
Abstract

TOWARDS A PREDICTIVE LOAD BALANCING METHOD
BASED ON MULTIPLES RESOURCES

GARCIA, J.L., PICCOLI, M.F., GALLARD R.
Proyecto UNSL-338403 1

Departamento de Informática
Universidad Nacional de San Luis (UNSL)

Ejército de los Andes 950- Local106
5700 - San Luis, Argentina.

E-mail: {jlg,mpiccoli rgallard}@ .unsl.edu.ar
Phone: + 54 652 20823

Fax : +54 652 30224

Processors load unbalance in distributed systems is one of the main problems, because ít
involves system performance degradation. Load balance algorithms try to improve the system
global performance through migration of processes, but they present also an additional problem,
known as instability: lt happens when processes spend an excessive amount of time migrating
among different system nodes. In arder to diminish this cost without affecting the mean system
response time, load balancíng algoríthms based on dífferent strategíes have been proposed. Multiple
Resources Predictíve Load Balance Strategy (MRPLBS), ís a new predíctive, dynamic and
nonpreemptive strategy for balancing multiple resources. The predictive approach is based on
estimations computed as weighed exponential averages of the load of each node in the system.

This paper presents MRPLBS' system architecture and its performance and system a comparison
on different scenarios against Random Load Balancing. The number of requirements, the mean
response time, the number of failed migratíons and the percentage of acceptance are shown.

Keywords: Distributed systems, Load Balancing Strategies, Multiple Resources Metric, Mean
Response Time, Migrations.

1 The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT
(National Agency to Promote Science and Technology).

l. INTRODUCTION

A distributed system offers the potential necessary to work with shared resources [13]. In these
systems it is possible, and generally it occurs, that sorne nades are overloaded while others are
underloaded. This unbalanced condition in the system load produces a poor system global
performance[18].

Load balancing algorithms aim to improve system global performance by evenly distributing the
load. This can be done at processes arrival time. Process allocation depends on the system load.
Load balancing strategies can be classified considering when and where the system load is
determined[7][16]. MRPLBS is characterised by the following attributes:
• Dynamic: The information about the system load is periodically collected and updated.
• Deterministic: The choice of a target machine is a unique function of system load, with no

randonmess in the decision.
• Non preemptive: jobs that start running cannot be intenupted and moved to other machines until

completion. In other words, the job execution will be considered atomic from the load balancing
viewpoint.

• decentralised because decision making is distributed between system nades.
Many researchers have been working in load balance and load sharing [1], [2], [3], [5], [6], [8],

[9], [10]. Sorne of them include evolutionary techniques [4], [11],[12],[14] and most of them
consider only one resource to determine the load.

A fundamental problem with conventional load functions is that they completely ignores
resources others than CPU[7],[16]. Therefore, while it may be reasonable predict the performance
of purely CPU-bound tasks, its utility is questionable for tasks that also intensively use other
resources: memory, disk, etc. Consequently, determination of system load by measuring severa}
resources load state will improve the load balancing system performance.

MRPLBS, is a strategy that, based on a multiple resources metric, tries to predict The system
nades more inclined to accept migration requests. The prediction is based on an estimation of the
present conditions of each node and their past behaviour. In the following sections the MRPLBS
strategy and its architecture are shown, and results are analysed ..

2. MRPLBS DESIGN

Figure 1 shows the internal structure of MRPLBS. A short description of the main modules,
their components and functions is presented below:
Initialisation Module , executes only once at node bootstrapping, it is in charge of activating the
three central system modules which in their turn manage local or externa] requests and load
balancing.
Local_Process_Adm, it is responsible, at local process creation time, to verify the local nade
balancing state by comparing the current load with a prefixed threshold to determine overloading
and the memory requirements of process with the memory size of nade. Depending on comparison
results sorne of the following actions will be undertaken:
• lf L ~ Threshold and there are enough memory then the task will be locally executed anda child

process, Local_Execution_Server will be activated.
• Otherwise, invokes Balance_Module, who indicates if the new process can be migrated and to

which nade. lf a receiving node can be found then the process is migrated. On the contrary, local
execution will be accepted and behaves as above explained.

• If L ~ Threshold and there are enough memory then the task will be locally executed and a child
process, Local_Execution_Server will be activated.

• Otherwise, invokes Balance _Module, who indicates if the new process can be migrated and to
which node. If a receiving node can be found then the process is migrated. On the contrary, local
execution will be accepted and behaves as above explained.

.--------------------, 1 •
1

Migrated
Process
Server

Remote
Request

Adm

1

1

·--------------------~

Initialization module

BUS

--·-·-·-·-·-·-·-·----, 1 •
• 1
1

1
Local

Local
Execution

Server

Figure 1: lntemal structure of MRPLBS

Local_Execution_Server, if the process is executed locally, then 1t 1s in charge of execution,
otherwise it ask to migrate the process to a receiving node, and blocks itself waiting for reply
related to the remote execution completion.
Remote_Request_Adm, has two main tasks:
• Replies migration requests from other nodes, giVmg information about local loading state

(number of waiting processes, or ready queue length). Also, when an immigrated process
finishes execution in the local node, informs about this event to the (original) sending node.

• Activates a child server process when a remote process from an overloaded node arrives and the
local node is idle or in a low loading condition.

Migrated_Process_Serv, executes locally an immigrated process and, on completion, signals the
event to Remote_Request_Adm.
Balance_Module, this module implements the load balancing strategy. In Section 2.1, there is a
detailed description of this module.

2.1. Load Balancing Module: Internal Structure

In order to carry out the predictive strategies, the load balancing module is composed by three
demons processes: Decision module, Spread and Refresh and a data structure to load information
system: Global Load State Table. Figure 2 shows the structure and the relation between modules.

.. -·-·-·-·-·-·-·-·-·-·-·-·-·-·-·
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Global Load S tate T able

Decision module

Bus

Resources

Figure 2: Structure of the Balance_Module

The spreader process disseminates local metric information (CPU queue and Blocked queue
lengths) to a subgroup of nodes in the system. Periodically, it has to check the load node state and
spread it when either metric values changed or the elapsed time without changes is considerable. lts
objective is to maintain updated information on the system state. The memory size is communicated
once, when the node bootstrapping. The refresh process maintains, in a global information table at
each node location, the metric values of all nodes in the system. V alues in that table are weighted
exponential average values of collected metric (load) values. The decision module is in charge of
deciding where to send the incoming process. lt is activated by request from Local_Process_Adm
when a job incomes. Global Load State Table is a data structure, which contains one entry per node
or processor in the system. Each entry is a 4-tuple

<Nid, WEA-CPU, MS, BQL>

where Nld is the Node Identifier: WEA-CPU is the weighed exponential average of the ready queue
length. In others words it maintains a "history" of how the ready queue in each node evolves. MS is
the Memory Size of the node and BQL is the Blocked Queue Length. Initially it contains the current
blocked queue length but finally due to incremental work, it will ha ve a "history" of the blocked
queue.

3. DESCRIPTION OF THE MRPLBS STRATEGY

A load balancing policy consists of three components:

l. The information policy, which specifies the amount of load the job information available to the
job placement decision maker(s), and the way by which the information is distributed.

2. The transfer policy, which determines the eligibility of a job for load balancing based on the job
and the loading state of hosts.

3. The placement policy, which decides for eligible jobs, the hosts to which the jobs should be
transfened.

The above three component policies of a load balancing algorithm are not isolated from each other,
but interact in various ways. In MRPLBS , they interact in this manner: the placement policy utilises
the load index information supplied by the information policy, and acts only on the jobs selected by
the transfer policy.

Asan improvement on PLBS proposed in [5] and APLBS proposed in [6], MRPLBS attempts to
reduce the number of requests from an overloaded node. The applied policy by MRPLBS is
explained by in the next subsection.

3.1 Information Policy

This policy involves three important tasks: to determine the system load, to distribute this
information and to establish the job requirements. Por establishing a reliable cunent metric value,
Weighted Exponential Average [17] permits to predict a value on the basis of values appeared during
certain elapsed time. In our model, dueto the dynamic behaviour ofthe system, it is appropriate to give
a larger weight to the recent history. For an arbitrary processor, the predicted working load is given by:

Ln+ 1 = aSn + (1 - a) Ln , O .<:: a .<:: 1 (1)

where:
Ln+l: predicted processor load for the next migration request.
Sn : effective processor load at the n1

lt sample interval.
The parameter a allows controlling the relative weight to be given to immediate or old history. If

a is equal to zero the recent history is considered irrelevant (present conditions are transient),
otherwise if a is equal to one then recent history is important and past history obsolete. In this way
the past and recent history is maintained and weighted for each system component and when a
migration is needed from an overloaded node, requests are addressed to those candidates more
inclined to accept the request. The corresponding side effect is lower number of request, high
acceptance hit ratio and therefore an enhanced performance of the distributed system is achieved. In
arder to decrease the communication traffic, typically generated by load balancing schemes,
exchange of information relative to load level in a node is controlled by the Spreader process, local
to each node, and then broadcasted to a random select subset of nades each time. In arder to
determine the load state, MRPLBS uses two thresholds O and U to define the load state L of a node

L>O
U=L=O
L < U

:::::} overloaded,
:::::} medium load
:::::} underloaded

Each nade maintains its loading state metric, which is determined at fixed time intervals. In our
case thi s metric is related to the number of processes in the ready queue and number of processes in
the blocked queue. Each job, when it arrives to the system, specifies its memory requirement and its
type, CPU or I/0 bound. The success of good decisions depends on accuracy of the job information
and the information in the Global Load State Table.

3.2. Transfer Policy

When a new process incomes, it might be a candidate to migrate if at least one of these two
conditions is true:
• The local node is overloaded, L >O,
• Its memory requirement is greater than the available memory in the node, and in consequence, if

locally executed, its response time will increase because memory swapping is introduced.

3.3. Placement Policy

To selected the node for job execution, MRPLBS applies the next philosophy: "Predict the
current working load of a given processor when a migration request is necessary". When a
migration is necessary, migration requests are sent to a subset of nodes. A node belongs to this
subset if its probable low loading state suggests that it might accept the request. This information is
retrieved from the global load state table. The administrator fixes the subset size. After requesting
migration of a process to candidate nodes, the requester has the answer from each of the targets.
Each node answer to the requester with its actual information load and MRPLBS selects one of
then. The favourite is that node whose conditions are the best to execute the job. If no nodes are
founded, therefore the process will be executed locally.

4. PERFORMANCE ANALYSIS OF MRPLBS

PARASOL [15] is a computer systems modelling tool, which is oriented to modern distributed or
parallel computer systems. lt was used to simulated the distributed system and the implemented
MRPLBS.
The system parameters were defined as follow: Systems with 30, 40 and 50 nodes were simulated,
but we show only 30 nodes results. Each node executed concurrent processes under a round-rohin
policy maintaining a ready queue anda blocked queue. The network topology was Ethernet. The
network transfer rate was of 10 Mbits. Diverse process types were considered according to their
needs of CPU or 1/0. Their service time were variable for all processes, considering fix service time
like special case of it. Each process when arriving at the system specifies its memory requirements
and the run time and type are determined at random. Process arrivals follow a Poisson distribution
of mean 'A. Experiments were carried out on five different scenarios, using 1/A as mean interarrival
time with A = 0.1 , 0.2, , 0.9, l . A simulation was completed when 50,000 processes where
executed in the network nodes. The next indicated scenarios were used in the simulation.

• Scenario 1: 60% of the nodes are receiving processes with equal arrival rate 'A while in the
remaining nodes does not occur any arrival. This schema allows simulation of a clearly
unbalanced situation.

• Scenario 2: 40% of the nodes are receiving processes with low arrival rate ('A) and the other 60%
with more high arrival rate (2 'A).

• Scenario 3: Each node has its own arrival rate A..
• Scenario 4 : Every node has its own arrival rate A., which varíes randomly each 200 tics.
• Scenario S: Each node has its own arrival rateA., which varíes randomly each 2000 tics.
Scenario 1 attempted to refl ect a real situation, which frequently occurs, where the workload is not
evenly distributed. Scenarios 2, 3, 4 and 5, are similar in the sense that arrivals occur in every node,

but scenario 4 and 5 differs reflecting time depending arrival rates as often occurs in a computer
network.

4.1. Results

Results were obtained from the application of MRPLBS in the five scenarios with different
processes types. These results are compared with the Random load balancing strategy for the 30
nodes case. We choose sorne representative instances of the diverse scenarios. But in general the
same trend is observed in any scenario with any number of nodes in the network. In every case the
relevant performance variables were the issued number of requests (NR), number of failed
migration (FM), mean response time (MRT) and acceptance hit ratio (HR). Table 1 show general
results of the simulation. Figure 3 show average values of the performance variables throughout all
type of processes and scenarios.

Scenario Type Proc. Random MRPBLS

Number CPU 1/0 NR FM MRT HR NR FM MRT HR
100% 1370 159 55.61 88.39 1297 122 55.00 90.59

1 100% 2182 452 103.18 79.28 2064 382 100.26 81.49
50% 50% 1331 178 77.54 86.63 1243 177 75.38 85.76

Average 1627.66 263 78.77 84.76 1534.66 227 76.88 85.94
100% 2406 254 64.24 89.44 2279 140 63.42 93.86

2 100% 2882 459 107.32 84.07 2721 346 104.94 87.28
50% 50% 2053 248 85.16 87.92 2045 143 83.75 93.00

Average 2447 320.33 85.57 87.14 2348.33 209.66 78.15 91.38
100% 2212 307 58.22 86.12 2789 112 61.04 95.98

3 100% 3403 803 106.79 76.40 3393 347 103.32 89.77
50% 50% 2108 378 82.35 82.07 2534 148 82.26 94.16

Average 2574.33 494.66 82.45 81.53 2905.33 202.33 82.21 93.30
100% 2105 285 63.81 86.46 2249 217 64.31 90.35

4 100% 2980 745 108.94 75.00 2664 408 105.72 84.68
50% 50% 2038 351 85.80 82.78 1850 155 83.89 95.40

Average 2374.33 460.33 86.18 81.41 2254.33 260 84.64 90.14
100% 3339 581 66.64 82.60 2652 172 62.84 93.51

5 100% 4113 1085 111.17 73.62 3212 413 105.49 87.14
50% 50% 2995 583 89.32 80.53 2396 124 83.75 94.82

Average 3482.33 749.66 89.04 78.92 2753.33 236.33 84.02 91.82

Table l. Number of Requests, Accepted Number of Requests, Failed Migrations and Acceptance
Hit Ratio for each process type, under each scenario, for the 30 nodes case.

A rapid look on table 1 clearly shows that in general MPBLS outperforms the Random load
Balancing strategy on each of the considered performance variables. There is only one exception in
scenario 1 for the mixed process type (50% CPU, 50% I/0) and HR variable.

The advantages in performance of MPBLS over Random is more evident when we look at its
average behaviour (see figure 3). Specially in FM where this number is reduced in a range from
13.7% (in scenario 1) to 68.5% (in scenario 5). This is the consequence of the ability of the
predictive approach to make requests to the nodes that are more inclined to accept a migration.

Similar behaviour was found for networks of 40 and 50 nodes. In this last case due to the
existence of much more nodes FM decreases under both strategies but for Random they are about
12.23% while in MRPLBS they are about 5.86%.

4000

3500

3000

2500

~ 2000
1500

1000

RN Average

500

0+--~-r--r-~

90

85
M
R 80
T

75

70

2 3 4 5

Se en ario

MRT Average

2 3 4 5

Scenario

--+-MRPLBS

--+-RANDOM

lllllMRPLBS

lllllRANDOM

800

700

600

F 500

M 400

N 300

FMAverage

2oo.---+--...... -
wo
0+--.---.--.--.

--+-MRPLBS

--+-RANDOM

2 3

Scenario

4 5

95

90

H 85

R 80

HR Average

75

70+--~-~-r-~

2 3 4 5

Scenario

--+-MRPLBS

--+-RANDOM

Fig. 3. Mean values of Number of Requests, Accepted Number of Requests, Failed Migrations
and Acceptance Hit Ratio, under each scenario, for the 30 nodes case.

5. CONCLUSIONS

In this report we have discussed the results of comparing two load balancing strategies: Random
and Multiple Resources Predictive Load Balance Strategy. Both approaches considered not only
processor but also memory requirements. It was again shown that, when an predictive approach is
used, better results than those obtained with traditional algorithms can be expected. The present
work was faced bearing in mind not only the migration of processes but also a substantial decrease
in the number of requests a node has to do befare migration takes place by choosing a subset of
nodes more inclined to accept these requests. In other words, we searched for a reduction in traffic
in the system and a high hit ratio when a load balancing strategy is to be applied. To achieve this,
the Load balancing strategy was enriched by incorporating a prediction function to the load
balancing module. In this way, by using the knowledge gathered by each node, the number of nodes

to be consulted when overload occurs was drastically reduced. The ability of MRPLBS to predict
was clearly shown in the final number of migrations failed which is significantly lesser than under
the Random strategy. The experimental results obtained through simulation give a clear indication
of the efficiency of the proposed hybrid strategy.

6. ACKNOWLEDGEMENTS

We acknowledge the co-operation of the project group for providing new ideas and constructive
criticisms. Also to the Universidad Nacional de San Luis and the ANPCYT from which we receive
continuous suppmt.

7. BmLIOGRAPHY

[1] Arredondo, D., Errecalde, M., Flores, S., Piccoli, F., Printista, M., Gallard, R. "Embedded
Intelligent Assistance for Load Distribution and Balancing ". Ninth IASTED International
Conference on Parallel and Distributed Computing and Systems. PP 188-195, ISBN 0-88986-
240-0, ISSN 1027-2658. October 1997. Washington D.C., USA

[2] Arredondo, D., Errecalde, M., Flores, S., Piccoli, F., Printista, M., Gallard, R. "Load
Distribution and Balancing Support in a Workstation-based distributed Systems" . Operating
Systems Review, Vol31 , N° 2, pp 46-59, ISNN 0-163-5980. Aplil1997.

[3] Chu W., Holloway L., Lan M., Efe K. - "Task Allocation in Distributed Data Processing" -
Distributed Computing: Concepts and Implementations, pp 109-119, Addison Wesley -
1984.

[4] Esquivel S., Leguizamón G., Gallard R. - "A Hybrid Strategy for Load Balancing in
Distributed Systems Environments", Proceedings of the Fourth IEEE lnternational
Conference on Evolutionary Computation (ICEC'97), pp. 127 -132, lndianapolis, USA,
April 1997.

[5] Esquive! S., Pereira C. and Gallard R. - "Predictive Load Balancing for a Workstation
Distributed System, Proceedings de la International Conference on Applied Informatic,
Garmish, Germany, February 1998.

[6] Esquivel S., Pereira C. and Gallard R. - "An Efficient Adaptive Predictive Load Balancing
Method For Distributed Systems" . IV Congreso Argentino de Ciencias de la Computación
en la Universidad del Comahue. Vol. 1, pp. 345-365. Octubre 1998. Neuquen, Argentina.

[7] Ferrari D.,- "Study of Load Indices for Load Balancing Schemes", University of California,
Berkeley, 1985.

[8] Flores S., Piccoli F., Printista M., Gallard R. "A User Supervised Load-Balancing
Scheduler". Segundo Congreso Argentino de Ciencias de la Computación. PP 109-120.
Noviembre 1996. San Luis, Argentina

[9] Garcia, J.L., Piccoli, F., Gallard, R., "Un Método de Balance de Carga Predictivo
Múltiple Recursos para Sistemas Distribuidos". VI Congreso Internacional de
Ingeniería Informática, ICIE Y2K. PP 123-131. Abri126-28, 2000.

[lO]Jun C., Li X., Zhong-xiu S.- "A Model for Intelligent Task Scheduling in Large Distributed
System", ACM Press, Operating S ystems Review, Vol.24, No 4, October 1990.

[11] Kremien O. and Kramer J. - "Methodical Analisys of Adaptative Load Sharing Algorithms",
IEEE Transaction on Paralell and Distributed Systems, V. 3, N° 6, págs. 747-760,
N ovember 1992.

[12] Kremin 0., Kramer 1. and Magee J. - "Scalable, Adaptive Load Sharing for Distributed
Systems -IEEE Parallel and Distributed Technology, pp. 62-70. August 1993.

[13]Mullender S.- "Distributed Systems"- Addison Wesley, 2da. edition, 1995.

[14]Munetomo M., Takai Y., y Sato Y.-" A Genetic Approach to Dynamic Load Balancing in a
Distributed Computing System", Proceeding of the First IEEE. Conference on Evolutionary
Computation, June 1994, Vol. 1, pp.419-421.

[15]Neilson J.,- "Parasol User's Manual", School Of Computer Science, Carleton University,
Canada.

[16] Panjak, M. - " Automated Learning of Load Balancing Strategies for a Distributed
Computer Systems" PhD. Thesis, University of lllinois at Urbana, Chapaign, 1993.

[17] Stallings W. - "Operating S ystems" - MacMillan publishing Compan y, N ew York, 1992.

[18] Stone, H., Bokhari, S.- "Control of Distributed Processes" - Distributed Computing:
Concepts and Implementations, pp. 109-119, Addison Wesley- 1984.

