
Parallelizing Algorithms in Ada on Clementina II
Face Recognition System

Champredonde Raúl1
Chichizola Franco2

Laboratory of Research and Development on Computer Sciences3
Computer Sciences Faculty - National University of La Plata

Abstract
In the Laboratory of Research and Development on Computer Science of the National University of
La Plata, a face recognition system has been developed. This article describes a series of testings
based on parallel processing, with the objective of optimizing the said system response times
developed in Ada programming language on SGI Origin 2000 parallel architecture known as
Clementina II. Then, the results obtained are analyzed

Keywords
Parallel processing, Ada

1 Mid-time Co-Chair Professor. Advance Scholar CONICET. rchampre@lidi.info.unlp.edu.ar
2 Mid-time Graduate Assistant. francoch@lidi.info.unlp.edu.ar
3 50 St and 115 St. First Floor. 1900 La Plata. Bs.As. Tel/Fax. 54 221 422 7707

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction
In the frame of the projects carried out by the Laboratory of Research and Development on
Computer Sciences of the National University of La Plata, a face recognition system has been
developed as dissertation [5].
Basically, the system uses a face image database and it draws certain characteristics from the each
of them, in a process called training.
The trained system is able to receive a face image and determine whether it corresponds to some of
the faces which are found in the image database, and in such case, to which of them it corresponds.
This process is known as recognition.
Many applications which use this technology can be found. For example, in a security access
system to physical or electronic places based on the face of whoever wants to enter.
Furthermore, considering that the processing and recognition of f inger prints is expensive as regards
time and computing resources, other example could be an application which, given the photo of a
person, it finds a set as reduced as possible of candidates, in order to, just then, start the analysis on
finger prints.
However, most of the applications, if not all , need the best possible performance, and precisely if
we taken into account the fact that they need an image database with a large quantity of faces. The
quantity of the necessary calculation, both for training and recognition, increases proportionally to
the quantity of faces of the database.
It is clear that the parallelism of thick grain will benefit the application’s performance. For example,
it is not diff icult to prove that in the training process, the eigenvectors computation of an parallel
image set requires approximately the same time than the required for the same computation of a
single image.
Face recognition system is principally based on matrixes operations. In the testing, the
determination of how beneficiary the parallelism could be at the level of these operations using Ada
and Clementina II is looked for in order to estimate their effect on the improvement of the
performance which would be obtained by parallelizing the face recognition system.
Being the multiplication of the matrixes an operation that could be considered as representative of
BLAS level 3 [1], and having several researches been developed about it [2][3][4][6][7], this
operation is used for the development of the tests.

2.1. Training and Recognition Algorithms

Face recognition application is based on the EigenFaces method [8][9], which basically consists of
a training process and a recognition process. Both processes use a face database composed by a set

MΓΓΓ ,...,, 21 of images of size NxN .
Training consists of the following stages:

1- Each image

iΓ with Mi ,..,2,1=

is reorganized as a vector of size 2N , whose value is formed as a concatenation of each of
the lines of the images, thus forming a matrix xMN 2

2- Ψ average face is obtained according to the formula

∑
=

Γ=Ψ
M

n
n

M 1

1

3- Ψ average face obtained is substracted from each of the images iΓ with i between M..1

thus obtaining a new set of vectors

Ψ−Γ=Φ ii
which compose the matrix []MΦΦΦ=Λ ,...,, 21 of xMN 2 .

4- A reduced covariance matrix is obtained.

ΛΛ= T

M
L

1

 of MxM size.
5- L autovectors are obtained; all of which, ordered in a descending fashion according to their

corresponding autovalues, constitute matrix v .

6- u “eigenvectors” are computed as a lineal combination of Λ columns and v columns

∑
=

Φ=
M

k
klkl vu

1
7- A pattern is obtained

[]M
T
i ωωω ,...,, 21=Ω con Mi ,...,2,1=

where
()Ψ−Γ= i

T
kk uω con Mk ,...,2,1=

Given a face image, the recognition process tries to find in the image database that one which
corresponds to the given face, for which its Ω pattern is computed using the same procedure
preciously described, and the minimum distance is looked for.

()2
min iΩ−Ω

 with Mi ,...,2,1=
Once the minimum distance is found, if the same is within the limits stipulated by the error
percentage admitted which is received as a parameter, the system shows which the corresponding
image is. On the contrary, it shows the non-existence of the correspondence.

2.2. Architecture Description

The experiments carried out were carried out in the supercomputer known as Clementina II
[11][12][13].
Clementina II is a Cray Origin 2000 system manufactured by the firm SGI (new name for Silicon
Graphics). It has forty processors MIPS RISC R12000 of 300 MHz., with a secondary cache of 4
MB, a principal memory of 10 GB shared by all the processors, 360 GB of disk storing.
The operative system of this supercomputer is Irix 6.5 [14], which was developed by Silicon
Graphics. Irix is compatible (compliant) with UNIX System V Release 4 and with standards of The
Open Group, including UNIX 95, Year 2000 and POSIX.
Irix has a support for symmetric multiprocessing (SMP) scalable up to 128 processors and support
for 32 and 64 bits.

3. Testings Carried Out

The testings were carried out by using matrixes multiplication, since this operation is the most
representative of BLAS level 3.
Square matrixes of MxM with 2000,1500,1000,500,250=M were used.

The multiplication is divided in several tasks. Each of these is in charge of carrying out the
corresponding computations to a part of the resulting matrix. The division of the resulting matrix is
carried out by rows, according to the following scheme:
Let it M be the size of the matrix and T be the quantity of tasks used, the resulting matrix is divided

in T groups of T
M l ines each one. The task iT is in charge of computing the corresponding values

to the line group iT with Ti ,...,2,1= .

The tests were carried out by using T with 40,30,20,10,5,1=T .
Whit the objective of using the division of the most convenient resulting matrix in relation to the
influence this could have on the utilit y of the cache memory, the way in which Ada language
internally represents the matrixes was identified. Ada compiler for the architecture used represents
the matrixes per files. The same criterion was then used in order to divide the resulting matrix in as
many portions as tasks.
The work conditions were those of normal use, i.e., without having exclusive access to the
architecture. These conditions make the quantity of processors used to be dependant on the work
charge which each of them has at the time of the execution of the matrix multiplication process, and
in the particular case of Clementina II , this charge is commonly high.
The operating system allows to obtain the total time of effective process execution. This time is
equal to the sum of the time periods in which each of the tasks composing the process occupy a
processor.
On the other hand, the creation time of tasks and of operating and resulting matrixes is not
significant in relation to the processing time, as well as the influence of the use of the cache
memory.
Consequently, if there existed a free access to the whole architecture of Clementina II , the total time
of the processing would approximately be equal to the executing time of only one of the talks which
the process uses.
This is the criterion used in order to compute the performance with exclusive access, in function of
the performance in normal work conditions.

4. Results obtained
”Raw” results obtained are showed in the following tables. Each table shows in detail (for each one
of the different quantities of tasks used): the user time and the system time which the execution of
the process took; the total time as the sum of the two previous ones; the time of each task; the time
increasing (speedup) of the parallel solutions in respect to the sequential and the achieved Mflops.
All time measures are expressed in seconds.

Table 1: Matrixes of 250x250

Tasks User T System T Total Time Task Time Speedup Mflops
1 1,973 0,025 1,998 1,998 1,000 15,609
5 1,977 0,027 2,004 0,401 4,985 77,813

10 1,989 0,023 2,012 0,201 9,930 155,007

20 1,976 0,034 2,010 0,101 19,880 310,317
30 2,007 0,040 2,047 0,068 29,278 457,006
40 2,009 0,056 2,065 0,052 38,695 604,007

Table 2: Matrixes of 500x500

Tasks User T System T Total Time Task Time Speedup Mflops
1 15,889 0,054 15,943 15,943 1,000 15,665

5 15,885 0,061 15,946 3,189 4,999 78,311
10 15,881 0,070 15,951 1,595 9,995 156,573

20 16,019 0,075 16,094 0,805 19,812 310,364
30 16,006 0,082 16,088 0,536 29,729 465,713
40 16,108 0,100 16,208 0,405 39,345 616,350

Table 3: Matrixes of 1000x1000

Tasks User T System T Total Time Task Time Speedup Mflops
1 162,420 0,256 162,676 162,676 1,000 12,288

5 166,869 0,325 167,194 33,439 4,865 59,781
10 163,464 0,276 163,740 16,374 9,935 122,084

20 168,993 0,338 169,331 8,467 19,214 236,106
30 165,542 0,306 165,848 5,528 29,426 361,595
40 166,494 0,390 166,884 4,172 38,991 479,135

Table 4: Matrixes of 1500x1500

Tasks User T System T Total Time Task Time Speedup Mflops

1 661.273 0.646 661.919 661.919 1.000 10.194

5 694.430 1.077 695.507 139.101 4.759 48.510

10 683.000 1.019 684.019 68.402 9.677 98.649

20 688.620 1.259 689.879 34.494 19.189 195.621
30 687.938 1.312 689.250 22.975 28.810 293.700

40 673.474 1.064 674.538 16.863 39.252 400.141

Table 5: Matrixes of 2000x2000

Tasks User T System T Total Time Task Time Speedup Mflops
1 1840,688 1,843 1842,531 1842,531 1,000 8,682

5 1917,263 2,552 1919,815 383,963 4,799 41,660
10 1871,282 2,133 1873,415 187,342 9,835 85,384

20 1884,615 2,851 1887,466 94,373 19,524 169,497
30 1907,235 3,122 1910,357 63,679 28,935 251,199
40 1898,128 3,324 1901,452 47,536 38,761 336,501

These results cannot be shown in a one single graphic since temporal scales are excessively
different. Therefore, they are shown in one graphic for each size of matrix. The corresponding
values to the tests with 5 tasks are not included in order to avoid distortion which, logically, will
introduce in the graphic.

250x250

0,000

0,500

1,000

1,500

2,000

2,500

T
im

e
(s

ec
.)

Tasks 1,998 0,201 0,101 0,068 0,052

1 10 20 30 40

Figure 1: Executing Times for matrixes of 250x250

500x500

0,000

5,000

10,000

15,000

20,000

T
im

e
(s

ec
.)

Tasks 15,943 1,595 0,805 0,536 0,405

1 10 20 30 40

Figure 2: Executing Times for matrixes of 500x500

1000x1000

0,000

50,000

100,000

150,000

200,000

T
im

e
(s

ec
.)

Tasks 162,676 16,374 8,467 5,528 4,172

1 10 20 30 40

Figure 3: Executing Times for matrixes of 1000x1000

1500x1500

0,000

200,000

400,000

600,000

800,000

T
im

e
(s

ec
.)

Tasks 661,919 68,402 34,494 22,975 17,091

1 10 20 30 40

Figure 4: Executing Times for matrixes of 1500x1500

2000x2000

0,000

500,000

1000,000

1500,000

2000,000

T
im

e
(s

ec
.)

Tasks 1842,531 187,342 94,373 63,679 47,536

1 10 20 30 40

Figure 5: Executing Times for matrixes of 2000x2000

The previous graphics show curves whose shapes are very similar between them. This shows that
the performance has approximately the same improvement for all the tests as the number of
processors used increases.
In order to observe more precisely the improvement of the performance, the following graphic
shows speed increasings of the parallel solutions with respect to the sequential solution (speedup)
obtained in the different tests.

Speedups

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

250x250 1,000 9,930 19,880 29,278 38,695

500x500 1,000 9,995 19,812 29,729 39,345

1000x1000 1,000 9,935 19,214 29,426 38,991

1500x1500 1,000 9,677 19,189 28,810 38,729

2000x2000 1,000 9,835 19,524 28,935 38,761

1 10 20 30 40

Figure 6: Speedups obtained

According to the shape of the curves which represent the different speedups, it is observed that this
is lineal and very close to the optimum. Thus, the improvement of the performance is directly
proportional to the quantity of processors used.
This lineal, almost optimum, speedup is achieved by simply dividing the processing of tasks in
order to take advantage of the availabili ty of several processors. If tuning techniques of the
application are also used in order to make the most of the possibil ities of the architecture,
extraordinary improvements can be obtained.
In the previous tables a column is included with the Mflops achieved in the processing. These
columns are used in order to build up the following table and in order to make the computing of the
average of Mflops achieved by a task, i.e., Mflops of a processor.

Table 6: Mflops

Tasks 250x250 500x500 1000x1000 1500x1500 2000x2000 Total Mflops Average by
amount of tasks

Average by
tasks

1 15,609 15,665 12,288 10,194 8,682 62,439 12,488 12,488
5 77,813 78,311 59,781 48,510 41,660 306,075 61,215 12,243

10 155,007 156,573 122,084 98,649 85,384 617,697 123,539 12,354
20 310,317 310,364 236,106 195,621 169,497 1221,905 244,381 12,219
30 457,006 465,713 361,595 293,700 251,199 1829,213 365,843 12,195
40 604,007 616,350 479,135 394,814 336,501 2430,806 486,161 12,154

Average of

Mflops by tarea 12,275

By using ATLAS [10], the maximum potential of the computation of an architecture in particular
can be practically obtained by means of automatic tuning which it provides. On a processor
R10000, it reaches some 306,2 Mflops for multiplication of matrixes of 500x500, thus it surpasses
that quantity on processors R12000. Therefore, the performance obtained can be improved in 25
times.

5. Conclusions
The use of the programming language Ada for the development of parallel applications which
require a large quantity of calculation is feasible and realistic.
Logically, the results obtained cannot be applied to all types of algorithms, though they can be
applied to those which can take advantage of shared memory parallel architectures as in the case of
Clementina II .
The results obtained show that the use of parallelisms at the level of operation on matrixes will be
really beneficiary as regards performance of the face recognition system and of any other
application based on computations of the same nature.

6. Further Works
In function of the results obtained, a parallel solution of the face recognition system using Ada wil l
be developed, and the improvement of its performance with respect to the same solution - in this
case sequential – wil l be verified.
On the other hand, it is known that by using the automatic tuning tool ATLAS, Mflops can be
achieved 25,5 times greater than the obtained. For this reason, in the face recognition system, once

the division of the resulting matrix is carried out, we will i nteract with language C in order to take
advantage of ATLAS utiliti es.
It is also possible to apply these experiences to the Real Time research line, in particular as to what
computer vision concerns.

7. Acknowledgements
The authors would like to thank the invaluable collaboration of MSc. Fernando Tinetti.

8. References
[1] Anderson E., Bai Z., Bischof C., Demmel J., Dongarra J., DuCroz J., Greenbaum

A., Hammarling S., McKenney A., Sorensen D. “LAPACK: A Portable Linear
Algebra Library for High-Performance Computers” . Proceedings of
Supercomputing ’90, pages 1-10, IEEE Press, 1990.

[2] Bilmes J., Asanovic K., Chin C., Demmel J. “Optimizing matrix multiply using
phipac: a portable, high-performance, ansi c coding methodology” . Proceedings
of the International Conference on Supercomputing, Vienna, Austria, ACM
SIGARC. July 1997

[3] Choi J. “A New Parallel Matrix Multiplication Algorithm on Distributed-
Memory Concurrent Computers” . Proceedings of the High-Performance
Computing on the Information Superhighway, IEEE, HPC-Asia’97. 1997.

[4] Choi J., Dongarra J., Walker D. “PUMMA: Parallel Universal Matrix
Multiplication Algorithm on Distributed Memory Concurrent Computers, in
Concurrency: Practice and Experience” . 6:543-570. 1994.

[5] Correa Martín, Chichizola Franco. “Sistema de reconocimiento de rostros” .
Trabajo de grado. Facultad de Informática. 2001.

[6] Dekel E., Nassimi D., Sahni S. “Parallel matrix and graph algorithms”. SIAM
Journal on Computing, 10:657-673. 1981.

[7] Golub G., Van Loan C. “Matrix Computation” Second Edition. The John
Hopkins University Press, Baltimore, Maryland. 1989.

[8] Jun Zhang, Young Yan, and Martin Lades. “Face Recognition: Eigenface, Elastic
Matching, and Neural Nets.” Proceedings of the IEEE. vol. 85. No. 9, pp.1422-
1435, 1997.

[9] M. Turk and A. Pentland, “Face recognition using eigenfaces”, in Proceedings of
International Conference on Pattern Recognition , pp. 586-591,1991

[10] Whaley R., Dongarra J. “Automatically Tuned Linear Algebra Software” . PhD
Thesis. Dept. of Computer Sciences, Univ of TN, Knoxvill e. 1998.

[11] www.cab.cnea.gov.ar/difusion/ClementinaIINacion.html
[12] www.setcip.gov.ar
[13] www.sgi.com/origin/2000
[14] www.sgi.com/software/irix6.5

