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Abstract

Within the context of multi-agent systems, an agent may often ¯nd itself in a position
where it receives information through informants. These informants are independent
agents who have their own interests and, therefore, are not necessarily completely reliable.
It is natural for an agent to be more inclined to believe one informant over another,
especially if the informant has proven itself reliable over a period of time. This preference
is stored in a plausibility relation, a partial order indicating the relative credibility of
the agent's informants. Through careless expansion or other means, inconsistencies may
be introduced into the plausibility relation. A consolidation operator is proposed and
characterized through a set of postulates. Alternative constructions are discussed. A
non-prioritized revision operator for plausibility relations, based on consolidation, is also
presented.

Keywords: Intelligent agent, Multi-agent systems, Plausibility relation, Belief change, revi-
sion, consolidation.

1 Introduction

Within the context of multi-agent systems, an agent may often ¯nd itself in a position where
it receives information from other agents or, as we will call them throughout this paper, infor-
mants. These informants are independent agents who have their own interests and, therefore,
are not necessarily completely reliable. In fact, on occasion an informant may provide infor-
mation which is contradictory with that which is provided by another. It would be natural for
our agent to be more inclined to believe one informant over another, especially if the informant
has proven itself reliable over a period of time.

Situations like these are not infrequent in real-world scenarios. Take for instance a stock-
investment agent. Such an agent may receive ¯nancial advice from several sources including,
but not limited to, human investment advisors and web pages where such ¯nancial council is
posted. These would ¯t the role of the previously mentioned informants. It is not hard to
imagine the investing agent prefering one informant's advice over another's. Our agent could
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track the advice of the informants and later on compare it to actual stock market events. This
comparison could then be used to somehow raise the relative plausibility of the informants who
were correct and lower that of those who were not.

Another real-world scenario could be seen in the case of an agent in need of weather predic-
tion information. There might be several weather-predicting informants available to the agent.
As in the previous case, there are for example, a number of web pages providing such services.
However, for a given period in time, di®erent informants could predict di®erent conditions.
Once again, in such a case the agent would act based on the prediction of the most reliable
informant and then use historic information to possibly update these relations.

This paper builds upon the concepts previously introduced by the authors in [SF00]. There,
we proposed the organization of the informants into a partial order which compares the plausi-
bility of the relevant informants. Upon noticing contradictory information from two informants,
the agent need only check which informant supercedes the other in plausibility according to the
partial order (i.e. which one is more reliable) and then act upon that informant's information.
Through the use of change operators that act on the partial order, this plausibility relation can
also be updated to re°ect changes in perceived informant plausibility.

As a new concept, we search for a means to restore soundness to generator sets. Such
sets may arise as a consequence of careless expansion or perhaps they are obtained from
other sources. We propose a consolidation operator, characterized through a set of postu-
lates. We then provide alternative constructions for this operator and, ¯nally, we introduce
a non-prioritized revision operator for plausibility relations which bases its de¯nition on the
consolidation operator.

This paper is organized as follows. Section 2 presents a summary of the notions presented in
[SF00] necessary for the elaboration of the remainder of the paper. It includes our proposal for
representation and expansion of plausibility relations for agents relying on informants. Section
3 de¯nes consolidation of plausibility based relations, the alternative operators involved, their
characteristic postulates and their construction. Section 4 de¯nes non-prioritized revision of
plausibility based relations, based on consolidation as introduced in the previous sections.
Finally, section 5 includes this paper's conclusions as well as future work.

For a thorough presentation of the AGM model for belief revision we refer the reader to
[AGM85]. Some interesting related work on comparing the credibility of information sources
can be found in [Par98, Res76].

2 Representation and revision of plausibility relations

This section contains elements presented in [SF00]. Given that the remaining sections of this
paper build upon these concepts, we present the necessary ones here.

2.1 The concept of generator set

Let us assume that we have a universal set of informants, I, and that, of these informants, some
are to be considered more reliable than others. This is to say, in any case in which two distinct
informants provide an agent with contradictory information the more trustworthy one is to be
believed over the other. The agent must, therefore, have a mechanism by means of which the
set I is ordered. To this end we present the following concept.



De¯nition 2.1: Given a set of informants I we will call any binary relation G µ I2 a generator
set over I. An informant i is less trustworthy than an informant j according to G if (i; j) 2 G¤.
¤

Graphically, we may represent a generator set as we would a directed graph. We represent
the informants in I as nodes. The tuples in G are then represented as directed arcs: for each
tuple (i; j) 2 G we add an arc from node i to node j .

Figure 1: A graph representation of a generator set over a set of informants I =
fi; j; k; l;m; n; o; pg.

G¤ represents the re°exive transitive closure of G. It is desirable for G¤ to be a partial order
over I, although according to the preceding de¯nition this need not always be the case. We
address this matter in the following de¯nition.

De¯nition 2.2: A generator set G µ I2 is said to be sound if G¤ is a partial order over I.
¤

Example 2.1: For example the generator set G1 = f(i; j); (j; k); (i; l)g is sound. However
G2 = G1[ f(k; i)g is not sound because (i; k) 2 G¤

2 and (k; i) 2 G¤2. This violates the antisym-
metry condition for partial orders. ¤

Why is it desirable for a generator set to be sound? For a relation to be a partial order it must
obey re°exivity, antisymmetry and transitivity. Given a generator set G it is obvious that its
re°exive transitive closure, G¤, will obey re°exivity and transitivity. However if antisymmetry
is not respected then there is at least one pair of distinct informants, i and j such that both
(i; j) 2 G¤ and (j; i) 2 G¤. This would mean that both i is less trustworthy than j and
that j is less trustworthy than i. Given that these beliefs are contradictory, believing them
simultaneously would lead the believing agent to inconsistencies.

Throughout the discussions in the remainder of this paper we will sometimes speak of a
tuple as being entailed by a generator set. This is no more than a shorthand for saying that the
tuple belongs to the re°exive transitive closure of the generator set. We express this formally
in the following de¯nition.



De¯nition 2.3: We will say that a tuple (i; j) is entailed by a generator set G if (i; j) 2 G¤.
¤

Example 2.2: The tuple (i; l) is among those entailed by the generator set f(i; j); (j; k); (k; l)g.
When we represent a generator set graphically we will show entailed tuples of interest by using
a dashed line. ¤

Figure 2: An entailed tuple.

Sometimes we may ¯nd tuples in a generator set which, if removed, would still be entailed
by the remaining tuples. In this case we say that the tuple is redundant with respect to the
generator set. We may also say that the generator set itself is redundant because it contains a
redundant tuple. These concepts are introduced by the following de¯nition.

De¯nition 2.4: Given a tuple (i; j) and a generator set G it is said that (i; j) is redundant in
G if (i; j) 2 (G n f(i; j)g)¤. A generator set is said to be redundant if it contains a redundant
tuple. Otherwise, the generator set is said to be non-redundant. ¤

Example 2.3: The generator set G = f(i; j); (j; k); (i; k)g is redundant because it contains
the redundant tuple (i; k). ¤

2.2 Some interesting properties of Generator Sets

The following are interesting properties associated with generator sets.

² G1: A generator set G is sound i® G can be represented by a directed acyclic graph.
The fact that G may be represented by a directed graph is trivial. The fact that it must

be acyclic arises from the following argument. Let us assume that G contains a cycle of length
longer than one. Now let i; j 2 I, i 6= j be two vertices of said cycle. Then there exists a path
from i to j and from j to i. This would imply that both (i; j) 2 G¤ and (j; i) 2 G¤. Since this
violates antisymmetry G¤ cannot be a partial order and therefore G cannot be sound. By a
similar argument the reverse implication may also be proven.



Figure 3: A redundant tuple.

² G2: If G is a sound generator set and (j; i) =2 G¤ then G [ f(i; j)g is a sound generator set.
Let us assume that G is a sound generator set, (j; i) =2 G¤ and that G[f(i; j)g is not sound.

If G is sound then it has no cycle. And if G [ f(i; j)g is not sound then it has a cycle and
it follows that (i; j) completed it. Therefore, there was a path from j to i in G and hence
(j; i) 2 G¤. This contradicts our initial assumption.

2.3 The expansion operator

Let us assume that an agent learns that, of a pair of informants, one is more reliable than the
other. This would warrant the modi¯cation of its knowledge accordingly. For this purpose, we
de¯ne the operator © : P(I2) £ I2 ¡! P(I2). This operator adds new tuples to a generator set
in order to establish relations between informants. Given a pair of informants and a generator
set, this function returns a new generator set in which said agents are now related. According
to this new generator set we may say that the ¯rst informant is \less reliable" than the second.

In [SF00] we characterize expansion operators through a set of postulates. Then, a con-
struction for an expansion operator is presented and is related to the postulates through a
lemma.

² Success: (i; j) 2 (G© (i; j))¤.
² Inclusion: G¤ µ (G© (i; j))¤.
² Vacuity: if (i; j) 2 G¤ then (G© (i; j))¤ = G¤.
² Commutativity: ((G© (k; l)) © (i; j))¤ = ((G© (i; j))© (k; l))¤.
² Extensionality: if A¤ = B¤ then (G©A)¤ = (G© B)¤.
² Conditional Soundness Preservation: if G is a sound generator set and (j; i) =2 G¤ then
G© (i; j) is a sound generator set.

De¯nition 2.5: Given a pair of informants i; j 2 I and generator set G µ I2, we de¯ne the
expansion of G by (i; j) as G© (i; j) = G [ f(i; j)g. ¤

Lemma 2.1: Let © be an expansion operator as de¯ned in De¯nition 2.5. Then © satis¯es
success, inclusion, vacuity, commutation, and extensionality. ¤



Assume we have a pair of informants i and j and a generator set G, and the agent now has
received information saying that i is less reliable than j. Such information could be provided
by a set denoting a minimal path from i to j. It is possible for the expansion operator to be
generalized to allow path as inputs as per the following de¯nitions.

De¯nition 2.6: Given a pair of informants i1; in 2 I, we de¯ne a path between them as an
ordered set of tuples path (i1; in) of the form f(i1; i2); (i2; i3); : : : ; (in¡1; in)g. ¤

De¯nition 2.7: Given a pair of informants i; j 2 I and generator set G µ I2, we de¯ne the
generalized expansion of G by (i; j) as G© path(i; j) = G [ path(i; j). ¤

In [SF00] operators for contraction and revision are also presented. However, for what
follows, only expansion need be introduced.

3 Restoring soundness to generator sets

Situations may arise in which a given generator set is no longer sound. For example, through
expansions, cycles may have been introduced. It would be interesting to have an operator that,
when applied to such a set, produces a new, sound generator set based on the original. For
this purpose we will de¯ne the consolidation operator ! : P(I2) ¡! P(I2). In the following
subsection we characterize this operator through postulates.

3.1 Postulates for consolidation operators

The following postulates have been modi¯ed from Hansson's works [Han96] to be applied in
our framework.

² Soundness: G! is sound.
Soundness states that the consolidated generator set does not contain cycles.

² Inclusion: G! µG.
This postulate states that in the process of consolidation, we can only remove pairs from

the generator set.

² Vacuity: If G is sound then G! = G.
Vacuity states that no changes occur when G is sound. Changes are only needed in the case

where it is not.

² Relevance: If (i; j) 2 (G n G!) then there is some G0 such that G! µ G0 µ G, G0 is sound
but G0 © (i; j) is not sound.

Relevance states that, if some pair (i; j) is excluded when a generator set is consolidated, it
must have contributed to making the original generator set cyclic.

² Core retainment: If (i; j) 2 (G nG!) then there is some G0 such that G0 µ G, G0 is sound
but G0 © (i; j) is not sound.

This postulate is a weaker version of the above postulate.



3.2 Construction of consolidation operator

The following de¯nitions are needed to de¯ne di®erent consolidation operators.

De¯nition 3.1: Given a generator set Gµ I2 we say that i 2 I is a vertex of G if for some k
in I it holds that (i; k) 2 G or (k; i) 2 G. ¤

De¯nition 3.2: Given a generator set Gµ I2 we de¯ne a minimal cyclic path to be a subset
H of G such that:

1. For every pair of vertices i, j in H then (i; j) 2 H¤ and (j; i) 2 H ¤.

2. If H 0 ½H then H 0 is acyclic.
¤

De¯nition 3.3: Given a generator set G µ I2 we de¯ne the set of minimal cyclic paths as:

mcp(G) = fH µ G :H is a minimal cyclic path of Gg

¤

De¯nition 3.4: Given a generator set G µ I2 we de¯ne a maximal acyclic generator set to
be a subset H of G such that:

1. For every pair of vertices i, j in H such that (i; j) 2 H ¤ then (j; i) 62H¤.

2. If H ½ H 0 then H 0 contains a cycle.
¤

De¯nition 3.5: Given a generator set G µ I2 we de¯ne the set of maximal acyclic generator
sets as:

mags(G) = fH µ G : H is a maximal acyclic generator set Gg
¤

Example 3.1: Let G = f(i; j); (i; k); (j; l); (k; l); (l; i); (l; n); (m;n)g be a generator set (see
Figure 4). Then we have that:

mcp(G) = ff(i; j); (j; l); (l; i)g; f(i; k); (k; l); (l; i)gg.

mags(G) = fG1; G2; G3; G4; G5g where:

G1 = f(i; j); (i; k); (j; l); (k; l); (l; n); (m;n)g,
G2 = f(j; l); (k; l); (l; i); (l; n); (m;n)g,
G3 = f(i; j); (i; k); (l; i); (l; n); (m;n)g,
G4 = f(i; k); (j; l); (l; i); (l; n); (m;n)g,
G5 = f(i; j); (k; l); (l; i); (l; n); (m;n)g.

¤

We shall de¯ne two possible constructions for the consolidation operator.



Figure 4: A graph representation of G.

² Kernel Consolidations: this type of operation is based on eliminating the \least prefered"
arcs of each minimal cyclic path.

² Partial Meet Consolidations: this type of operation is based on intersecting the \most
prefered" maximal acyclic generator sets

Now, their remains the matter of de¯ning this selection mechanism which allows us to prefer
one arc over another. We can de¯ne two preference criteria:

1. Qualitative: in which we rely on additional information that tells us which arcs of every
minimal cyclic path are the worst or, in the case of maximal acyclic generator sets, which
of these are the best.

2. Quantitative: in which we seek to minimize or maximize the number of arcs that remain
in the minimal acyclic path or the maximal acyclic generator sets respectively.

In the case of a qualitative criterion, we must de¯ne the corresponding selection functions
and present the necessary algorithms making use of said functions. In the quantitative case,
we must be more detailed in the algorithm's de¯nition, but we need not have any additional
information concerning arc value.

3.3 Kernel and Partial Meet Consolidation

We will de¯ne kernel and partial meet consolidation operators. Let us de¯ne the necessary
selection mechanisms for each of these.

De¯nition 3.6: Let G be a generator set. We say that ¾ is an incision function for G if and
only if it holds that:

1. ¾(mcp(G)) µ [(mcp(G)).

2. If H 2mcp(G) then ¾(mcp(G))\ H 6= ;.
¤



Observation 3.1: If G does not contain cycles then mcp(G) = f;g. ¤

De¯nition 3.7: Let G be a generator set and ¾ be an incision function for G. The the kernel
consolidation of G based on ¾ is de¯ned as G!¾ = G n ¾(mcp(G)). ¤

Example 3.2: Let G and mcp(G) be the sets presented in the Example 3.1. Some possible
results of kernel consolidation G!¾ are:

1. f(j; l); (k; l); (l; i); (l; n); (m;n)g.

2. f(i; k); (j; l); (l; i); (l; n); (m;n)g.

3. f(i; j); (i; k); (j; l); (k; l); (l; n); (m;n)g.

4. f(l; i); (l; n); (m;n)g.

5. f(k; l); (l; n); (m;n)g.
¤

De¯nition 3.8: Let G be a generator set. We say that ° is an selection function for G if and
only if holds that ; ½ °(mags(G)) µ mags(G). ¤

Observation 3.2: For all generator set G holds that mags(G) 6= ;. ¤

De¯nition 3.9: Let G be a generator set and ° be an selection function for G. The the partial
meet consolidation of G based on ° is de¯ned as G!° = \°(mags(G)). ¤

Example 3.3: Let G and mags(G) be the sets presented in the Example 3.1. Some possible
results of partial meet consolidation G!° are G1, G2, G3, G4, G5, (G1 \G2), (G1\ G2 \G3),
(G1 \G2 \G3\ G5) or (G1 \G2 \G3 \G4 \G5). ¤

Proposition 3.1: Let ! be a kernel consolidation operator. Then ! satis¯es soundness, inclu-
sion, vacuity and core retainment. ¤

Proposition 3.2: Let ! be a partial meet consolidation operator. Then ! satis¯es soundness,
inclusion, vacuity and relevance. ¤

Corolary 3.1: If ! is a partial meet consolidation operator then ! is a kernel consolidation
operator. ¤

4 Non-prioritized revision operator

Suppose that an agent with a generator set G suspects an informant i may be less reliable than
another j. The addition of this new pair (i; j) into G may introduce a cycle. For this purpose
we de¯ne the non-prioritized revision operator ± : P(I2) £ P(I2) ¡! P(I2). The basic task
of the ± operator is, given a generator set G and a path from an informant i to another j to
produce a new generator set, noted G ± path (i; j), in which the relation (i; j) could be entailed
or not. The decision will depend on whether, in this particular case, preference is given to the
pre-existing or to the newly acquired knowledge.



4.1 Postulates for non-prioritized revision operator

We will present di®erent postulates to be satis¯ed by a non-prioritized revision operator.

² Soundness: (G ± path(i; j))¤ is sound.
It would be convenient if the generator set were also modi¯ed, when necessary, so that the

revised generator set is sound.

² Inclusion: (G ± path(i; j))¤ µ (G© path(i; j))¤.
Here, we say that a non-prioritized revision is included in a generalized expansion.

² Congruence: If G© path(i1; j1) = G© path(i2; j2) then G ± path(i1; j1) = G ± path(i2; j2).
Here, we say that if the expanded sets are equal then the respective non-prioritized revised

sets are equal too.

² Relative Success: (G ± path(i; j)) = G or (i; j) 2 (G ± path(i; j))¤.
Relative Success states that (i; j) is included in the revised generator set or there are no

changes in it.

² Disjunctive Success: (i; j) 2 (G ± path(i; j))¤ or (j; i) 2 (G ± path (i; j))¤.
Here we say that (i; j) or (j; i) is included in the revised generator set.

² Path Irrelevance: If (G [ path(i1; j1))¤ = (G [ path(i2; j2))¤ then (G ± path(i1; j1))¤ =
(G ± path (i2; j2))¤.

4.2 Construction of non-prioritized operator revision

We de¯ne the non-prioritized revision operator using two steps:

1. Add the all the pairs in the path connecting i and j.

2. Consolidate the resulting set.

Notice that there is an intermediate state in which the generator set may be inconsistent.

De¯nition 4.1: Let G be a generator set, path(i; j) be a path connecting i and j , and ! be a
consolidation operator. The non-prioritized revision of G by path(i; j), noted by G ± path(i; j),
is de¯ned as:

G ± path(i; j) = (G© path(i; j))!

¤

Proposition 4.1: Let ± be a non-prioritized revision operator constructed as described above.
Then ± satis¯es soundness, inclusion and congruence. ¤

Note that ±, in general, does not satisfy relative success, disjunctive success nor path irrel-
evance.



5 Conclusions and Future Work

We have presented a means for consolidating plausibility relations among informants in the
context of a multi-agent system. Using the operator provided an agent can resolve any and all
inconsistencies to be found in said relation. This operator was characterized through postulates
and alternative constructions were presented and discussed.

Based on the new consolidation operator, an operator for non-prioritized revision was in-
troduced. This operator allows for an agent to tentatively add to its plausibility relation. The
new relation will contain a sound mix of the new and previously existing information.

Clearly, what follows is to devise ways of handling the perception of changing plausibilities
in real sources of information. Such is the case of the weather forecasting systems and predictors
of stock market behavior mentioned in this paper's introduction. From these examples, and
others, we will seek to understand the complexities of dynamic updating in decision making
and advising systems.
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