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2 Also CONICET 

Abstract. Enforcing framework adaptability is one of the key points in the process of 
building an object-oriented application framework. When it comes to simulation, some 
adaptation mechanisms to configure components on-the-fly are usually required in order to 
produce good software artifacts and alleviate development effort. The paper reports an 
experience using a simulation multi-agent framework, initially conceived to be used in fluid 
flow problems. The framework architecture demonstrated during its evolution a great 
potential regarding to flexibility and modularity, tackling a wide range of other problems 
ranging from a network protocol simulation to a soccer simulation.  
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1. INTRODUCTION  

Object-oriented application frameworks are usually regarded as a useful technology to achieve reuse in 
software systems [Fayad97]. The benefits of a framework [Johnson97] are that it provides a general and 
reusable skeleton of classes and behavior patterns for a given domain, and relying in this support new 
applications can be developed in a flexible and direct way, with additional savings of time and design 
effort. But this is only one side of the coin, these benefits should be enforced during design time to 
effectively be successful accomplishing well-sound software artifacts. Besides, the process of building a 
framework is far to be straightforward. It often requires important efforts to capture a given domain 
abstraction and provide a powerful and comprehensible framework to application developers.  A 
common methodology [Fayad99] consists of an iterative development, starting with a few examples and 
applying successive refactorizations to the framework until it reaches a reasonable state of maturity.  
Interestingly, this process sometimes leads to a framework suitable for other problems not foreseen by 
developers during the first steps of design. One of the causes of these variations can be a misunderstood 
framework usage due to inexpert users trying to fit their specific needs. If the framework can take profit 
of these “abnormal” situations, new unexpected capabilities can be included producing an evolutionary 
leap in the framework. 

The paper presents an object-oriented framework implemented in Java (named Bubble) designed 
under the multi-agent approach [Demazeau91, Drogoul92], originally conceived to simulate the motion 
of gas bubbles in a fluid environment. Later developments and applications demonstrated the wide 
potential of the framework, which progressively became a flexible support to define and organize 
simulations of cooperative processes characterized by the interaction of large numbers of individuals. 
Moreover, it was applied to model other problems not expected at the beginning, such as a network 
protocol simulation and a soccer simulation. As a result, novel possibilities to extend the original 
framework were discovered and analyzed.  A report of these experiences is also included in the article. 
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The contribution of the work is that it provides an adaptable framework architecture with a particular 
combination of building mechanisms such as agents, uniform decomposition, competing tasks, events 
and implicit invocation, to represent complex simulations in a flexible manner. In addition, it describes 
three application examples using the framework, showing both practical experience about framework 
evolution and derived research ideas in the targeted area. 

The work is organized into five sections. The first section gives background information about 
adaptability in object oriented systems and multi-agent systems. Then, the description of our framework 
Bubble is presented. The following section reports three application examples based on the framework 
and lessons learned in this evolution process. Then, some tradeoffs and perspectives about Bubble are 
discussed after that. And finally, we draw the conclusions of the work. 

2. BACKGROUND INFORMATION 

This section explains what we mean by adaptability in object oriented systems (closely related with the 
architecture of our framework), and presents basic concepts about multiagent systems and agent-based 
simulations, in order to situate the rest of the work. 

2.1. Adaptability in object-oriented systems 

Adaptability is an important and desirable quality factor in today’s software system.  This property 
defines the ability of a given software system to cope smoothly with changes in the problem 
specification, producing a low impact on components previously implemented [Fayad96]. In this way, 
systems are able to evolve and tackle different variations of a given problem. 

From a high-level point of view, a software artifact usually needs two properties to be adaptable: 
extensibility and flexibility.  By extensibility, we mean the ability to change capabilities of the system in 
amount (e.g. using inheritance), whereas flexibility is to change capabilities in kind. The lack of 
adaptability can become a critical issue if you want to scale up the system.  Developers should not only 
think in the target system during the design phases, but in the future variations of such system as well 
(for example, emphasizing software decentralization and modularity). 

These two aspects, extensibility and flexibility, are especially useful in modeling problems, because 
we usually start with a quite abstract description of our problem, and then new features are included in 
this description and different variations are tested. Therefore, the development effort associated with the 
modeling process can be an important factor, even having some kind of component reusability.  It 
requires some adaptation mechanisms to configure components on-the-fly, in order to produce good 
software and alleviate development effort. As a drawback, this gain in expressiveness and adaptability 
of the system often is balanced with some loss in performance. 
 The building mechanisms included in Bubble’s architecture that we will describe in the next section, 
try to enforce adaptability issues to easily configure simulation applications. 

2.2. Multi-agent systems 

With the spreading of the agent paradigm [Demazeau91, Sycara98] as a derivation of the object 
orientation paradigm [Meyer97], a new way of thinking and building complex software is increasingly 
taking place.   Under this new paradigm, software systems can be conceived as organizations of 
interrelated agents, with flexibility and modularity as major potential gains. 

An agent is a computational entity evolving in an environment, with an autonomous behavior, 
capable of perceiving and acting in this environment, and capable of communicating with other agents.  
A multi-agent system is a set of agents, probably with some organization, interacting in a shared 
environment.  The research in multi-agent systems is centered in analyzing how a collection of 
autonomous agents can solve a given problem that usually is beyond the scope of individual capabilities.  



  

The main advantages of a multiagent system over a single and monolithic system [Moulin96] are the 
following:  
• Higher capability for problem solving because of the possible parallelism, 
• Flexibility, because agents with different capabilities associate to solve a given problem. 
• Robustness, because control and responsabilities distributed among the agents result in a better fault 

tolerance. 
• Scalability, because proper agent modularity makes easy to add new agents with new capabilities in 

the system and program different agents. 
As regards multi-agent simulation models [Drogoul92], a mapping from each component of the real 

system (individual or group) to an equivalent computational agent is defined, and the simulation is based 
on the global consequences of local interactions between members of the population. These models 
typically consist of an environment in which the interactions occur, and some number of individuals 
defined in terms of their behaviors (procedural rules) and characteristic parameters. Individuals might 
represent plants and animals in ecosystems, vehicles in traffic, people in crowds, etc. 

3. THE FRAMEWORK BUBBLE 

Bubble is a multi-agent framework implemented in Java [DiazPace99], originally conceived and 
designed to simulate the motion of gas bubbles in a fluid environment. The basic elements of the system 
are reactive agents [Demazeau91] described by an internal state and a set of executable tasks. The 
interaction among these reactive agents is performed through events that the agents produce and receive.  
The agents are equipped with associated sensors (like filters) that are registered to hear certain kinds of 
events with a defined criterion of relevance (local, by group, by event strength, regional, etc.).  

The behavior of a reactive agent is defined through tasks using a condition-action style, i.e. a task is 
a module composed by a series of actions to be executed by the agent (action part) when certain 
conditions are fulfilled (condition part). Conditions can be related either to the internal state of the agent 
or the incoming events. Note that these tasks should not be confused with statecharts. The framework 
also admits agents containing groups of other agents, and tasks composed by groups of predefined tasks. 
In this way, complex interactions, structures and behaviors can be modeled combining primary blocks.  

Figure 1 shows a diagram of the conceptual model supported by the framework, illustrating a typical 
event flow between agents in a container and the role that sensors play in this process.  Note that the 
outgoing events produced by agent D are propagated only if the agent is attached to a container, but this 
relationship is not compulsory.  When an agent receives an incoming event (agents B, D and container, 
in the example), the processing depends on the current tasks associated with the agent. 

The framework can be described from three different perspectives: structural organization, 
communications, and agent tasks.  Each of these views refers to a group of collaborating classes in the 
framework, and the following sections provide more details about them. 
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Fig. 1.  Conceptual model of Bubble´s architecture 

3.1. Structural organization 

Bubble is organized applying the paradigm of uniform decomposition. By uniform decomposition 
[Bass98] we mean the operation of separating a large component into two or more smaller ones, limiting 
the composition mechanisms to a restricted uniform set.  Thus, integration of components and scaling of 
the system as a whole is achieved, having besides modifiability and reusability properties. The aim is to 
represent the agent organization with a hierarchy of abstraction levels: agents composed by other agents, 
that in turn are composed by others, and so on. The same structure is used to handle incoming and 
outgoing events. As example, we can apply these concepts in a simple prey-predator model: a 
container-agent might represent the environment where both preys and predators live, and a composed 
agent can be used to model a gang of predators looking for new preys. 

3.2. Communications 

Communications among different components in Bubble are performed through events. Every agent can 
be linked to a container-agent, and this container is engaged to collect and dispatch incoming events to 
the sensors registered inside it.  As we explained in a previous section, sensors acts like filters and 
transmit only interesting events to their associated agents. An implicit-invocation mechanism [Shaw96] 
is used to achieve these notifications. The container-agent is in charge of the event flow management 
among all the agents.  

An event represents a notification of any change occurring in the system. Sensors are responsible of 
reception and conditional transmission (filtering) of events. Container-agents deliver events received 
from the agents to the sensors. To illustrate this interaction, suppose we are modeling a market where 
buyers and sellers are free to perform transactions, any customer interested in buying certain items needs 
to specify a purchasing criterion and enroll itself with the market to listen to bids. In this context, the 
market can be a container-agent, both sellers and buyers are simple agents, and the specific purchasing 
criterion corresponds with a sensor. Every time a new offer appears, our customer will be notified about 
that situation only if the offer fulfills its purchasing conditions. 
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Fig. 2.  Competing tasks in the framework 

3.3. Tasks 

All the agents of the framework can perform a set of tasks. A task is composed by one or more 
procedures with a set of input and output parameters. Tasks are triggered by predefined conditions, 
which can be related to the internal state of the agents or incoming events. In this way, the agent 
behavior is conceived as a set of competing tasks, where only one task is active at the same time 
[Drogoul92]. When a selected task is executed, it can generate either outgoing events and/or changes 
affecting the agent state. Figure 2 provides a picture of such situation. Different tasks can be 
dynamically assigned to an agent, and they compete to execute according to their priorities and 
activation requirements. 

4. CASE STUDIES 

This section reports three application examples using Bubble, ranging from the early examples 
modeling fluid flow problems, the example representing a network protocol simulation, and the more 
recent development modeling a soccer simulation.  These case-studies are presented in the chronological 
order they were developed,  showing how the original framework was adapted to fulfill the requirements 
of the different problems.  More interestingly, it reveals how the building mechanisms included in 
Bubble allowed us to achieve a remarkable adaptability. 

4.1. Bubbly flow simulation 

Bubbly flow [Herrero96] is encountered in many industrial applications, such as distillation columns, 
nuclear and chemical reactors, oil piping, among others. Wherever two unmiscible fluids are forced to 
flow together, one of them tend to concentrate in bubbles, the other fluid acting as a continuous carrying 
environment. Generally, some macroscopic global magnitudes are used to characterize the state of the 
flow, representing the relative amount of each fluid component, the number of bubbles per unit volume, 
the interfacial area density, the average bubble size, etc.  

Classically, complicated sets of partial differential equations are used to describe the rate of change 
and spatial distribution of the global magnitudes. Afterwards, the computer is used to numerically solve 
the field equations. Instead, the multi-agent modeling introduces the computer at the beginning of the 



  

description, simulating the movements and changes of the fluid particles, and afterwards global 
statistical patterns are identified to determine the general laws. 

4.1.1. Implementation using the framework 

We represent the bubbly flow as a multi-agent virtual world composed of a continuous liquid which will 
be partitioned in slices to construct spatial geometries, and a disperse phase instantiated in numerous 
bubbles embedded in the liquid. The bubbles are codified as reactive agents represented by spheres, 
which perform the following set of tasks: (a) Displacement, the center of each sphere is displaced a 
constant distance d in a random direction θ; (b) Coalescence, when two or more bubbles collide, they 
coalesce giving birth to a new bubble conserving the total volume; (c) Breakup, each bubble is allowed 
to break up into two bubbles conserving the total volume, with a given probability model (for example 
when the size is larger than a certain critical size). 

The continuous fluid is partitioned in slices. These slices, being agents themselves, have particular 
properties, such as turbulence intensity represented by spatial variations in the displacement task. By 
linking the slices, different geometrical configurations can be constructed, such as pipes, bends, or 
irregular vessels. The slices provide the figure of a neighborhood, precluding interactions between 
distant bubbles, by limiting the reception of inner events to bubbles located within the corresponding 
slice. This feature greatly reduces the flow of events in the system. Additionally, complicated 
geometries can be easily simulated by partitioning the space in blocks represented by slice agents. 
Figures 3 shows a diagram of this implementation. The side effect is the tracking and accounting of 
bubbles moving from one slice to another. 

The bubbly flow model was implemented specializing the Bubble framework according to the 
requirements of the application domain. The model was defined by an environment agent, divided in 
slice agents representing the continuous fluid. Inside every slice, bubble agents represent the dispersed 
fluid. The agents Environment and Slice are modeled as specializations of container-agent. The 
visualization of the simulation is managed by an additional visualization-agent, and the statistic data is 
collected and processed by the an storage-agent. These last two components were implemented 
following the same conceptual model defined in the framework: the visualization agent listens to events 
about creation and deletion of bubbles updating a canvas in consequence, whereas the statistical agent 
catches events to compute statistical indicators that stores in an output file. 

Moreover, redefining the bubble agents tasks, more complex transport phenomena can be 
appropriately simulated with great easiness. Likely, composed tasks can be engineered to resemble 
complex interactions between bubbles, such as wake trapping and vortex induction. On the other hand, 
mass exchanges between phases are simulated by tasks performed by Slice and Environment classes, 
which can create and annihilate bubble instances. At that stage, a concurrent implementation of the 
framework was still pending. 

4.1.2. Results and lessons learned 

Fluid flow problems were the basis of the framework. The framework tried to capture commonalties of 
this domain and emphasize easy-of-modeling features.  The following items summarize the main results 
of this stage. 
• Uniform decomposition. The notion of contained and container agents provides different levels of 

abstraction to represent entities involved in the simulation (i.e. bubbles, container fluids and bubble 
sources).  It also permits future refinements in this modeling hierarchy. 

• Event notification and filters. Event notification resulted a good mechanism to integrate different 
entities into the model in a step-by-step fashion. Afterwards, sensors and containers were introduced 
as filters to manage event flow.  
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Fig. 3.  Implementation of the bubble flow simulation 

• Simple tasks. Most of the tasks we defined for the agents were quite simple at this stage, and they 
usually encapsulated equations ruling geometrical laws (i.e. movements, breaks, coalescences, and 
rebounds).   

• Geometry. The physical nature of the simulation lead to define most of the filtering criteria based on 
geometrical notions. Initially, the problem was implemented and tested in a 2D world, with 
geometrical considerations quite tangled into multi-agent code. After that, we built a 3D model for 
the simulation. 

• Utilities. Using the same architectural ideas we implemented visualization and statistics facilities.  
 
 

As we mentioned, the original 2D fluid model was extended to 3D, and other new components were 
included into the model. For instance, we inserted bubble sources and sinks to represent variations in the 
volume of bubbles. The impact of these changes was minimum, only affecting calculus related with 
distance considerations. Moreover, the 3D extension was accomplished with a relatively small 
additional work. This capability to make  smooth transitions from one initial model to more elaborated 
ones, was one of the most relevant aspects of the framework architecture. However, we observed in the 



  

implementations that good flexibility and extensibility often came with some tradeoffs regarding to 
event control and efficiency.  

4.2. Internet mobile host protocol 

The protocol is designed to route packets between mobile hosts [Perkins94], i.e. portable computers 
connected to different networks probably changing their locations as they are operating. A unique and 
permanent host location (called home location) is assigned to every host. There is also a routing task, 
which delivers packets sent to the host home address towards the current location of the host in a 
transparent and efficient way.  A simulation of this protocol was implemented using our framework to 
study different parameters in the process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Registration process in the Internet Mobile Host Protocol 

4.2.1. Implementation using the framework 

We suppose our world divided in several networking areas (e.g. LANs, wireless cells, or other kind of 
networks). Each area contains: a foreign-agent with a registry of every mobile host visiting such area, 
and a home-agent storing the hosts whose home location belongs to the area but they are currently out of 
its scope.  If a new host arrives to the area, it must be registered by the local foreign-agent, as it is shown 
in Figure 4. Any packet sent to a mobile host is routed to the host home LAN, and this packet is then 
caught by the home-agent. The home-agent checks the current (temporary) address of the destination 
mobile-host, forwarding the packet to the respective foreign-agent when it is necessary.  Thus, the 
sender host is notified of the situation and the next packets are directly sent to the current host address.  
Some mobile-hosts can act as cache-agents, storing temporary information about real addresses of other 
mobile-hosts. 

The simulation was implemented modeling mobile-hosts, home-agents and foreing-agents as simple 
agents, and defining some container-agents to represent the home-networks and the Internet (i.e. a 
network including all the other home-networks).  Each mobile-host has an IP address and different tasks 
associated.  These tasks involve capabilities such as: sending packets, moving around Internet and 
registration with foreign-agents.  A home-agent was specialized to manage a home-list, pass packets to 
hosts, and route packets to foreign-agents when it is necessary (notifying also to the specific sender 
host).  In a similar way, a foreign-agent can announce its operation to allow other hosts to be registered, 
maintain a list of visitor hosts, and resend packets from other sources. When it comes to networks, their 



  

activities include: capturing packets in their domains and routing these packets to other interconnected 
networks.  As a result, mobile-host agents wander through different network areas.  

4.2.2. Results and lessons learned 

With this second example we started to think a little beyond, not only centered on fluid problems. This 
new point of view lead us to some changes in the framework, which we detail below: 
• Geometry. In this network simulation, we realized that geometrical aspects may or may not be 

required by some agents, depending of the relative importance of a topological structure in the 
problem. For instance, networks only need a containment criterion based on their area of influence, 
and hosts do not care about geometrical considerations.  In consequence, we could consider 
geometry as an enabled/disabled feature.   

• Groups. Composed agents became more important to represent groups of agents, without imposing 
a strict containment relationship among agents.   

• Multicast and broadcast events. Multicast and broadcast messages, closer to network domains, were 
also required as a way to provide more elaborate mechanisms for agent communication. 

• Utilities. Tasks such as visualization, statistic collection and inspection became quite complex.  To 
face this situation, we believe that a general toolkit supporting these facilities is a potential 
requirement to be included in the framework. 

4.3. Soccer  

Nowadays, soccer games are used as a testbed to analyze and evaluate performance of several systems 
based on artificial intelligence approaches. Soccer usually includes classic characteristics encountered 
in artificial intelligence research such as: players having incomplete information about world states, a 
continuous and unpredictable game that cannot be planned in advance, or players facing situations that 
should be solved using their individual capabilities in conjunction with team collaboration [Stone98, 
Stone99, També97]. Any soccer game (even simplified) offers a wide variety of situations requiring 
some kind of coordination mechanisms.  The term coordination refers to the process where each agent 
“reasons” (in a more or less complex manner) about its actions and the (anticipated) actions of other 
agents in the community, trying to achieve a coherent behavior in the group.  For instance, avoiding all 
the players running for a given ball, accomplishing predefined movements, coherent defending 
techniques, corner execution, are examples of coordination situations. 

In this context, it is of particular interest to investigate coordination techniques simple enough to be 
implemented by reactive agents. Focused on the study of such mechanisms, we decided to develop a 
soccer simulation using the support provided by Bubble’s architecture [Campo99]. 

4.3.1. Implementation using the framework 

The simulation models a game between two teams, where each player is represented as an agent with 
certain capabilities to solve different situations arising during the soccer game (see Figure 5). In order to 
concentrate the main efforts on coordination issues, we made some assumptions such as: a 2D-game, no 
human-like movements in players, each player having an unlimited view of the field, no blocking 
actions among players, and no off-side situations. The more relevant player capabilities are the 
following: stopping a ball, running with a ball, passing a ball to another player, shooting, taking a rival, 
looking for an offensive position, moving to a defending zone, and so on. A player behavior can be 
different according to its role (e.g. goalkeeper, forward, defender, or middle-player).  Individual 
characteristics of the players can be changed through time. Changing characteristics provide a 
well-sound support to define and implement different team strategies. 



  

We considered any actor in the system as a reactive agent. Therefore, a player, the ball and the 
referee are considered as agents in our simulation.  All these agents live inside a field, that we 
represented with a container-agent.  Agent behaviors are defined as different tasks; a player agent can, 
for instance, go straight to a ball, mark, or take a kick. These tasks trigger events to notify other agents 
about changes in the game state, and these events are also perceived by the rest of the agents via their 
sensors. These mechanisms are implemented following the prescriptions of Bubble architecture.  
Furthermore, there are other special tasks related with collaboration to solve situations presented during 
the game (e.g. selecting the best passing in a given play).  These situations involve special events that are 
explicitly sent by agents with a communication purpose. We implemented a common repository (called 
map) to publish global data about the world (for instance, player positions or ball location), in order to 
facilitate the communication processes. It also provided an easy and more efficient way of sending 
messages from players to the ball, because the original mechanism based on sensors and events would 
be a potential point of data overflow.  As side effect, the debugging and traceability of the application 
might be simplified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  The Team structure determines basic player positions during the game 

 A coach agent was introduced to manage group formations.  Using this metaphor, players belong to a 
given team, and there is master agent who is able to configure player properties before a game (i.e. 
offensive positions, passive positions, or player strengths). Actually, our simulated coach was not a real 
cognitive agent: its directives came from predefined actions provided by users during the game using a 
GUI panel (see Figure 7).  Despite of this simplification, this conceptual model can include more 
elaborated coach reasoning in future developments (some alternatives are a case-based reasoner or some 
kind of planning). 

As regards tasks, simulation design enables them to be assigned to agents dynamically, and their 
activation conditions and specific work can be parametrizable by users.  The design included different 
types of tasks to capture specific team needs (see Figure 6): 
• Target-based tasks: It is a task that can be parametrizable with a given target to follow (usually a 

mobile target), and can define different behaviors to accomplish this goal. 

In this example, a team structure 
groups a set of players and defines 
some properties like: passRisk 
property (estimation of a bad passing) 
and defendersPressing property (the 
number of players pressing on a ball 
in a given situation). 



  

• Strategy analyzer: It is a task representing all the selected strategies (i.e. other tasks) for a given 
team. These tasks are statically defined by a coach, and they are not attached to any particular 
player. 

• Temporal strategies: Usually, players change temporarily their behaviors to participate in a given 
situation, and then their return to their previous usual behaviors.  This feature was implemented with 
a task structure able to recognize special conditions activating a predefined situation, store agent 
states, change some agent properties to effectively take part in the situation, and then restore the old 
states when the situation is finished. These tasks are also separated from players, but involve more 
dynamic behavior than the static tasks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 6.  Some examples of strategy tasks in the simulation 

• Predefined plays: With these tasks, a coach can specify a more abstract play, defined by a target 
player (generic) and a set of scenes depicting the play.  The target player might decide to abort such 
play because there are better alternatives to follow. The specific mapping of a template play is 
instantiated during runtime. 

Using these facilities, a support to define, apply and change different team strategies during a game 
was implemented and tested. 

4.3.2. Results and lessons learned 

Press on the ball
Condition: The ball is in
our field

Action: Press with one
player

target player 

Strategy Analyzer. In this situation, the coach wants a 
player pressing on the ball when the ball is in the defense 
zone.  Thus, the BallPressionModeTask task (in 
StrategyAnalyzer) is activated when a ball agent is detected 
in the selected field, and this task sets to 1 the value of the 
defenderPressing property. There is another task that is 
activated when the ball is out of the defense zone, turning 
that property to 0. 

Temporal Strategy. In this situation, a defender takes a forward 
position in a corner.  The initial condition (startCondition) 
activating this task (GoToCornerKickTask) is a corner event.  The 
temporal behavior comprises modifying the offensive position in 
the player towards a given location in the rival area. When 
someone scores or a rival player catches the ball during the play, 
an ending condition (endCondition) occurs and the values in the 
player are restored to their original values. 



  

Implementing a soccer simulation using a framework (apparently quite distant from that domain) was an 
interesting challenge.  The results obtained were really encouraging, and we present some of them: 
• Concurrency. Concurrency was experimented in some previous examples, but it became necessary 

in the soccer simulation. It allows a more real modeling of coordination situations during the game. 
A single agent is now able to execute some of its tasks in a concurrent mode with other agents. 

• Information repository. A common repository of meta-level information was used as an alternative 
to implement direct data exchange between agents.  We think that event flow can be reduced in 
some cases using this technique.  Debugging and traceability could be also simplified with this 
option. 

• Group management.  The original composed-agent derived in a coach/team structure, where the 
coach has the responsibility of defining suitable strategies for the players.  Other envisioned 
possibility involves more elaborated reasoning in these manager agents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Using the event mechanism to send coach instructions (via a GUI) to the players 

• More complex tasks. The development of this example had a particular characteristic: our 
implementation team did not understand completely how the roles of the tasks worked into the 
framework.  As a consequence, they did not use the framework in the usual way, even though an 
important part of their work was related to different types of tasks.  Strangely, this situation did not 
produce a negative effect at all. We discovered new possibilities about agent behaviors involving 
coordination patterns based on those tasks. 

• Coordination. The soccer simulation required to divide tasks in two categories: basic tasks 
(following a common task structure inherited from the existent architecture), and more specific 
tasks related to the roles played by agents in coordination protocols. This idea shifted our conception 
about agents in the framework, extending the concept of competing tasks. Now, an agent could be 
defined as a series of roles involving predefined tasks, and each role might be enabled or disabled at 
runtime as a result of the current collaborations taking place among the agents.  Moreover, we 
believe that certain coordination patterns can be extracted from these multiagent simulations. 
Following these lines, they could be specified and applied to other problems. 



  

5. FUTURE WORK 

The case-studies presented in this paper are only a small part of the applications that can be 
developed with the Bubble framework.  Regardless of this experience, we believe that Bubble’s 
architecture is still in evolution, and it has to provide developers with a well-established set of hooks to 
build multiagent simulations on top of the framework.  The ideas about roles and coordination patterns 
are emerging, and a more digging work could derive in useful results to define agent organizations in 
simulation models [Lesser98].  

Future work includes settling the existent capabilities, and providing other features such as a visual 
environment to manipulate the framework and distribution capabilities.  On the other hand, we should be 
careful in this process, because a wide range of built-in features can affect and limit framework 
adaptability. Problems of tangling code might arise, leading to difficult maintenance and usage of 
software. A clear separation of concerns should be studied to tackle these issues. When it comes to other 
application examples, we are planning to test the framework in systems involving workflow and plant 
control.  

6. CONCLUSIONS 

The use of object-oriented application frameworks promotes reuse and adaptability, but only if these 
quality factors are enforced during design.  The experience reported in this paper shows how the 
mechanisms provided by Bubble’s architecture (i.e. agents, events, filters, tasks, sensors and uniform 
decomposition) resulted in an adaptable support. We can remark the following items: 
• The containment notion was relaxed to admit other group structures. 
• Original tasks formed by combination of basic blocks became more complex (specially with the 

third example) to support parametric definitions and team strategies. 
• A simple hierarchical organization derived into agent groups coordinated by other agents and 

different roles (played by the agents) according to specific strategies. 
• Communication via events was enriched with other mechanisms such as a blackboard approach. 
• Other features included separation of geometrical concerns, concurrency issues and visual tools. 

Bubble was developed using a multiagent approach based on reactive agents, and it should be seen as 
an alternative tool of multiagent modeling to simulate complex realities. It is interesting to analyze the 
evolution of the first basic framework from the early applications to the final ones (See Table 1). On the 
other hand, framework adaptability implied a wide set of possibilities to configure a given application, 
but sometimes this situation can produce certain disorientation in the users regarding to what features 
they should use. We think that the definition of some common programming model to create 
applications using the framework is also required.  A visual environment might help in this task. 

 
 
 
 
 

Aspect Fluids Mobile hosts Soccer 
 

Structural 
organization 

Strict hierarchical 
containment. 
Geometrical 
considerations. 

Groups of agents 
where containment 
is not necessary.  
Separation of 
geometrical 
concerns. 

Agents belong to a 
team, coordinated 
by another agent.  
Roles. 



  

 
Tasks 

Simple tasks, or 
combinations of 
blocks. 

Simple tasks, or 
combinations of 
blocks. 

Parametric tasks.  
More dynamic 
structures.  Tasks 
involving roles, 
applied to teams. 

 
Communication 

Events and sensors. 
The event flow is 
managed by 
containers. 

Events and sensors. 
Broadcast and 
multicast events. 

Events and sensors, 
plus other 
mechanisms such as 
a blackboard. 

Table. 1.  Evolution of the Bubble’s architecture 

Finally, the results obtained with the framework and its ulterior applications were encouraging from 
an architectural point of view, and we believe they have enough credits to generate new ideas and future 
research about organizational aspects (roles and coordination) in multi-agent simulation frameworks. 
Dealing with adaptability in object-oriented application frameworks  is not a minor issue, Bubble may 
be just a strange case, but in some manner it is pointing out the right way towards engineering 
adaptability in software systems as a critical factor to face unexpected changes. 

Acknowledgments 

Thanks to Martín Lahittette and Maximiliano Keen who implemented the soccer simulation using the 
Bubble’s architecture and provided us a valuable feedback about framework usage.  Thanks also to 
Alejandro Clausse for his generous help in physical issues related to fluid flow problems. 

REFERENCES  

[Demazeau91]  Demazeau, Y., and Müller, J. P.  eds.: From reactive to intentional agents. In Decentralized 
Artificial Intelligence 2, pp. 3-14. Elsevier/North-Holland, Amsterdam. 1991 

[Drogoul92]  Drogoul, A., Ferber, J.: Multi-agent simulation as tool for modeling societies: Application to 
social differentiation in ant colonies. Proc. Eur. Workshop Modelling Autonomous Agents 
Multi-Agent World, 4th,Rome, Italy. 1992  

[Perkins94] Perkins, C., Myles, A., and Johnson, D.: The Internet mobile host protocol (IMHP), Proceedings 
INET’94, Annual Conference of the Internet Society. Czech Republic, June 1994 

[Fayad96]  Fayad, M., and Cline, M.: Aspects of software adaptability, Communications of the ACM, 
39(10), 58-59. 1996 

[Herrero96]  Herrero, V., Clausse, A., and Guido-Lavalle, G.: Geometrical automata for two phase flow 
simulation, Technical note. Printed from Nuclear Engineering and Design 163 117-124. 1996 

[Moulin96]  Moulin, B., and Chaib-Draa, B. : An Overview of Distributed Artificial Intelligence. In 
"Foundations of Distributed Artificial Intelligence", Chapter 1, edited by G.M.P. O'Hare y N.R. 
Jennings. A Wiley-Interscience Publication. 1996 

[Shaw96]  Shaw, M., and Garlan, D.: Software Architecture, perspectives on an emerging 
discipline,Chapter 2: Architectural Styles. Published by Prentice-Hall. 1996 

[Fayad97]  Fayad, M.E. and Schmidt, D.: Object-Oriented Application Frameworks. Communications of 
ACM, Vol. 40, No. 10, pp. 32-38, October 1997 

[Johnson97]  Johnson, R.: Frameworks = (components + patterns). Communications of the ACM, Theme 
issue on “Object-oriented application frameworks”, Mohamed E. Fayad and D. Schmidt (Eds.),  
40(10)  pp. 39-42.  1997 

[Meyer97]  Meyer, B.: Object-Oriented Software Construction. Second Edition, Prentice-Hall. 1997 



  

[També97]  També, M.: Towards Flexible teamwork, J. Artificial Intelligence Research (JAIR) 7, 83-124. 
1997 

[Bass98]  Bass, L., Clement, P., and Kazman, R.: Software Architecture in Practice, Chapter 6: Unit 
operations.  Published by Addison-Wesley. 1998 

[Lesser98]  Lesser, V.: Reflections on the Nature of Multi-Agent Coordination and its Implications for an 
Agent Architecture.  Appeared in “Autonomous Agents and Multi-Agent Systems”, Kluwer 
Academic Publishers, 1, 89-111. July 1998 

[Stone98]  Stone, P., Veloso, M., Han, K. and Achim, S.: CMUnited: A team of robotic soccer agents 
collaborating in an adversarial environment,  In Hiroaki Kitano, editor, RoboCup-97: The First 
Robot World Cup Soccer Games and Conferences. Springer Verlag. 1998 

[Sycara98]   Sycara, K.: Multiagent Systems. In AI magazine Volume 19, No. 2. 1998 
[Campo99]  Campo, M.: Invited presentation, Our soccer simulation. 28 JAIIO (Jornadas Argentinas de 

Informática e Investigación Operativa), Buenos Aires, Argentina. 1999 
[DiazPace99]  Diaz Pace, A., Trilnik, F., Clausse, A. and Campo, M.: BUBBLE: a framework for simulation of 

collective processes using reactive agents. Proceedings SyM’99 (Simulación y Modelística) Pp 
50-65, 28 JAIIO (Jornadas Argentinas de Informática e Investigación Operativa), Buenos Aires, 
Argentina. 1999 

[Fayad99] Fayad, M., Schmidt, D., and Johnson, R.: Building Application Frameworks: Object-Oriented 
Foundations of Framework Design.  Wiley Eds. 1999 

[Stone99]  Stone, P. and Veloso, M.: Task decomposition, dynamic role assignment, and low-bandwidth 
communication for real-time strategic teamwork, Artificial Intelligence,110(2):241—273. 1999 

 


	J. Andrés Díaz Pace1,2, Federico U. Trilnik1and Marcelo R. Campo1
	INTRODUCTION
	BACKGROUND INFORMATION
	Adaptability in object-oriented systems
	Multi-agent systems
	THE FRAMEWORK BUBBLE
	Structural organization
	Communications
	Tasks
	CASE STUDIES
	Bubbly flow simulation
	Implementation using the framework
	Results and lessons learned
	Internet mobile host protocol
	Implementation using the framework
	Results and lessons learned
	Soccer
	Implementation using the framework
	Results and lessons learned
	FUTURE WORK
	CONCLUSIONS
	Acknowledgments
	REFERENCES

