive  
processing time pj on the machine, has a positive weight wj, and a due date dj by which it should 
ideally be finished.  For a given processing order of the jobs, the earliest completion time Cj and  
the tardiness Tj = max{Cj-dj,0} of job j can readily be computed. The problem is to find a processing 

order of the jobs with minimum total weighted tardiness ∑
=

n

j
jjTw

1

. Even with this simple formula-

tion, this model leads to an optimization problem that is NP-Hard [1]. 
 
3. MULTIRECOMBINATION OF  STUDS AND IMMIGRANTS 
 
The conventional approach to crossover, independently of the method being applied, involves applying 
the operator only once on the selected parents. Such a procedure is known as the Single Crossover 
Per Couple approach (SCPC). An alternative approach Multiple Crossover per Couple (MCPC) 
implies repeated application of crossover to exploit the good features of a pair of parents. Imple-
mentation and results are discussed elsewhere [8], [9]. To improve MCPC performance, by using 
the multiparent approach of Eiben [5], [6], [7], the method was extended to MCMP [10] where the 
multiple crossovers are applied to a set of multiple parents. Results obtained in diverse single and 
multiobjective optimization problems indicated that the searching space is efficiently exploited by 
the multiple application of crossovers and efficiently explored by the greater number of samples 
provided by the multiple parents. 
 
Attempting to achieve a better balance between exploration and exploitation we devised MCMP-
SRI [11], [12]. Here, the process for creating offspring is performed as follows (see figure 1). From 
the old population an individual, designated the stud, is selected by means of proportional selection. 
The number of n2 parents in the mating pool is completed with randomly created individuals (ran-



dom immigrants). The stud mates every other parent, the couples undergo partial mapped crossover 
(PMX) and 2*n2 offspring are created. The best of these 2*n2 offspring is stored in a temporary 
children pool. The crossover operation is repeated n1 times, for different cut points each time, until 
the children pool is completed. Children are not exposed to mutation. Finally, the best offspring 
created from n2 parents and n1 crossover is inserted in the new population.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. EXPERIMENTAL TESTS AND RESULTS 
 
The evolutionary algorithms were tested for selected instances from OR-library benchmarks [2, 3] 
for the weighted tardiness scheduling problems. We performed a series of 10 runs for each of the 20 
instances of 40 and 50 job problems. The maximum number of generations was fixed at 500 and 
600 for the 40 and 50 jobs problem size, respectively. Population sizes were fixed at 150 individuals 
for both problem sizes. Probabilities for crossover were set to 0.65, in all experiments. The number 
n1, of crossovers and the number n2, of parents, were set to 14 and 16 for the 40 and 50 jobs prob-
lem size, respectively, in all experiments. 
 
To compare the algorithms, the following relevant performance variables were chosen: 
 
Ebest = ( (best value - opt_val)/opt_val)100 
It is the percentile error of the best-found individual when compared with the known, or estimated, 
optimum value opt_val. It gives us a measure on how far the best individual is from that opt_val.  
 
Hit Ratio. It is 1 (one) if  the algorithm found the reported optimum (or hits the upper bound), and 
0 (zero) otherwise. 
 
Gbest. It is the generation where the best individual was found. 
 
In this work we show the results in two tables and four figures for the selected instances. The tables 
show upper bounds published in the OR-Library, Minimum objective value obtained by MCMP-
SRI and the performance variables Ebest, Hit Ratio and Gbest. Figures only show Ebest and  Gbest.   
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Fig. 1. The stud and random immigrants multirecombination process. 



Instance k Upper  
Bound 

Min  
WT 

Mean 
Ebest 

Hit  
Ratio 

Mean 
Gbest  

WT40-1 913 913 2.16 1 66.30 
Wt40-2 6955 6955 0.00 1 220.60 
Wt40-3 17465 17465 0.00 1 304.90 
Wt40-4 77122 77165 0.50 0 470.40 
Wt40-5 77774 77793 0.13 0 477.50 
Wt40-6 108 108 0.00 1 71.40 
Wt40-7 6575 6575 0.26 1 280.90 
Wt40-8 57640 57660 0.73 0 459.30 
Wt40-9 64451 64499 0.24 0 478.20 
Wt40-10 0 0 0.00 1 51.30 
Wt40-11 2099 2099 6.32 1 186.80 
Wt40-12 65386 65429 0.58 0 474.70 
Wt40-13 90486 90566 0.18 0 485.60 
Wt40-14 0 0 0.00 1 4.70 
Wt40-15 47683 47811 0.91 0 471.90 
Wt40-16 126048 126082 0.12 0 475.90 
Wt40-17 0 0 0.00 1 6.60 
Wt40-18 0 0 0.00 1 266.30 
Wt40-19 46770 46931 0.90 0 461.70 
Wt40-20 122266 122458 0.30 0 482.20 

Average   0.67 0.50 309.86 
 
 
 
 
Table 1 summarizes mean and general average values for the performance variables through all 
selected instances for the 40 jobs problem size. Results show that MCMP-SRI hits the upper bound 
in half of the runs in the series (Average Hit Ratio is 0.50). On average, the percentile error of the 
best found individual when compared with the best known objective value is 0.67%. The number of 
generations, Gbest, required to find the best individual ranges from 4.70 to 485.60. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Mean and general average values for the performance variables under MCMP-SRI,  
              for the 40 jobs instances. 

Fig 3. Mean Gbest values under 
MCMP-SRI, for the 40 jobs instances. 

Mean Ebest 

0.00

2.00

4.00

6.00

8.00

1 3 5 7 9 11 13 15 17 19

Instances

Mean Gbest 

0.00

200.00

400.00

600.00

1 3 5 7 9 11 13 15 17 19

Instances

Fig 2. Mean Ebest values under 
MCMP-SRI, for the 40 jobs instances. 



As we can see in figure 2 the mean Ebest for most instances is close to zero and only for instance 11 
the this value is close to 6%. In figure 3 we can observe that the selected instances require different 
computational effort (generations) to reach the best found value. The first group of instances re-
quires a number of generations ranging from 0 to 100; for the second group it ranges from 100 to 
300 generations and the last group of instances requires more than 300 generations. 
 

Instance k Upper  
Bound 

Min  
WT 

Mean 
Ebest 

Hit  
Ratio 

Mean 
Gbest  

wt50-1 2134 2134 0.00 1.00 46.30 
wt50-2 26276 26276 0.27 1.00 414.50 
wt50-3 51785 51884 0.68 0.00 540.10 
wt50-4 89299 90192 1.86 0.00 477.20 
wt50-5 214546 215518 1.14 0.00 524.50 
wt50-6 2 2 0.00 1.00 224.00 
wt50-7 9934 9934 1.06 1.00 417.40 
wt50-8 123893 126256 3.02 0.00 476.00 
wt50-9 157505 158063 1.64 0.00 494.70 
wt50-10 0 0 0.00 1.00 20.00 
wt50-11 1258 1258 0.48 1.00 262.80 
wt50-12 76878 78215 3.03 0.00 450.80 
wt50-13 150580 152213 2.46 0.00 490.20 
wt50-14 0 0 0.00 1.00 17.00 
wt50-15 89298 91879 5.38 0.00 473.40 
wt50-16 177909 178937 1.40 0.00 535.40 
wt50-17 0 0 0.00 1.00 15.40 
wt50-18 0 0 0.00 1.00 120.70 
wt50-19 35727 38354 9.44 0.00 535.00 
wt50-20 78315 79595 5.31 0.00 409.00 

Mean Avg   1.86 0.45 347.22 
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Fig 5. Mean Gbest values under 
MCMP-SRI, for the 50 jobs instances. 
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Fig 4. Mean Ebest values under 
MCMP-SRI, for the 50 jobs instances. 

Table 2. Mean and general average values for the performance variables under MCMP-SRI,  
              for the 50 jobs instances. 



Table 2 summarizes mean and general average values for the performance variables through all 
selected instances for the 50 jobs problem size. Results show that MCMP-SRI hits the upper bound 
in approximately half of the runs in the series (Average Mean Hit Ratio is 0.45). On average, the 
percentile error of the best found individual when compared with the best known objective value is 
1.86%, while the number of generations, Gbest, required to find the best individual ranges from 
15.40 to 540. 
 
Figures 4 and 5 show the particular behaviour of Ebest and Gbest variables for 50 jobs instances. As 
we can see in figure 4 Mean Ebest for most is ranging from 0 to 3 percent and only for instances 
15,19 and 20 the Ebest is greater than 3%. In figure 5 we can observe that, as it happened in the  40 
jobs problem size, the selected instances require different computational effort to reach the best 
found value. In this case the first group of instances requires a number of generations ranging from 
0 to 100; for the second group it ranges from 100 to 400 generations and the last group of instances 
requires more than 400 generations. 
 
5. CONCLUSIONS 
 
This paper shows the performance of MCMP-SRI, one of the latest variant of the multi-
recombinative family when it is applied to the weighted tardiness problem scheduling in a single 
machine environment. The main objective of this novel recombinative method is to find an equilib-
rium between exploration and exploitation in the search process. An individual of the old popula-
tion is selected as the stud and subsequently mated with a set of new randomly generated individu-
als (immigrants). The presence of the stud ensures the retention of good features of previous solu-
tions while the immigrants, as continuous source of genetic diversity, avoid premature convergence 
and make it unnecessary to apply mutation. Preliminary results are promising and showed its poten-
tials to find the upper bound in the selected instances of the weighted-tardiness scheduling problem. 
Future work will include dynamic control and self-adaptation of parameters, and the possible inser-
tion of problem-specific-knowledge in the representation to test the method in the larger bench-
marks of the OR library. 
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