On bulk-synchronous distributed-memory
parallel processing of relational-database transactions

Mauricio Marin (contact author)
Departamento de Computacion, Universidad de Magallanes
Casilla 113-D, Punta Arenas, CHILE
E-mail: mmarin@ona.fi.umag.cl

Sandra Casas
Division de Informatica
Universidad Nacional de la Patagonia Austral
Rio Gallegos, Argentina

Abstract

This paper describes two parallel algorithms for the efficient processing of relational database
transactions and presents a performance analysis of them. These algorithms are built upon
the bulk-synchronous parallel model of computation. The well-defined structure of this model
enabled us to evaluate their performance by using an implementation independent and yet em-
pirical approach which includes the effects of synchronization, communication and computation.
The analysis reveals that the algorithm which borrows ideas from optimistic parallel discrete
event simulation achieves better performance than the classical approach for synchronizing con-
current transactions on a distributed memory system.

1 Introduction

Transactions in relational database systems are sets of related read/write (R/W) operations which
are treated as an atomic entity in the sense that they are either entirely executed on the database, or
“rolled-back” and then re-executed when a causality error is detected. Most obvious application of
this concept is in computational systems that are prone to failure. However, a need for transactions
arises also in cases in which it is necessary to synchronize database accesses coming from a number
of concurrent transactions trying to execute their operations on it over the same period of time.

This paper is concerned with the synchronization of relational database transaction operations
running on a parallel distributed-memory environment which supports an architecture independent
and cost predictable model of computation. The database is assumed to be distributed on P pro-
cessors, and transactions are allowed to read/write records from/on any processor. Each record is
maintained in a unique processor (i.e., sharing-nothing database model) and there exists a mapping
function to determine the associated target processor. The model of computation is the so-called
bulk-synchronous parallel (BSP) model [7].

Our underlying conjecture is that by processing parallel transactions on a model like BSP, it is
possible to achieve scaleable performance in heavy-load scenarios wherein thousands of transactions
are serviced by a distributed memory/disk server. This conjecture is not a product of chance since
it has already been shown that a related problem can be solved more efficiently than traditional
models by BSP-like styles of computation. We refer to the synchronization of event occurrences
in parallel discrete-event simulations [2]. In our case, read and writes are equivalent to simulation
events that take place concurrently during a given period of time which must satisfy causality
restrictions like serialization.

This paper compares an event-synchronization protocol used in both application domains with
the two-phases lock protocol which is commonly used in relational database management systems.
Our results show the better comparative performance of the former and its clear potential for
achieving scaleable performance on architectures ranging from expensive super-computers to clus-
ters of PCs. Another contribution of this paper is the specific BSP realization of the synchronization
protocols we use in our experiments. To the best of our knowledge, this particular topic, namely
transaction processing under the BSP model of computation, has received no attention in the liter-
ature and thereby our discussion on previous work and reference list is necessarily short. Related
work on BSP and databases systems can be found in [3, 1, 6] and in the references there mentioned.

The remaining of this paper is organized as follows. In section 2 we present an efficient BSP
realization of two synchronization algorithms for concurrent transactions. In section 3 we present
a comparative analysis of the algorithms. Section 4 presents conclusions.

2 Models and protocols

In the BSP model of parallel computation both computation and communication take place in bulk
before the next point of global synchronisation of processors. A BSP program is composed of a
sequence of supersteps. During each superstep, the processors may only perform computations on
data held in their local memories and/or send messages to other processors. These messages are
available for processing at their destinations by the next superstep, and each superstep is ended
with the barrier synchronization of the processors. The model can be easily implemented in todays
parallel architectures as facilities for performing message sending and barrier synchronisation are
commonly available in them. Moreover, instead of general purpose communication libraries such
as PVM or MPI, a special purpose BSP library can be employed to write efficient C++ parallel
programs [5].

In the following we describe two synchronization protocols for concurrent transactions on BSP
computers. In our setting, every processor of the BSP machine must execute R/W operations of
a large number of transactions. We assume that each processor maintains a piece of the database
records either in its main memory or in its local disk. Every transaction is created in a given
processor so that all processors maintain about the same number of them. Targets work-loads are
those which produce large number of transactions per processor during long periods of time. When
a transaction must perform a read or write operation on a record located in another processor,
it effects such task by sending messages to the target processor. Recall that messages take one
superstep to reach their destinations.

In the two-phases protocol, transactions first request locks on the subset of records upon
which they need to perform their R/W operations. After the locks on that records have been
granted and all R/W operations performed on them, the acquired locks are released. Deadlocks
are avoided by establishing a global order for the records and requesting them following the same
order. Once a given lock has been granted, the transaction requests the following one in the global
order, and so on. A direct realization of this protocol on a BSP machine is to use one superstep
for sending a message to request a single lock, then wait one superstep for the remote processor
to make all arrangements for granting the lock, and finally at the next superstep receive the grant
notification, then proceed with the same procedure for the next lock, and so on. If the required
lock is being held by another transaction, it is necessary to wait until this transaction releases the
lock. Read locks are answered with the data itself to be read. Write locks are requested by sending
the same message the new data to be written. That is, no additional message traffic is necessary
for effecting the R/W operations. All messages releasing the granted locks can be sent in the same
superstep.

A more aggressive strategy would be to request all the required locks at the same superstep, and
then wait during one or more supersteps to receive all the pending lock authorisations. However, this
introduces deadlock problems since the above mentioned global order can be broken. A solution
is to define priorities for the transactions, and use such values to determine which transaction
should get the lock on a certain record at a given superstep. Priorities must be unique across
all transactions which leads to the problem of getting unique and increasing integer values in
a distributed environment. In addition, read operations have to be treated as exclusive ones,
like writes, since at all times only the transactions with the best global priorities should get the
locks they request for. [At the time of writing this paper we have not been able to figure out a
realization of this aggressive strategy which be significantly more efficient than the straightforward
one described above. So we use the former one in our experiments. Similar strategy can be used in
the protocol described below, but we exclude this possibility in order to compare both approaches
under the same context.]

The Time Warp protocol is a popular event synchronization strategy for parallel discrete
event simulation [2]. This asynchronous and distributed memory algorithm is based on the opti-
mistic assumption that no events will probably get into conflict with each other, and if that situation
happens to occur a correction procedure is executed by moving backwards the computation, cor-
recting the error, and then moving it forward again but this time taking into consideration the
cause of the trouble. The same strategy can be applied to the parallel processing of transactions.
That is, they are allowed to perform their R/W operations at will, but each time a record is read
or written a consistency check is executed to detect if it necessary to do a roll-back of all causally
related transactions or let them continue forward.

Our realization of this strategy for the BSP setting is as follows. Transactions are created in
any superstep and each of them is composed of a set of R/W operations. A timestamp is assigned
to each transaction. This is an increasing integer number. All operations of a given transaction
receive the transaction timestamp and the protocol is in charge of ensuring that all operations
on records are done in increasing timestamp order. Whenever an operation breaks this rule, all
already-executed operations on the involved record that have timestamps greater than the new one
are undone and re-executed on the record to obtain the right sequence. Only read operations are
allowed to be done in different timestamp order as long as no write operation should have been

executed in between. When an operation of a given transaction is undone, it is also necessary to
undone all following operations of the same transaction which have already been executed on other
records. Note that these records can be located in other processors. Then these operations must be
re-executed again since each one in the sequence can depend on the previous one. All this process
is call a roll-back. Efficiency depends heavily on the amount of roll-backs performed during the
computation. Transactions are committed when all their operations become ones with timestamps
less than the smallest timestamp of any operation waiting to be executed (this considering all
Processors).

In [4] we propose an efficient BSP algorithm for Time Warp on BSP Computers which can
be easily adapted to support this strategy. This can be done as follows. Every processor keeps a
priority queue where priorities values are the operations timestamps. No operations from different
transactions can have the same priority value and operations belonging to the same transaction can
be given a second priority value in accordance with their relative ordering within the transaction.
To reduce the number of roll-backs we use the local priority queues in a way that emulates a global
priority queue. Note that if all operations were taken from this global priority queue, no roll-back
would ever occur. In each superstep, each processor executes the n operations with the highest
priorities (least numerical values). Every time an error is detected, all the operations are returned
to the local priority queues. Errors occur because messages containing read/write operations take
one superstep to reach their destinations, and this causes that in a given superstep the processors
do not contain the correct first n priorities. Some of them are due to arrive in the following
supersteps. However, already-executed and new operations are treated identically for the purpose
of determining when the upper limit n is reached. This is precisely what tends to emulate the global
queue since a processor working at a high error rate will be kept restrain from advancing too far
in the processing of operations with low priorities. The value of n can be calculated automatically
during execution as we propose in [4].

In the next section we empirically compare the two strategies above described by using a
synthetic but very demanding workload. Our performance metrics are independent of the particular
implementation of the protocols since we measure the amount of computation, communication and
synchronization required to complete a given instance of the work-load.

The work-load model is as follows. On a P processors BSP machine we initially create T’
transactions per processor. Every time a transaction finishes the execution of all its operations, a
new one is created so that the total of T'- P transactions is kept constant throughout the whole
experiment. In each work-load instance, namely different values for P and T and other parameters
described below, the experiment ends after a very large number of superteps is executed. All
performance metrics are normalized to the amount of something done per superstep. When a new
transaction is created, it is given a random number N of operations to be executed. Read and
write operations have certain probability of being chosen and the records upon which they are to
be executed are selected uniformly at random among all records of the database. In particular,
these records are evenly distributed across all the processors. Each work-load instance is assumed
to contain R records per processor. Each instance of a experiment is executed several times, each
with a different random number seed.

Our performance metrics are the following: (i) Average number of transactions processed per
superstep S considering the effect of all the processors; (ii) Average load balance in computation

C measured as the average maximum across supersteps of the amount of computation registered
in each processor divided by the observed average. We count as 1 the execution of a single R/W
operation and also the computations associated with the housekeeping of records (i.e., we assume a
database distributed in the processor’s main memory); (iii) Average load balance in communication
M which is similar to C' but counting messages sent at the end of each superstep. In other words,
we measure performance in terms of the costs of synchronization, communication and computation.
In this case, an algorithm is more efficient than another if it has less activity in synchronization
(supersteps), less communication, and computation is well balanced across processors (the same is
valid for communication).

3 Performance analysis

The best performance is achieved in a situation in which no R/W conflicts ever take place so that
all transactions are able to execute their operations as fast as possible with no waiting supersteps.
For a remote read operation it is necessary to wait one superstep for the data to come over. Remote
write operations require no waiting superstep. In addition, in this best case scenario, transactions
can send all their read requests at the very first superstep in which they are created and start
their execution. Thus each transaction requires at least three supersteps to complete its execution,
where in the last one all the operations are executed in bulk and write messages are sent to remote
processors (this assumes that at least one read is in every transaction). Then the average number
of transactions processed per superstep S is given by T - P/3. Load balance in computation and
communication tends to the optimum C =1 and M =1 as T increases since this is equivalent to
the average occupancy of the “balls thrown into a set of baskets” problem.

Note that synchronization strategies like the optimistic one have the potential for achieving
the above optimum performance as the number of records per processor R is scaled up whilst the
number of transactions per processor 7' is kept fixed and large, since this reduces the probability of
two given transactions willing to access the same record during the same superstep. The aggressive
two-phases protocol with priorities can also present the same behaviour. However, taking a more
realistic approach we are going to assume that it is not possible to send all read messages in
the same superstep in which the transaction is created. That is, we assume that reads must be
executed one after the another so that, for example, if 3 consecutive reads are required, each in
a different processor (our case with high probability 1 — 1/P), the machine will use at least 6
supersteps to complete the reads. Of course, we are not interested in high performance at the
individual transaction level but at the overall level since our goal is to efficiently process a large
number of transactions during a long period of time wherein transactions are created at any point
(but uniformly distributed) of this period. That is, transactions are created in any superstep of
the computation. Note that our workload achieves this because it maintains a constant number
of transactions per processor and the creation of new transactions is distributed along the time
because the number of operations per transaction is a random variable. A new transaction is
created as soon as an old one finishes the execution of all its operations.

The standard realization of the two-phases lock protocol will in the best case require a sequence
of 2N supersteps to complete all lock requests and then proceed to execute all associated operations
in bulk. Thus, on the average, the total number of transactions per superstep in this protocol is

L] [] -] n L m 11 12 E L]

|—|— Valaofes obasrvad os === Dpbmo |

Figure 1: Number of processed transactions per superstep. The z-axis is in logy scale.

T - P/(2E[N]). Since N is a random number, the bulk of operations will tend to ocurr in different
supersteps which reduces the total amount operations per superstep that are executed by a factor
of 1/(2E[N]). Less operations per superstep, leads to poorer load balance in computation and
communication.

To observe how the lock protocol achieves the above optima we performed experiments with
the work-load using E[N] =10, P =16, T = 8 and R = 32,64, 128,256, ..., 16384. The results are
shown in figure 1. This figure shows that it is necessary a large number R of database records per
processors to achieve the optimal number of transactions per superstep. For smaller values of R
contention for the same records becomes intense. Load balance in computation and communication
is not good since typical C' and M values were in the range 4 to 6. However, this problem has an
easy solution. As we know what the optimal S should be, we can estimate the average number of
operations executed in each superstep. (These values can be measured empirically for any system
during execution as proposed in [4]). A factor of this estimate can be used as an upper limit
to the number of operations executed per processor in each superstep. If in a given supersteps
this maximum is reached and there are more operations to be executed, these are processed in
the following superstep and so on. Using a factor 1/2 we observed that load balance improved
significantly at the cost of increasing about three times the total number of supersteps. This
reduces three times the values shown in figure 1.

Though the strategy used by the Time Warp algorithm is quite different to the one used by
the lock protocol, the optimal value for the expected number of transactions per superstep S is the
same value T'- P/(2 E[N]). In Time Warp a transaction sends messages containing R/W operations
where reads take, in the best case, two supersteps to complete. If no roll-back takes place, then
the optimal S is achieved. We performed similar experiments to that of figure 1. The results for S
are very similar to those of figure 1 for large R. However, in the region of small R the Time Warp
protocol achieves quicker near optimal S values. But much more important is the fact that load
balance is near optimal (on average C' = 1.2 and M = 1.6). Similar load balance was achieved with
the lock protocol but S had to be decreased three times.

4 Conclusions

We have presented and analysed two bulk-synchronous parallel algorithms for synchronizing con-
current relational database transactions running on a distributed memory environment. Overall,
we have observed that the BSP Time Warp algorithm we propose in this paper outperforms an
efficient BSP realization of the traditional two-phases lock protocol by a wide margin. BSP Time
Warp requires a near optimal number of supersteps to process a large number of transactions whilst
at the same time it also achieves near optimal load balance.

Note that the amount of computation performed by both algorithms is similar since we have
observed that the number of roll-backs in Time Warp is not significant whereas the overheads
associated with locks administration are avoided completely. Thus what matters in the comparison
is balance in computation and communication and the amount of synchronization of processors.

We are at present exploring ways of optimizing the proposed algorithms and working on the
efficient BSP realization of other well-known protocols for synchronizing concurrent transactions in
relational database systems.

References

[1] M. Arriagada, J. Canuman, D. Laguia, and M. Marin. “Bases de datos relacionales paralelas
sobre BSPlib”. In 2000 Workshop Chileno en Sistemas Distribuidos y Paralelismo, Nov. 2000.
Santiago, Chile.

[2] R.M. Fujimoto. “Parallel discrete event simulation”. Comm. ACM, 33(10):30-53, Oct. 1990.

[3] J.M.D. Hill, S. Jarvis, C. Siniolakis, and V.P. Vasilev. “Analysing an SQL application with a
BSPIlib call-graph profiling tool”. In Euro-Par’98, 1998. Lecture Notes in Computer Science.

[4] M. Marin. “Time Warp On BSP Computers”. In 12th SCS European Simulation Multiconfer-
ence, June 1998.

[5] BSP Worldwide Standard. http://www.bsp-worldwide.org/.

[6] K.R. Sujithan. “Towards a scalable parallel object database — The bulk-synchronous parallel
approach”. Technical Report PRG-TR-17-96, Computing Laboratory, Oxford University, 1996.

[7] L.G. Valiant. A bridging model for parallel computation”. Comm. ACM, 33:103-111, Aug.
1990.

