

Accomplishing Adaptability in Simulation
Frameworks: the Bubble Approach

J. Andrés Díaz Pace1,2, Federico U. Trilnik1and Marcelo R. Campo1

1 ISISTAN Research Institute, Facultad de Ciencias Exactas,

Universidad Nacional del Centro de la Provincia de Buenos Aires
Campus Universitario, Paraje Arroyo Seco, B7001BBO Tandil (Argentina)

Email: { adiaz , ftrilnik, mcampo } @exa.unicen.edu.ar

2 Also CONICET

Abstract. Enforcing framework adaptability is one of the key points in the process of
building an object-oriented application framework. When it comes to simulation, some
adaptation mechanisms to configure components on-the-fly are usually required in order to
produce good software artifacts and alleviate development effort. The paper reports an
experience using a simulation multi-agent framework, initially conceived to be used in fluid
flow problems. The framework architecture demonstrated during its evolution a great
potential regarding to flexibility and modularity, tackling a wide range of other problems
ranging from a network protocol simulation to a soccer simulation.

Keywords: multi-agent systems, object-oriented application frameworks, simulation, adaptability.

1. INTRODUCTION

Object-oriented application frameworks are usually regarded as a useful technology to achieve reuse in
software systems [Fayad97]. The benefits of a framework [Johnson97] are that it provides a general and
reusable skeleton of classes and behavior patterns for a given domain, and relying in this support new
applications can be developed in a flexible and direct way, with additional savings of time and design
effort. But this is only one side of the coin, these benefits should be enforced during design time to
effectively be successful accomplishing well-sound software artifacts. Besides, the process of building a
framework is far to be straightforward. It often requires important efforts to capture a given domain
abstraction and provide a powerful and comprehensible framework to application developers. A
common methodology [Fayad99] consists of an iterative development, starting with a few examples and
applying successive refactorizations to the framework until it reaches a reasonable state of maturity.
Interestingly, this process sometimes leads to a framework suitable for other problems not foreseen by
developers during the first steps of design. One of the causes of these variations can be a misunderstood
framework usage due to inexpert users trying to fit their specific needs. If the framework can take profit
of these “abnormal” situations, new unexpected capabilities can be included producing an evolutionary
leap in the framework.

The paper presents an object-oriented framework implemented in Java (named Bubble) designed
under the multi-agent approach [Demazeau91, Drogoul92], originally conceived to simulate the motion
of gas bubbles in a fluid environment. Later developments and applications demonstrated the wide
potential of the framework, which progressively became a flexible support to define and organize
simulations of cooperative processes characterized by the interaction of large numbers of individuals.
Moreover, it was applied to model other problems not expected at the beginning, such as a network
protocol simulation and a soccer simulation. As a result, novel possibilities to extend the original
framework were discovered and analyzed. A report of these experiences is also included in the article.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The contribution of the work is that it provides an adaptable framework architecture with a particular
combination of building mechanisms such as agents, uniform decomposition, competing tasks, events
and implicit invocation, to represent complex simulations in a flexible manner. In addition, it describes
three application examples using the framework, showing both practical experience about framework
evolution and derived research ideas in the targeted area.

The work is organized into five sections. The first section gives background information about
adaptability in object oriented systems and multi-agent systems. Then, the description of our framework
Bubble is presented. The following section reports three application examples based on the framework
and lessons learned in this evolution process. Then, some tradeoffs and perspectives about Bubble are
discussed after that. And finally, we draw the conclusions of the work.

2. BACKGROUND INFORMATION

This section explains what we mean by adaptability in object oriented systems (closely related with the
architecture of our framework), and presents basic concepts about multiagent systems and agent-based
simulations, in order to situate the rest of the work.

2.1. Adaptability in object-oriented systems

Adaptability is an important and desirable quality factor in today’s software system. This property
defines the ability of a given software system to cope smoothly with changes in the problem
specification, producing a low impact on components previously implemented [Fayad96]. In this way,
systems are able to evolve and tackle different variations of a given problem.

From a high-level point of view, a software artifact usually needs two properties to be adaptable:
extensibility and flexibility. By extensibility, we mean the ability to change capabilities of the system in
amount (e.g. using inheritance), whereas flexibility is to change capabilities in kind. The lack of
adaptability can become a critical issue if you want to scale up the system. Developers should not only
think in the target system during the design phases, but in the future variations of such system as well
(for example, emphasizing software decentralization and modularity).

These two aspects, extensibility and flexibility, are especially useful in modeling problems, because
we usually start with a quite abstract description of our problem, and then new features are included in
this description and different variations are tested. Therefore, the development effort associated with the
modeling process can be an important factor, even having some kind of component reusability. It
requires some adaptation mechanisms to configure components on-the-fly, in order to produce good
software and alleviate development effort. As a drawback, this gain in expressiveness and adaptability
of the system often is balanced with some loss in performance.
 The building mechanisms included in Bubble’s architecture that we will describe in the next section,
try to enforce adaptability issues to easily configure simulation applications.

2.2. Multi-agent systems

With the spreading of the agent paradigm [Demazeau91, Sycara98] as a derivation of the object
orientation paradigm [Meyer97], a new way of thinking and building complex software is increasingly
taking place. Under this new paradigm, software systems can be conceived as organizations of
interrelated agents, with flexibility and modularity as major potential gains.

An agent is a computational entity evolving in an environment, with an autonomous behavior,
capable of perceiving and acting in this environment, and capable of communicating with other agents.
A multi-agent system is a set of agents, probably with some organization, interacting in a shared
environment. The research in multi-agent systems is centered in analyzing how a collection of
autonomous agents can solve a given problem that usually is beyond the scope of individual capabilities.

The main advantages of a multiagent system over a single and monolithic system [Moulin96] are the
following:
• Higher capability for problem solving because of the possible parallelism,
• Flexibility, because agents with different capabilities associate to solve a given problem.
• Robustness, because control and responsabilities distributed among the agents result in a better fault

tolerance.
• Scalability, because proper agent modularity makes easy to add new agents with new capabilities in

the system and program different agents.
As regards multi-agent simulation models [Drogoul92], a mapping from each component of the real

system (individual or group) to an equivalent computational agent is defined, and the simulation is based
on the global consequences of local interactions between members of the population. These models
typically consist of an environment in which the interactions occur, and some number of individuals
defined in terms of their behaviors (procedural rules) and characteristic parameters. Individuals might
represent plants and animals in ecosystems, vehicles in traffic, people in crowds, etc.

3. THE FRAMEWORK BUBBLE

Bubble is a multi-agent framework implemented in Java [DiazPace99], originally conceived and
designed to simulate the motion of gas bubbles in a fluid environment. The basic elements of the system
are reactive agents [Demazeau91] described by an internal state and a set of executable tasks. The
interaction among these reactive agents is performed through events that the agents produce and receive.
The agents are equipped with associated sensors (like filters) that are registered to hear certain kinds of
events with a defined criterion of relevance (local, by group, by event strength, regional, etc.).

The behavior of a reactive agent is defined through tasks using a condition-action style, i.e. a task is
a module composed by a series of actions to be executed by the agent (action part) when certain
conditions are fulfilled (condition part). Conditions can be related either to the internal state of the agent
or the incoming events. Note that these tasks should not be confused with statecharts. The framework
also admits agents containing groups of other agents, and tasks composed by groups of predefined tasks.
In this way, complex interactions, structures and behaviors can be modeled combining primary blocks.

Figure 1 shows a diagram of the conceptual model supported by the framework, illustrating a typical
event flow between agents in a container and the role that sensors play in this process. Note that the
outgoing events produced by agent D are propagated only if the agent is attached to a container, but this
relationship is not compulsory. When an agent receives an incoming event (agents B, D and container,
in the example), the processing depends on the current tasks associated with the agent.

The framework can be described from three different perspectives: structural organization,
communications, and agent tasks. Each of these views refers to a group of collaborating classes in the
framework, and the following sections provide more details about them.

Agents

ContainerAgent eventsRegistry

Sensors

Event

1. Agent D sends an event E, as a result of
executing some task

4. Event E is
also received by
the container (it
is an agent itself)

2. The container catches event
E, and dispatch it to the
sensors interested in that event

5. Agent A does not
receive event E, because
its sensor is not registered
to listen to those events

A

B

C

D

6. Sensors corresponding to agents B
and C perceive event E, and pass it to
their associated agents

3. Sensors hear events in
a certain neighborhood
within the container

Fig. 1. Conceptual model of Bubble´s architecture

3.1. Structural organization

Bubble is organized applying the paradigm of uniform decomposition. By uniform decomposition
[Bass98] we mean the operation of separating a large component into two or more smaller ones, limiting
the composition mechanisms to a restricted uniform set. Thus, integration of components and scaling of
the system as a whole is achieved, having besides modifiability and reusability properties. The aim is to
represent the agent organization with a hierarchy of abstraction levels: agents composed by other agents,
that in turn are composed by others, and so on. The same structure is used to handle incoming and
outgoing events. As example, we can apply these concepts in a simple prey-predator model: a
container-agent might represent the environment where both preys and predators live, and a composed
agent can be used to model a gang of predators looking for new preys.

3.2. Communications

Communications among different components in Bubble are performed through events. Every agent can
be linked to a container-agent, and this container is engaged to collect and dispatch incoming events to
the sensors registered inside it. As we explained in a previous section, sensors acts like filters and
transmit only interesting events to their associated agents. An implicit-invocation mechanism [Shaw96]
is used to achieve these notifications. The container-agent is in charge of the event flow management
among all the agents.

An event represents a notification of any change occurring in the system. Sensors are responsible of
reception and conditional transmission (filtering) of events. Container-agents deliver events received
from the agents to the sensors. To illustrate this interaction, suppose we are modeling a market where
buyers and sellers are free to perform transactions, any customer interested in buying certain items needs
to specify a purchasing criterion and enroll itself with the market to listen to bids. In this context, the
market can be a container-agent, both sellers and buyers are simple agents, and the specific purchasing
criterion corresponds with a sensor. Every time a new offer appears, our customer will be notified about
that situation only if the offer fulfills its purchasing conditions.

Task 1

Task 2

Task 3

Priority

Current task

Execution of
primitive
actions

Environment

Sensing and
filtering

Outgoing events

External events

Incoming events

AGENT

Internal
state

Task A {Simple}

If (conditions) then
action 1
action 2

…
action k

Task B {Simple}

If (conditions) then
action 1
action 2

…
action k

Agent

Task C {Composed}

Task C1 Task C3

Task C2
Task C4

Fig. 2. Competing tasks in the framework

3.3. Tasks

All the agents of the framework can perform a set of tasks. A task is composed by one or more
procedures with a set of input and output parameters. Tasks are triggered by predefined conditions,
which can be related to the internal state of the agents or incoming events. In this way, the agent
behavior is conceived as a set of competing tasks, where only one task is active at the same time
[Drogoul92]. When a selected task is executed, it can generate either outgoing events and/or changes
affecting the agent state. Figure 2 provides a picture of such situation. Different tasks can be
dynamically assigned to an agent, and they compete to execute according to their priorities and
activation requirements.

4. CASE STUDIES

This section reports three application examples using Bubble, ranging from the early examples
modeling fluid flow problems, the example representing a network protocol simulation, and the more
recent development modeling a soccer simulation. These case-studies are presented in the chronological
order they were developed, showing how the original framework was adapted to fulfill the requirements
of the different problems. More interestingly, it reveals how the building mechanisms included in
Bubble allowed us to achieve a remarkable adaptability.

4.1. Bubbly flow simulation

Bubbly flow [Herrero96] is encountered in many industrial applications, such as distillation columns,
nuclear and chemical reactors, oil piping, among others. Wherever two unmiscible fluids are forced to
flow together, one of them tend to concentrate in bubbles, the other fluid acting as a continuous carrying
environment. Generally, some macroscopic global magnitudes are used to characterize the state of the
flow, representing the relative amount of each fluid component, the number of bubbles per unit volume,
the interfacial area density, the average bubble size, etc.

Classically, complicated sets of partial differential equations are used to describe the rate of change
and spatial distribution of the global magnitudes. Afterwards, the computer is used to numerically solve
the field equations. Instead, the multi-agent modeling introduces the computer at the beginning of the

description, simulating the movements and changes of the fluid particles, and afterwards global
statistical patterns are identified to determine the general laws.

4.1.1. Implementation using the framework

We represent the bubbly flow as a multi-agent virtual world composed of a continuous liquid which will
be partitioned in slices to construct spatial geometries, and a disperse phase instantiated in numerous
bubbles embedded in the liquid. The bubbles are codified as reactive agents represented by spheres,
which perform the following set of tasks: (a) Displacement, the center of each sphere is displaced a
constant distance d in a random direction θ; (b) Coalescence, when two or more bubbles collide, they
coalesce giving birth to a new bubble conserving the total volume; (c) Breakup, each bubble is allowed
to break up into two bubbles conserving the total volume, with a given probability model (for example
when the size is larger than a certain critical size).

The continuous fluid is partitioned in slices. These slices, being agents themselves, have particular
properties, such as turbulence intensity represented by spatial variations in the displacement task. By
linking the slices, different geometrical configurations can be constructed, such as pipes, bends, or
irregular vessels. The slices provide the figure of a neighborhood, precluding interactions between
distant bubbles, by limiting the reception of inner events to bubbles located within the corresponding
slice. This feature greatly reduces the flow of events in the system. Additionally, complicated
geometries can be easily simulated by partitioning the space in blocks represented by slice agents.
Figures 3 shows a diagram of this implementation. The side effect is the tracking and accounting of
bubbles moving from one slice to another.

The bubbly flow model was implemented specializing the Bubble framework according to the
requirements of the application domain. The model was defined by an environment agent, divided in
slice agents representing the continuous fluid. Inside every slice, bubble agents represent the dispersed
fluid. The agents Environment and Slice are modeled as specializations of container-agent. The
visualization of the simulation is managed by an additional visualization-agent, and the statistic data is
collected and processed by the an storage-agent. These last two components were implemented
following the same conceptual model defined in the framework: the visualization agent listens to events
about creation and deletion of bubbles updating a canvas in consequence, whereas the statistical agent
catches events to compute statistical indicators that stores in an output file.

Moreover, redefining the bubble agents tasks, more complex transport phenomena can be
appropriately simulated with great easiness. Likely, composed tasks can be engineered to resemble
complex interactions between bubbles, such as wake trapping and vortex induction. On the other hand,
mass exchanges between phases are simulated by tasks performed by Slice and Environment classes,
which can create and annihilate bubble instances. At that stage, a concurrent implementation of the
framework was still pending.

4.1.2. Results and lessons learned

Fluid flow problems were the basis of the framework. The framework tried to capture commonalties of
this domain and emphasize easy-of-modeling features. The following items summarize the main results
of this stage.
• Uniform decomposition. The notion of contained and container agents provides different levels of

abstraction to represent entities involved in the simulation (i.e. bubbles, container fluids and bubble
sources). It also permits future refinements in this modeling hierarchy.

• Event notification and filters. Event notification resulted a good mechanism to integrate different
entities into the model in a step-by-step fashion. Afterwards, sensors and containers were introduced
as filters to manage event flow.

SLICE

File Statistical
Agent

Visualization
Agent Simulation

Model

View

Data (Events)

Data (Events)

BUBBLE
tasks
run()

Bubble {Agent}

active()
run()

AddAgent {Task}

active()
run()

RemoveAgent {Task}

agents
sensors
tasks
run()

Slice {ContainerAgent}

active()
run()

Breakup {Task}

active()
run()

Coalescence {Task}
active()
run()

Move {Task}

active()
run()

CreateAgent {Task}

Fig. 3. Implementation of the bubble flow simulation

• Simple tasks. Most of the tasks we defined for the agents were quite simple at this stage, and they
usually encapsulated equations ruling geometrical laws (i.e. movements, breaks, coalescences, and
rebounds).

• Geometry. The physical nature of the simulation lead to define most of the filtering criteria based on
geometrical notions. Initially, the problem was implemented and tested in a 2D world, with
geometrical considerations quite tangled into multi-agent code. After that, we built a 3D model for
the simulation.

• Utilities. Using the same architectural ideas we implemented visualization and statistics facilities.

As we mentioned, the original 2D fluid model was extended to 3D, and other new components were
included into the model. For instance, we inserted bubble sources and sinks to represent variations in the
volume of bubbles. The impact of these changes was minimum, only affecting calculus related with
distance considerations. Moreover, the 3D extension was accomplished with a relatively small
additional work. This capability to make smooth transitions from one initial model to more elaborated
ones, was one of the most relevant aspects of the framework architecture. However, we observed in the

implementations that good flexibility and extensibility often came with some tradeoffs regarding to
event control and efficiency.

4.2. Internet mobile host protocol

The protocol is designed to route packets between mobile hosts [Perkins94], i.e. portable computers
connected to different networks probably changing their locations as they are operating. A unique and
permanent host location (called home location) is assigned to every host. There is also a routing task,
which delivers packets sent to the host home address towards the current location of the host in a
transparent and efficient way. A simulation of this protocol was implemented using our framework to
study different parameters in the process.

Fig. 4. Registration process in the Internet Mobile Host Protocol

4.2.1. Implementation using the framework

We suppose our world divided in several networking areas (e.g. LANs, wireless cells, or other kind of
networks). Each area contains: a foreign-agent with a registry of every mobile host visiting such area,
and a home-agent storing the hosts whose home location belongs to the area but they are currently out of
its scope. If a new host arrives to the area, it must be registered by the local foreign-agent, as it is shown
in Figure 4. Any packet sent to a mobile host is routed to the host home LAN, and this packet is then
caught by the home-agent. The home-agent checks the current (temporary) address of the destination
mobile-host, forwarding the packet to the respective foreign-agent when it is necessary. Thus, the
sender host is notified of the situation and the next packets are directly sent to the current host address.
Some mobile-hosts can act as cache-agents, storing temporary information about real addresses of other
mobile-hosts.

The simulation was implemented modeling mobile-hosts, home-agents and foreing-agents as simple
agents, and defining some container-agents to represent the home-networks and the Internet (i.e. a
network including all the other home-networks). Each mobile-host has an IP address and different tasks
associated. These tasks involve capabilities such as: sending packets, moving around Internet and
registration with foreign-agents. A home-agent was specialized to manage a home-list, pass packets to
hosts, and route packets to foreign-agents when it is necessary (notifying also to the specific sender
host). In a similar way, a foreign-agent can announce its operation to allow other hosts to be registered,
maintain a list of visitor hosts, and resend packets from other sources. When it comes to networks, their

activities include: capturing packets in their domains and routing these packets to other interconnected
networks. As a result, mobile-host agents wander through different network areas.

4.2.2. Results and lessons learned

With this second example we started to think a little beyond, not only centered on fluid problems. This
new point of view lead us to some changes in the framework, which we detail below:
• Geometry. In this network simulation, we realized that geometrical aspects may or may not be

required by some agents, depending of the relative importance of a topological structure in the
problem. For instance, networks only need a containment criterion based on their area of influence,
and hosts do not care about geometrical considerations. In consequence, we could consider
geometry as an enabled/disabled feature.

• Groups. Composed agents became more important to represent groups of agents, without imposing
a strict containment relationship among agents.

• Multicast and broadcast events. Multicast and broadcast messages, closer to network domains, were
also required as a way to provide more elaborate mechanisms for agent communication.

• Utilities. Tasks such as visualization, statistic collection and inspection became quite complex. To
face this situation, we believe that a general toolkit supporting these facilities is a potential
requirement to be included in the framework.

4.3. Soccer

Nowadays, soccer games are used as a testbed to analyze and evaluate performance of several systems
based on artificial intelligence approaches. Soccer usually includes classic characteristics encountered
in artificial intelligence research such as: players having incomplete information about world states, a
continuous and unpredictable game that cannot be planned in advance, or players facing situations that
should be solved using their individual capabilities in conjunction with team collaboration [Stone98,
Stone99, També97]. Any soccer game (even simplified) offers a wide variety of situations requiring
some kind of coordination mechanisms. The term coordination refers to the process where each agent
“reasons” (in a more or less complex manner) about its actions and the (anticipated) actions of other
agents in the community, trying to achieve a coherent behavior in the group. For instance, avoiding all
the players running for a given ball, accomplishing predefined movements, coherent defending
techniques, corner execution, are examples of coordination situations.

In this context, it is of particular interest to investigate coordination techniques simple enough to be
implemented by reactive agents. Focused on the study of such mechanisms, we decided to develop a
soccer simulation using the support provided by Bubble’s architecture [Campo99].

4.3.1. Implementation using the framework

The simulation models a game between two teams, where each player is represented as an agent with
certain capabilities to solve different situations arising during the soccer game (see Figure 5). In order to
concentrate the main efforts on coordination issues, we made some assumptions such as: a 2D-game, no
human-like movements in players, each player having an unlimited view of the field, no blocking
actions among players, and no off-side situations. The more relevant player capabilities are the
following: stopping a ball, running with a ball, passing a ball to another player, shooting, taking a rival,
looking for an offensive position, moving to a defending zone, and so on. A player behavior can be
different according to its role (e.g. goalkeeper, forward, defender, or middle-player). Individual
characteristics of the players can be changed through time. Changing characteristics provide a
well-sound support to define and implement different team strategies.

We considered any actor in the system as a reactive agent. Therefore, a player, the ball and the
referee are considered as agents in our simulation. All these agents live inside a field, that we
represented with a container-agent. Agent behaviors are defined as different tasks; a player agent can,
for instance, go straight to a ball, mark, or take a kick. These tasks trigger events to notify other agents
about changes in the game state, and these events are also perceived by the rest of the agents via their
sensors. These mechanisms are implemented following the prescriptions of Bubble architecture.
Furthermore, there are other special tasks related with collaboration to solve situations presented during
the game (e.g. selecting the best passing in a given play). These situations involve special events that are
explicitly sent by agents with a communication purpose. We implemented a common repository (called
map) to publish global data about the world (for instance, player positions or ball location), in order to
facilitate the communication processes. It also provided an easy and more efficient way of sending
messages from players to the ball, because the original mechanism based on sensors and events would
be a potential point of data overflow. As side effect, the debugging and traceability of the application
might be simplified.

Fig. 5. The Team structure determines basic player positions during the game

 A coach agent was introduced to manage group formations. Using this metaphor, players belong to a
given team, and there is master agent who is able to configure player properties before a game (i.e.
offensive positions, passive positions, or player strengths). Actually, our simulated coach was not a real
cognitive agent: its directives came from predefined actions provided by users during the game using a
GUI panel (see Figure 7). Despite of this simplification, this conceptual model can include more
elaborated coach reasoning in future developments (some alternatives are a case-based reasoner or some
kind of planning).

As regards tasks, simulation design enables them to be assigned to agents dynamically, and their
activation conditions and specific work can be parametrizable by users. The design included different
types of tasks to capture specific team needs (see Figure 6):
• Target-based tasks: It is a task that can be parametrizable with a given target to follow (usually a

mobile target), and can define different behaviors to accomplish this goal.

In this example, a team structure
groups a set of players and defines
some properties like: passRisk
property (estimation of a bad passing)
and defendersPressing property (the
number of players pressing on a ball
in a given situation).

• Strategy analyzer: It is a task representing all the selected strategies (i.e. other tasks) for a given
team. These tasks are statically defined by a coach, and they are not attached to any particular
player.

• Temporal strategies: Usually, players change temporarily their behaviors to participate in a given
situation, and then their return to their previous usual behaviors. This feature was implemented with
a task structure able to recognize special conditions activating a predefined situation, store agent
states, change some agent properties to effectively take part in the situation, and then restore the old
states when the situation is finished. These tasks are also separated from players, but involve more
dynamic behavior than the static tasks.

Fig. 6. Some examples of strategy tasks in the simulation

• Predefined plays: With these tasks, a coach can specify a more abstract play, defined by a target
player (generic) and a set of scenes depicting the play. The target player might decide to abort such
play because there are better alternatives to follow. The specific mapping of a template play is
instantiated during runtime.

Using these facilities, a support to define, apply and change different team strategies during a game
was implemented and tested.

4.3.2. Results and lessons learned

Press on the ball
Condition: The ball is in
our field

Action: Press with one
player

target player

Strategy Analyzer. In this situation, the coach wants a
player pressing on the ball when the ball is in the defense
zone. Thus, the BallPressionModeTask task (in
StrategyAnalyzer) is activated when a ball agent is detected
in the selected field, and this task sets to 1 the value of the
defenderPressing property. There is another task that is
activated when the ball is out of the defense zone, turning
that property to 0.

Temporal Strategy. In this situation, a defender takes a forward
position in a corner. The initial condition (startCondition)
activating this task (GoToCornerKickTask) is a corner event. The
temporal behavior comprises modifying the offensive position in
the player towards a given location in the rival area. When
someone scores or a rival player catches the ball during the play,
an ending condition (endCondition) occurs and the values in the
player are restored to their original values.

Implementing a soccer simulation using a framework (apparently quite distant from that domain) was an
interesting challenge. The results obtained were really encouraging, and we present some of them:
• Concurrency. Concurrency was experimented in some previous examples, but it became necessary

in the soccer simulation. It allows a more real modeling of coordination situations during the game.
A single agent is now able to execute some of its tasks in a concurrent mode with other agents.

• Information repository. A common repository of meta-level information was used as an alternative
to implement direct data exchange between agents. We think that event flow can be reduced in
some cases using this technique. Debugging and traceability could be also simplified with this
option.

• Group management. The original composed-agent derived in a coach/team structure, where the
coach has the responsibility of defining suitable strategies for the players. Other envisioned
possibility involves more elaborated reasoning in these manager agents.

Fig. 7. Using the event mechanism to send coach instructions (via a GUI) to the players

• More complex tasks. The development of this example had a particular characteristic: our
implementation team did not understand completely how the roles of the tasks worked into the
framework. As a consequence, they did not use the framework in the usual way, even though an
important part of their work was related to different types of tasks. Strangely, this situation did not
produce a negative effect at all. We discovered new possibilities about agent behaviors involving
coordination patterns based on those tasks.

• Coordination. The soccer simulation required to divide tasks in two categories: basic tasks
(following a common task structure inherited from the existent architecture), and more specific
tasks related to the roles played by agents in coordination protocols. This idea shifted our conception
about agents in the framework, extending the concept of competing tasks. Now, an agent could be
defined as a series of roles involving predefined tasks, and each role might be enabled or disabled at
runtime as a result of the current collaborations taking place among the agents. Moreover, we
believe that certain coordination patterns can be extracted from these multiagent simulations.
Following these lines, they could be specified and applied to other problems.

5. FUTURE WORK

The case-studies presented in this paper are only a small part of the applications that can be
developed with the Bubble framework. Regardless of this experience, we believe that Bubble’s
architecture is still in evolution, and it has to provide developers with a well-established set of hooks to
build multiagent simulations on top of the framework. The ideas about roles and coordination patterns
are emerging, and a more digging work could derive in useful results to define agent organizations in
simulation models [Lesser98].

Future work includes settling the existent capabilities, and providing other features such as a visual
environment to manipulate the framework and distribution capabilities. On the other hand, we should be
careful in this process, because a wide range of built-in features can affect and limit framework
adaptability. Problems of tangling code might arise, leading to difficult maintenance and usage of
software. A clear separation of concerns should be studied to tackle these issues. When it comes to other
application examples, we are planning to test the framework in systems involving workflow and plant
control.

6. CONCLUSIONS

The use of object-oriented application frameworks promotes reuse and adaptability, but only if these
quality factors are enforced during design. The experience reported in this paper shows how the
mechanisms provided by Bubble’s architecture (i.e. agents, events, filters, tasks, sensors and uniform
decomposition) resulted in an adaptable support. We can remark the following items:
• The containment notion was relaxed to admit other group structures.
• Original tasks formed by combination of basic blocks became more complex (specially with the

third example) to support parametric definitions and team strategies.
• A simple hierarchical organization derived into agent groups coordinated by other agents and

different roles (played by the agents) according to specific strategies.
• Communication via events was enriched with other mechanisms such as a blackboard approach.
• Other features included separation of geometrical concerns, concurrency issues and visual tools.

Bubble was developed using a multiagent approach based on reactive agents, and it should be seen as
an alternative tool of multiagent modeling to simulate complex realities. It is interesting to analyze the
evolution of the first basic framework from the early applications to the final ones (See Table 1). On the
other hand, framework adaptability implied a wide set of possibilities to configure a given application,
but sometimes this situation can produce certain disorientation in the users regarding to what features
they should use. We think that the definition of some common programming model to create
applications using the framework is also required. A visual environment might help in this task.

Aspect Fluids Mobile hosts Soccer

Structural
organization

Strict hierarchical
containment.
Geometrical
considerations.

Groups of agents
where containment
is not necessary.
Separation of
geometrical
concerns.

Agents belong to a
team, coordinated
by another agent.
Roles.

Tasks

Simple tasks, or
combinations of
blocks.

Simple tasks, or
combinations of
blocks.

Parametric tasks.
More dynamic
structures. Tasks
involving roles,
applied to teams.

Communication

Events and sensors.
The event flow is
managed by
containers.

Events and sensors.
Broadcast and
multicast events.

Events and sensors,
plus other
mechanisms such as
a blackboard.

Table. 1. Evolution of the Bubble’s architecture

Finally, the results obtained with the framework and its ulterior applications were encouraging from
an architectural point of view, and we believe they have enough credits to generate new ideas and future
research about organizational aspects (roles and coordination) in multi-agent simulation frameworks.
Dealing with adaptability in object-oriented application frameworks is not a minor issue, Bubble may
be just a strange case, but in some manner it is pointing out the right way towards engineering
adaptability in software systems as a critical factor to face unexpected changes.

Acknowledgments

Thanks to Martín Lahittette and Maximiliano Keen who implemented the soccer simulation using the
Bubble’s architecture and provided us a valuable feedback about framework usage. Thanks also to
Alejandro Clausse for his generous help in physical issues related to fluid flow problems.

REFERENCES

[Demazeau91] Demazeau, Y., and Müller, J. P. eds.: From reactive to intentional agents. In Decentralized
Artificial Intelligence 2, pp. 3-14. Elsevier/North-Holland, Amsterdam. 1991

[Drogoul92] Drogoul, A., Ferber, J.: Multi-agent simulation as tool for modeling societies: Application to
social differentiation in ant colonies. Proc. Eur. Workshop Modelling Autonomous Agents
Multi-Agent World, 4th,Rome, Italy. 1992

[Perkins94] Perkins, C., Myles, A., and Johnson, D.: The Internet mobile host protocol (IMHP), Proceedings
INET’94, Annual Conference of the Internet Society. Czech Republic, June 1994

[Fayad96] Fayad, M., and Cline, M.: Aspects of software adaptability, Communications of the ACM,
39(10), 58-59. 1996

[Herrero96] Herrero, V., Clausse, A., and Guido-Lavalle, G.: Geometrical automata for two phase flow
simulation, Technical note. Printed from Nuclear Engineering and Design 163 117-124. 1996

[Moulin96] Moulin, B., and Chaib-Draa, B. : An Overview of Distributed Artificial Intelligence. In
"Foundations of Distributed Artificial Intelligence", Chapter 1, edited by G.M.P. O'Hare y N.R.
Jennings. A Wiley-Interscience Publication. 1996

[Shaw96] Shaw, M., and Garlan, D.: Software Architecture, perspectives on an emerging
discipline,Chapter 2: Architectural Styles. Published by Prentice-Hall. 1996

[Fayad97] Fayad, M.E. and Schmidt, D.: Object-Oriented Application Frameworks. Communications of
ACM, Vol. 40, No. 10, pp. 32-38, October 1997

[Johnson97] Johnson, R.: Frameworks = (components + patterns). Communications of the ACM, Theme
issue on “Object-oriented application frameworks”, Mohamed E. Fayad and D. Schmidt (Eds.),
40(10) pp. 39-42. 1997

[Meyer97] Meyer, B.: Object-Oriented Software Construction. Second Edition, Prentice-Hall. 1997

[També97] També, M.: Towards Flexible teamwork, J. Artificial Intelligence Research (JAIR) 7, 83-124.
1997

[Bass98] Bass, L., Clement, P., and Kazman, R.: Software Architecture in Practice, Chapter 6: Unit
operations. Published by Addison-Wesley. 1998

[Lesser98] Lesser, V.: Reflections on the Nature of Multi-Agent Coordination and its Implications for an
Agent Architecture. Appeared in “Autonomous Agents and Multi-Agent Systems”, Kluwer
Academic Publishers, 1, 89-111. July 1998

[Stone98] Stone, P., Veloso, M., Han, K. and Achim, S.: CMUnited: A team of robotic soccer agents
collaborating in an adversarial environment, In Hiroaki Kitano, editor, RoboCup-97: The First
Robot World Cup Soccer Games and Conferences. Springer Verlag. 1998

[Sycara98] Sycara, K.: Multiagent Systems. In AI magazine Volume 19, No. 2. 1998
[Campo99] Campo, M.: Invited presentation, Our soccer simulation. 28 JAIIO (Jornadas Argentinas de

Informática e Investigación Operativa), Buenos Aires, Argentina. 1999
[DiazPace99] Diaz Pace, A., Trilnik, F., Clausse, A. and Campo, M.: BUBBLE: a framework for simulation of

collective processes using reactive agents. Proceedings SyM’99 (Simulación y Modelística) Pp
50-65, 28 JAIIO (Jornadas Argentinas de Informática e Investigación Operativa), Buenos Aires,
Argentina. 1999

[Fayad99] Fayad, M., Schmidt, D., and Johnson, R.: Building Application Frameworks: Object-Oriented
Foundations of Framework Design. Wiley Eds. 1999

[Stone99] Stone, P. and Veloso, M.: Task decomposition, dynamic role assignment, and low-bandwidth
communication for real-time strategic teamwork, Artificial Intelligence,110(2):241—273. 1999

	J. Andrés Díaz Pace1,2, Federico U. Trilnik1and Marcelo R. Campo1
	INTRODUCTION
	BACKGROUND INFORMATION
	Adaptability in object-oriented systems
	Multi-agent systems
	THE FRAMEWORK BUBBLE
	Structural organization
	Communications
	Tasks
	CASE STUDIES
	Bubbly flow simulation
	Implementation using the framework
	Results and lessons learned
	Internet mobile host protocol
	Implementation using the framework
	Results and lessons learned
	Soccer
	Implementation using the framework
	Results and lessons learned
	FUTURE WORK
	CONCLUSIONS
	Acknowledgments
	REFERENCES

