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ABSTRACT 
 
Balance between exploitation and exploration is a main factor influencing convergence in an evolu-
tionary algorithm. In order to improve this balance new trends in evolutionary algorithms make use 
of multi-recombinative approaches, known as multiple-crossovers-on-multiple-parents (MCMP). 
The use of a breeding individual (stud) which repeatedly mates individuals that randomly immi-
grates to a mating pool can further help the balance between exploration and exploitation.  
 
For the single-machine common due date problem an optimal schedule is V-shaped around the due 
date. To produce V-shaped schedules an appropriate binary representation, associated with a sched-
ule builder, can be used. In this representation each bit indicates if a corresponding job belongs ei-
ther to the tardy or the non-tardy set. When contrasted with commonly used permutation representa-
tions this approach reduces the searching space from n! to 2n. 
 
This paper compares three different implementations and shows their performance on a set of in-
stances for the single machine scheduling problem with a common due date. Two of these ap-
proaches are based on a binary representation to form V-shaped schedules while the other is based 
on permutations. All these approaches apply different multirecombined methods. Details on imple-
mentation and results are discussed. 
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1. INTRODUCTION 
 
Among other heuristics [13], evolutionary algorithms (EAs) have been successfully applied to solve 
scheduling problems [14,15]. In EAs extreme exploitation can lead to premature convergence and 
intense exploration can make the search ineffective. In earlier works we devised a novel approach, 
multiple-crossovers-per-couple (MCPC), to allow multiple offspring per couple, as often happens in 
nature [8]. This approach allows us to deeply explore the recombination possibilities of previously 
found solutions. Implementation and results are discussed elsewhere [9], [10].To improve MCPC 
performance, by using the multiparent approach of Eiben [4], [5], [6], [7], the method was extended 
to MCMP where the multiple crossovers are applied to a set of multiple parents [12]. Results ob-
tained in diverse single and multiobjective optimization problems indicated that the searching space 
is efficiently exploited by the multiple application of crossovers and efficiently explored by the 
greater number of samples provided by the multiple parents. A main property of this approach is 
revealed when observing the final population: all individuals are much more centred surrounding the 
optimum. This is an important issue when an application requires provision of multiple alternative 
near-optimal solutions. 
 
According to Baker and Scudder [1] an optimal schedule for the earliness-tardiness problem in a 
single machine environment is V-shaped around the due date. Inserting problem-specific-
knowledge, Lee and Kim [14] proposed a binary representation for a genetic algorithm which guar-
antees that all chromosome represents V-shaped schedules. 
 
Following current trends and inserting problem-specific-knowledge this paper contrasts the behav-
iour of a multirecombined approach based in the use of a breeding individual (stud) [16], [17], [18] 
against a multirecombined approach based on uniform scanning crossover (USX). Next sections 
describe the earliness-tardiness scheduling problem, the new heuristics proposed and discuss the 
results obtained. 
 
2. THE SINGLE-MACHINE COMMON DUE DATE  PROBLEM 
 
In scheduling, until recently, the mean tardiness criterion has been a standard method of measuring 
conformance to due dates ignoring the effects of jobs completing early. Just-in-time production em-
phasizes penalties to both early and tardy jobs giving rise to a nonregular performance measure and 
new methodologies in the design of solution procedures. In the restricted single-machine common 
due date problem, n jobs with deterministic processing times must be processed attempting to con-
form a common due date, thus minimizing penalties imposed to early and tardy jobs.  
 
The problem can be stated as follows: A set of n jobs with deterministic processing times pi and a 
common due date d is given. The jobs have to be processed on one machine. For each of the jobs an 
individual earliness αi and tardiness βi penalties are given. The goal is to find a schedule for the n 
jobs which jointly minimizes the sum of earliness and tardiness penalties. 
 
Even simple in the formulation, this model leads to an optimization problem that is NP-Hard [3], 
and can be precisely stated as defined in [13]:  
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3. ALTERNATIVE MULTIRECOMBINED APPROACHES 
 
In our attempt to achieve a better balance between exploration and exploitation we devised MCMP-
SRI, where a permutation based representation was adopted. Here, the process for creating offspring 
is performed as follows. From the old population an individual, designated the stud, is selected by 
means of proportional selection. The number of n2 parents in the mating pool is completed with ran-
domly created individuals (random immigrants). The stud mates every other parent, the couples 
undergo partial mapped crossover (PMX) and 2*n2 offspring are created. After crossover the best of 
these 2*n2 offspring is stored in a temporary children pool. The crossover operation is repeated n1 

times, until the children pool is completed. Finally, the best offspring created from n2 parents and n1 
crossover is inserted in the new population. Children are not exposed to mutation because the ran-
dom immigrants provide the necessary genetic diversity to the mating pool. 
 
Attempting to insert problem-specific-knowledge we decided to follow Lee and Kim [14] proposal 
giving rise to MCMP-V. Regarding representation, a chromosome can suitably be represented by a 
binary string of n bits. Here, bit indicates one of two sets a corresponding job belongs to (1 repre-
sents the tardy job set T, and 0 represents the non-tardy job set E).  For instance, if the chromosome 
is [0 0 1 0 1 1 1 1 0 0] the tardy set is formed as T = { j3, j5, j6, j7, j8 } and the non-tardy set is 
formed as E = { j1, j2, j4, j9, j10}. Afterwards the jobs are sequenced in set E in non-increasing order 
of pi /αi and jobs in set T in non-decreasing order of pi /βi to form a V-shaped schedule. It is impor-
tant to note that using the conventional permutation representation the algorithm is compelled to 
search in a problem space of size n!. Inserting problem-specific-knowledge through this representa-
tion the problem space size is reduced to 2n.  In MCMP-V, the process for creating the new popula-
tion from the old population  is performed as follows. Each time an offspring is to be inserted in the 
new population, n2 parents selected from the old population undergo n1 crossover operations (Uni-
form Scanning Crossover). Each crossover operation generates a single offspring, which eventually 
undergoes mutation. The Uniform Scanning Crossover (USX) can be safely used under this repre-
sentation and is performed as follows: each gene in the child is provided from any of the corre-
sponding alleles in the parents with equal probability. This method generates a single offspring. 
After crossover and mutation, offspring are stored in a temporary children pool. Finally, the best 
offspring created from n2 parents and n1 crossover is inserted in the new population. This process is 
repeated until the new population is completed.  
 
Finally, MCMP-SRI-V is combination of both previously explained approaches, using binary repre-
sentation and Uniform Crossover(UX). From the recombination point of view this method is similar 
to MCMP-SRI and from the representation point of view this method is similar to MCMP-V. 
 
4. EXPERIMENTAL TESTS AND RESULTS 
 
Instances from OR-library benchmarks [2, 3] for the common due date scheduling problem were 
selected to test all approaches. These benchmarks calculate the global due dates as  

d = round [SUM_P * h], 
where round[X] gives the biggest integer which is smaller than or equal to X; Sum_P denotes the 
sum of the processing times of the n jobs and  the parameter h is used to calculate more or less re-
strictive common due dates. Values for h are h=0.2; h=0.4; h=0.6 and h=0.8.  
 
We performed a series of 10 runs for each of the 10 instances of the 10, 20 and 50 job problem sizes. For the 
10 problem size, runs were performed for all h values. For the remaining problem sizes only h values of  0.2 



and 0.4 were considered because inconsistencies were detected in the benchmark data. Some of them are 
indicated in table 1. Observe that for k = 1, 2, 3, 4, 5, 7, 8 and 10 the values for h = 0.6 and 0.8 are identical.  
 
For MCMP-SRI, the parameters were set to convenient values as follows. Population sizes were 
fixed at 100 individuals for 10 and 20 job problems and at 150 for the 50 job problem. Probabilities 
for  crossover were set to 0.65 in all experiments. The number of crossover n1 and the number of 
parents n2 were set to 6 and 8, respectively, for the 10 jobs problem and to 14 and 16, respectively, 
for the larger problems (20 and 50 jobs). 
 
For MCMP-V and MCMP-SRI-V, the parameters were set to convenient values as follows. Popula-
tion sizes and the maximum number of generations were fixed at 100 for all problem sizes. Prob-
abilities for crossover were set to 0.65 in all experiments. The number n1 of crossovers and the 
number n2 of parents were set, respectively, to 6 and 8 for the 10 jobs problem size, to 14 and 16 for 
the 20 and 50 jobs problem sizes. Particularly, for MCMP-V approach the probability of mutation 
was fixed at 0.05.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To compare the algorithms, the following relevant performance variables were chosen: 
 
Ebest = ( (best value - opt_val)/opt_val)100 
It is the percentile error of the best-found individual when compared with the known, or estimated, 
optimum value opt_val. It gives us a measure on how far the best individual is from that opt_val.  
 
Hit Ratio. It is the number of runs the algorithm found the optimum (or hits the upper bound) in a 
series of ten runs. 
 
Gbest. It is the generation where the algorithm found the best individual. 
 
Tables 2 to 4 summarize average values of the performance variables for all considered values of 
the restriction factor h (as above described for each problem size), over all 10 run series and the 
corresponding mean average through all instances. 
 
Table 2, for 10 jobs problem size, shows that regarding quality of results all approaches find the 
optimal value in every run. Consequently, mean averages for Ebest and Hit Ratio are 0% and 1, 
respectively. These optimal values are found in average after 1.17 generations under MCMP-V, 
after 1.11 generations under MCMP-SRI-V and after 9.18 generations under MCMP-SRI. For this 

Upper bounds for the 50 job examples: 
 
n=50     h = 0.2  h  = 0.4    h = 0.6 h = 0.8 
 
k = 1     42,363   24,868     17,990   17,990 
k = 2     33,637   19,279     14,231   14,132 
k = 3     37,641   21,353     16,497   16,497 
k = 4     30,166   17,495     14,105   14,105 
k = 5     32,604   18,441     14,650   14,650 
k = 6     36,920   21,497     14,251   14,075 
k = 7     44,277   23,883     17,715   17,715 
k = 8     46,065   25,402     21,367   21,367 
k = 9     36,397   21,929     14,298   13,952 
k = 10     35,797   20,048     14,377   14,377 

 

Table 1. Example of upper bounds listed in the benchmarks 



problem size all known optimal values were reached and new optimal values were determined by 
MCMP-SRI for those instances where they were unknown.  
 

MCMP-V MCMP-SRI-V MCMP-SRI   
 

Instances 
Ebest 
Avrg. 

Hit Ratio 
 Avrg. 

Gbest 
avrg. 

Ebest 
Avrg. 

Hit 
Ratio 
 Avrg. 

Gbest 
Avrg. 

Ebest 
avrg. 

Hit 
Ratio 
 Avrg. 

Gbest 
Avrg. 

sch10-1 0.00 1.00 1.13 0.00 1.00 1.13 0.00 1.00 9.10 
sch10-2 0.00 1.00 1.10 0.00 1.00 1.13 0.00 1.00 7.68 
sch10-3 0.00 1.00 1.13 0.00 1.00 1.05 0.00 1.00 10.13 
sch10-4 0.00 1.00 1.18 0.00 1.00 1.10 0.00 1.00 8.85 
sch10-5 0.00 1.00 1.13 0.00 1.00 1.20 0.00 1.00 9.70 
sch10-6 0.00 1.00 1.08 0.00 1.00 1.03 0.00 1.00 9.48 
sch10-7 0.00 1.00 1.23 0.00 1.00 1.09 0.00 1.00 9.30 
sch10-8 0.00 1.00 1.35 0.00 1.00 1.10 0.00 1.00 9.20 
sch10-9 0.00 1.00 1.20 0.00 1.00 1.05 0.00 1.00 9.35 

sch10-10 0.00 1.00 1.23 0.00 1.00 1.23 0.00 1.00 8.98 
Mean. Av. 0.00 1.00 1.17 0.00 1.00 1.11 0.00 1.00 9.18 

 
 

 
As only upper bounds values are reported for the remaining problem sizes, a hit is recorded each 
time the algorithm hits (reaches or improves) the given upper bound.  
 
Table 3, for 20 jobs problem size, shows that all approaches find better upper bounds with a general 
average improvement of 2.61% for MCMP-V, 2.49% for MCMP-SRI-V and 2.69% for MCMP-
SRI. Mean average for Hit Ratio is 1 for MCMP-V and MCMP-SRI-V, while it is 0.99 for MCMP-
SRI. These new upper bounds are found in average after 3.35 generations under MCMP-V, after 
2.82 generations under MCMP-SRI-V and after 55.51 generations under MCMP-SRI.. 
 

MCMP-V MCMP-SRI –V MCMP-SRI   
 

Instances 
Ebest 
Avrg. 

Hit Ratio 
 Avrg. 

Gbest 
Avrg. 

Ebest 
Avrg. 

Hit 
Ratio 
 Avrg. 

Gbest 
Avrg. 

Ebest 
avrg. 

Hit 
Ratio 
 Avrg. 

Gbest 
Avrg. 

sch20-1 -0.42 1.00 3.60 -0.42 1.00 3.30 -0.41 0.95 64.30 

sch20-2 -1.31 1.00 3.15 -1.31 1.00 3.05 -1.31 1.00 51.80 

sch20-3 -1.54 1.00 2.55 -1.54 1.00 2.40 -1.54 1.00 56.80 

sch20-4 -1.57 1.00 2.65 -1.57 1.00 2.45 -1.50 1.00 56.05 

sch20-5 -2.92 1.00 3.10 -2.92 1.00 2.50 -2.92 1.00 52.30 

sch20-6 -2.03 1.00 3.35 -2.03 1.00 3.50 -2.03 1.00 55.40 

sch20-7 -3.85 1.00 5.95 -1.42 1.00 2.73 -3.66 1.00 59.90 

sch20-8 -2.25 1.00 2.88 -3.51 1.00 2.70 -3.51 1.00 51.85 

sch20-9 -0.95 1.00 3.20 -0.95 1.00 2.65 -0.83 1.00 53.10 

sch20-10 -9.29 1.00 3.10 -9.29 1.00 2.95 -9.22 1.00 53.55 

Mean. Av. -2.61 1.00 3.35 -2.49 1.00 2.82 -2.69 0.99 55.51 

 
 

 
Table 4, for 50 jobs problem size, shows the following results.  MCMP-V finds better upper 
bounds, in every run, for all instances with a general average improvement of 5.13%, and a mean 
average Hit Ratio of 1. MCMP-SRI-V finds better upper bounds in every run for 9 out of 10 in-
stances with a general average improvement of 4.25% and a mean average Hit Ratio of 0.97. 

Table 2. Performance variables values for 10 job problem size 

Table 3. Performance variables values for 20 job problem size 



MCMP-SRI finds better upper bounds in every run for 5 out of 10 instances with a general average 
improvement of 1.93% and a mean average Hit Ratio of 0.65. This performance is achieved after 
56.29, 58.21 and 99.21 generations, in average, for MCMP-V, MCMP-SRI-V and MCMP-SRI, 
respectively. 
 
Further analysis on MCMP-V and MCMP-SRI-V show their effectiveness in the 20 and 50 job 
problem sizes. Here the number of times when the upper bound was improved, attained or not at-
tained is recorded. Recall that for these problem sizes the algorithm was run for each instance with 
h values of 0.2 and 0.4. 
 

MCMP-V MCMP-SRI -V MCMP-SRI  
 

Instances 
Ebest 
Avrg. 

Hit Ratio 
 Avrg. 

Gbest 
Avrg. 

Ebest 
Avrg. 

Hit 
Ratio 
 Avrg. 

Gbest 
avrg. 

Ebest 
avrg. 

Hit 
Ratio 
 Avrg. 

Gbest 
Avrg. 

sch50-1 -4.10 1.00 52.70 -3.25 1.00 61.20 0,27 0,30 101,80 

sch50-2 -8.02 1.00 50.10 -7.22 1.00 59.95 -4,45 1,00 105,60 

sch50-3 -6.23 1.00 54.20 -5.13 1.00 57.00 -4,05 1,00 97,00 

sch50-4 -6.32 1.00 62.40 -5.37 1.00 56.30 -8,64 1,00 105,70 

sch50-5 -1.58 1.00 52.10 -0.09 0.65 58.25 3,63 0,00 96,70 

sch50-6 -5.08 1.00 57.10 -5.23 1.00 60.58 -0,65 0,70 90,90 

sch50-7 -3.05 1.00 52.75 -2.02 1.00 55.40 0,74 0,00 89,50 

sch50-8 -3.40 1.00 54.70 -2.29 1.00 59.40 -0,08 0,50 82,20 

sch50-9 -7.39 1.00 65.20 -6.68 1.00 57.85 -2,59 1,00 111,20 

sch50-10 -6.12 1.00 61.65 -5.23 1.00 62.15 -3,45 1,00 111,50 

Mean. Av. -5.13 1.00 56.29 -4.25 0.97 58.81 -1,93 0,65 99,21 

 
 
 
 
 

Problem 
 size 

Improve 
upper 
bound 

Attain 
upper 
bound 

Do not 
attain 
upper 
bound 

Total 
of cases 

20 19 1 0 20 

50 20 0 0 20 

Total 39 1 0 40 

Percent 97.5 2.5 0.0 100 

 
 

 
 

5. CONCLUSIONS 
 

In this work we report three alternative multirecombined approaches with different representation. 
By means of stud MCMP-SRI attempts to find equilibrium between exploration and exploitation in 
the search process. MCMP-V reduces the size of problem space from n! to 2n by inserting problem-
specific-knowledge (an optimality condition). MCMP-SRI-V attempts to combine both objectives.   
 
All MCMP variants considered here showed outstanding behaviour when facing this difficult earli-
ness-tardiness scheduling problem by providing new optimal solution for smaller instances and im-
proving the upper bound in the larger instances. 
 

Table 4. Performance variables values for 50 job problem size 

Table 6.  Effectiveness of MCMP-V and MCMP-SRI-V over all  
                experiments for larger problem sizes. 



Those approaches which contemplated the optimality condition behaved better than MCMP-SRI 
reaching an effectiveness of 97.5% when improving reported upper bounds. Nevertheless MCMP-
SRI behaves better than other previous tested EAs.    
 
Future work will be devoted to investigate new multirecombined variants, insertion of problem-
specific-knowledge, dynamic control and self-adaptation of parameters to follow this trend and test 
them in the larger benchmarks of the OR library. 
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