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ABSTRACT

Different evolutionary approaches using genetic algorithms were proposed to solve the Flow Shop
Scheduling Problem (FSSP). Variants point to the selection mechanism, genetic operators and the
decision to include or not in the initial population an individual generated by some conventional
heuristic (Reeves). New trends to enhance evolutionary algorithms for solving the FSSP introduced
multiple-crossovers-per couple (MCPC) and multiple-crossovers-on-multiple-parents (MCMP). 

MCMP-S, a multiple-crossovers-on-multiple-parents variant, selects the stud (breeding individual)
among the multiple intervening parents and mates it, more than once, with every other parent in a
multiple crossover operation. In previous works, two versions of MCMP-S were faced. In the first
one (MCMP-SOP), the stud and every other parent were selected from the old population. In the
second one (MCMP-SRI), the stud was selected from the old population, and the other parents (ran-
dom immigrants) were generated randomly. 

This paper introduces MCMP-NEH. The idea is to use the NEH heuristic, where the stud mates
individuals in the mating pool coming from two sources: random immigrants and NEH-based indi-
viduals. These NEH-individuals are produced from randomly chosen individuals of the population
and used as the starting points of the NEH heuristic. Experiments were conducted to contrast this
novel proposal with a conventional evolutionary algorithm, with the only objective of establishing
the improvement degree despite computational effort. Implementation details and a comparison of
results for a set of flow shop scheduling instances of distinct complexity, using every evolutionary
approach, are shown.

1. INTRODUCTION

The task of scheduling is the allocation of jobs over time when limited resources are available,
where a number of objectives should be optimized, and several constraints must be satisfied [12]. In
our FSSP model we assumed, that each job is processed on all machines in the same order, each
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machine processes a job at a time, and each job is processed in a single machine at a time. The op-
erations are not preemptable and set-up times are included in the processing times. As the flow shop
problem is essentially a permutation schedule it is natural for chromosomes to be encoded as per-
mutations. Consequently, adequate genetic operators such as ordered (OX)[1], cyclic (CX)[11],
partial mapped (PMX)[10], and one-cut-point (OCPX)[1] crossovers should be used. In opposition
to the conventional single crossover per couple approach (SCPC), recent improvements in evolu-
tionary algorithms include a multiplicity feature, which allows multiple recombination on multiple
parents (MCMP)[3][4][5][6]. Exploring the abilities of multirecombination this proposal introduces
an implementation of the MCMP approach which selects the stud (breeding individual) from the
multiple parents pool and mates it in a multiple crossover operation with two kinds of chromo-
somes.  The first ones are randomly created chromosomes, which represents foreign individual and
prevent losing genetic diversity. The second ones are individuals chosen randomly from the popu-
lation and used as the starting points of the NEH heuristic. In this way, we are providing a better
genetic diversity and a hybridization or local search (which is represented by the NEH heuristic
applied to the evolved chromosomes) through NEH. This presentation discusses details of imple-
mentation and compares MCMP-NEH with SCPC when dealing with the flow shop scheduling
problem in the search of optimal or near-optimal makespan.

2. THE EVOLUTIONARY MULTICROSSOVER ON MULTIPARENT-NEH APPROACH

Latest trends in Evolutionary Computation point to multirecombination. In Eiben’s multiparent (MP)
approach[2], offspring creation is based on a larger sample from the search space and, thus, a larger
diversity is supplied. This can help to avoid premature convergence. Eiben initially used three scan-
ning crossover (SX) methods, which essentially take genes from parents to contribute to build the off-
spring. As defined, SX is not directly applicable to permutations because invalid offspring are cre-
ated. In our proposal, the SX scanning method is replaced by PMX. Preliminary steps towards that
MCMP approach included MCMP-SOP and MCMP-SRI. In the first one, every member of the
mating pool was selected from the existing population. Within this pool, the best individual was
selected as the stud and it was coupled more than once with every other member of the pool. In
MCMP-SRI only the stud is selected from the population and the rest of the individuals are created
randomly. From both MCMP-SOP behaved better. MCMP-NEH is very similar to MCMP-SOP and
MCMP-SRI, but here, only the stud is selected from the population and the rest of the individuals in
the mating pool are created in two ways. Part of them are random immigrants and part of them are
NEH-based individuals created from randomly chosen population individuals. The NEH algorithm
can be sketched in the following stages:

1. Rank the jobs by decreasing order of the sums of processing times on all machines.
2. Take the first two jobs and schedule them minimizing the makespan.
3. For k = 3 to n do: insert the kth job at a place, which minimizes the partial makespan.

Contrasted with evolutionary and conventional heuristics, NEH has proved to be a good conven-
tional heuristic to solve the FSSP providing a single solution [7]. To provide more than a single
solution, instead of ranking the jobs as in the first step, a chromosome chosen from the population is
used as it is. The whole process could be seen as applying a local search to that chromosome. In this
implementation, we combined both types of chromosomes, along with the stud selected from the
population. In order to decide which method is to be used to generate the individuals for mating, a
number is randomly generated.  After generating n1 mating individuals (including the stud), multiple
crossovers are performed. The crossover points are determined in a random way and the stud is
combined with the rest of the selected parents. From that multirecombination, 2*(n1 -1) offspring



are obtained, but only the best one, which is stored in a temporary structure, survives. After com-
pleting all the n2 crossovers, the best individual in the temporary structure is selected for insertion in
the next population. 

procedure: MCMP-NEH
// n represents the size of the population
// n1 represents the number of parents to select aux_child
//contain children generated by the crossover operator

while j < n do
begin
If (random[0,1] < crossover probability) then

Begin
Select n1 parents from P(t) and build the matin
If (random[0,1] < method probability) then

Generate chromosome randomly
else

Select the next individual from the m
end if
for cont=1 to n2
for i =2 to  n1 do
CROSS(mating_pool[1], mating_pool[i]) to fo

Evaluate aux_child1[i]
         end for

  Sort aux_child1 // the best child is in the fi
   Aux_child2[cont] = aux_child1[1];  

end for
else

aux_child2[1] = Select one parent randomly f
If (random[0,1] < mutation probability) then 
   begin
   mutate aux_child2[1]

                   insert aux_child2[1] in New_pop
                  end if
               end if
       end while
end procedure

3. EXPERIMENTAL TESTS AND RESU
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number of generations fixed at 2000 and probabilities of crossover set to 0.65. Mutation probabili-
ties were set to 0.1 for the SCPC and MCMP-NEH versions. For crossover, PMX was used and for
mutation, random exchange mutation (RXM)[10] was used in every version. In the multicrossover-
multiparent versions, 6 crossovers were performed on five parents selected to conform the mating
pool. The probability used to select the method was 0.5, in these preliminary experiments. Further
details are described below:
• SCPC: A conventional evolutionary algorithm using PMX and RMX.
• MCMP-NEH: A multiple-parent, multiple crossovers with the inclusion of the NEH heuristics

in every moment of the evolution.

The conventional and evolutionary algorithms were ran on the complete set of the following Tail-
lard’s benchmarks[13] : 20x5, 20x10 and 20x20. A series of ten runs was performed for each in-
stance under each algorithm. To compare the algorithms, the following performance variable was
chosen:

Ebest = (Abs(opt_val - best value)/opt_val)100
It is the percentile error of the best found individual when compared with the known, or  estimated,
optimum value opt_val. It gives us a measure on how far the best individual is from that opt_val. 

When the 10-run series were accomplished, mean and minimum Ebest values for each instance
were determined and finally average mean and average minimum Ebest values were determined
over all instances. In the following tables, the first column identifies the corresponding instance, the
following columns show the results under each algorithm and the last row gives the average result
values.

20 x 5 instances

Instance SCPC MCMP
NEH

Instance SCPC MCMP
NEH

a 1.29 0 a 0 0
b 0.34 0 b 0 0
c 1.23 0,157 c 0 0
d 1 0,418 d 0.3 0
e 0.93 0,251 e 0.56 -0.081
f 1.1 0,929 f 0.5 0
g 0.97 0 g 0.96 0
h 0.35 0 h 0 0
i 1.48 0 i 0.24 0
j 1.29 0 j 0 0

Avrg. 0.998 0.1755 Avrg. 0.25 -0.0081

Tables 1 and 2 show detailed results for the 20x5 problem size. Table 1 refers to mean Ebest values
obtained from the ten runs for each instance while table 2 refers to minimum Ebest values. These
tables show a significant improvement in both mean and minimum Ebest values when MCMP-NEH
is compared with SCPC. From previous [8], not included in this report, performance enhancements
are also observed in the mean Ebest values when compared with MCMP-SOP. The corresponding

Table 1. Mean Ebest values for 20x5 instances           Table 2. Minimum Ebest values for 20x5 instances



values are 0.1755% under MCMP-NEH versus 0.807% under MCMP-SOP. It worth to remark that
the negative value for minimum Ebest value of the e instance means that a schedule with a lower
makespan for this instance was found, and consequently a new upper bound is available. All other
zero values mean that the corresponding known upper bound was reached.

20 x 10 instances

Instance SCPC MCMP
NEH

Instance SCPC MCMP
NEH

a 2.29 0.278 a 1.7 0.063
b 2.56 0.82 b 1.2 0.06
c 2.27 0.775 c 0.8 0.334
d 2.06 0.675 d 1.16 0.073
e 2.42 0.366 e 0.7 0
f 1.85 1.353 f 0.28 0.215
g 1.46 0.162 g 0.6 0
h 2.65 0.728 h 1.04 0.325
i 2.09 0.264 i 1.12 0.063
j 2.09 0.999 j 1.38 0.44

Avrg. 2.174 0.642 Avrg. 0.998 0.1573

Table 3 and 4 show the averages of the 20x10 instances compared with the SCPC approach. In the
Mean Ebest values table it can be seen how this approach outperformed the SCPC approach in
every instance, averaging 0.642% against 2.174% of the SCPC algorithm. In the Minimum Ebest
Table, it can be seen that MCMP reach 2 optimum values and 4 times nearly arrived to the optimum
(0.0x of Ebest means in this size of instance that the makespan reached is 1 unit more than the op-
timum). The final average of the MCMP-NEH is 0.1573% against nearly 1% of the SCPC algo-
rithm.

20 x 20 instances

Instance SCPC MCMP
NEH

Instance SCPC MCMP
NEH

a 2.12 0.501 a 1.21 0.261
b 1.55 0.048 b 0.9 0.048
c 1.91 0.804 c 1.33 0.270
d 1.69 1.015 d 0.31 0.731
e 1.61 0.730 e 0.78 0.352
f 1.55 0.315 f 0.71 0
g 1.83 0.637 g 1.14 0.218
h 1.83 0.464 h 0.63 0.091
i 1.89 0.174 i 0.8 0
j 2.94 0.698 j 1.56 0.092

Avrg. 1.892 0.538 Avrg. 0.937 0.206

                 Table 3. Mean Ebest values for 20x10 instances        Table 4. Minimum Ebest values for 20x10 instances

                 Table 5. Mean Ebest values for 20x20 instances        Table 6. Minimum Ebest values for 20x20 instances



Table 5 and 6 show the results obtained in the 20 x 20 instances. The MCMP-NEH algorithm again
performed very well. In the Mean Ebest table it can be seen how while the SCPC approach obtained
an Average Mean Ebest of 1.892%, the multirecombinative approach reach 0.53%. The improve-
ment is 72%. In the Minimum Ebest table the SCPC approach has an average of 0.937% while the
multirecombinative approach has an average of 0.206%. The improvement is 78%.
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Fig. 2. Average of Mean Ebest values over  all   instances  for  each  problem
            size under conventional and multirecombined evolutionary approaches.
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Fig. 3. Average of Minimum Ebest values over  all   instances  for  each  problem
            size under conventional and multirecombined evolutionary approaches.



Figures 1 and 2 show the performance of the contrasted methods over all problem sizes. In general
the multiparent-multicrossover-neh method outperformed the conventional method in both average
mean and average minimum Ebest. In the SCPC approach the errors range from 0.998% in the 20x5
instance to 2.174% in the 20x10 instances. In the MCMP-NEH the range was from –0.008% in the
20x5 instances to 0.206% in the 20x20 instances. 

4. CONCLUSIONS

Following current trends to solve difficult optimization problems, the Flow Shop Scheduling Prob-
lem was faced by means of distinct evolutionary computation approaches. The present contribution
contrasted the behaviour of new multiparent-multiplecrossover-neh based approaches with conven-
tional evolutionary algorithms. Quality of results was the only performance metric used in this
study. Results obtained on a selected test suite deserve the following observations.
This multirecombinative method outperformed the SCPC approach significantly in every problem
size that we tested. Moreover, according to the results, it can be seen that it has a remarkable bal-
ance between exploration and explotation. The only problem that was detected is the computational
effort required, which slow too much the process. After making a few calculations we realize that
the NEH heuristic, which is the slowest heuristic, was performed twice by each individual that was
to be inserted in the next population. This adds to 200 each generation and 400000 at the end of the
run. Further considerations have to be done, in order to apply NEH fewer times and therefore re-
duce the time of execution. At the light of these results, research will be oriented to continue
searching for further enhanced evolutionary algorithms. 
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