Parallelizing Algorithmsin Ada on Clementina |
Face Recognition System

Champredonde Rail*
Chichizola Franco®
Laboratory of Research and Development on Computer Sciences’
Computer Sciences Faculty - National University of La Plata

Abstract

In the Laboratory of Research and Development on Computer Science of the National University of
LaPlata, aface recognition system has been developed. This article describes a series of tetings
based on pardld processng, with the objedive of optimizing the said system response times

developed in Ada programming language on SGI Origin 2000 parall el architecture known as
Clementina 1l. Then, the results obtained are analyzed

Keywords
Parallel processng, Ada

! Mid-time Co-Chair Professor. Advance Scholar CONICET. rchampre@lidi.info.unlp.edu.ar
2 Mid-time Graduate Assistant. francoch@lidi.info.unlp.edu.ar
$50 Stand 115 St. First Floor. 1900 La Plata. Bs.As. Tel/Fax. 54 221 422 7707

https://core.ac.uk/display/301043741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.Introduction

In the frame of the projects carried out by the Laboratory of Research and Development on
Computer Sciences of the National University of La Plata, aface recognition system has been
developed as dissertation [5].

Basically, the system uses a faceimage database and it draws certain characteristics from the each
of them, in a processcdled training.

Thetrained sysem is ableto receive afaceimage and determine whether it corresponds to some of
the faces which are found in the image database, and in such case, to which of them it corresponds.
This processis known asrecognition.

Many appli cations which use this technology can be found. For example, in aseaurity access
system to physica or eledronic places based on the face of whoever wants to enter.

Furthermore, considering that the processng and recognition of finger printsisexpensive asregards
time and computing resources, other example ould be an application which, given the photo of a
person, it finds a set as reduced as possible of candidates, in order to, just then, start the analysison
finger prints.

However, most of the gplications, if not al, need the best possble performance, and predsely if
we taken into account the fact that they need an image database with alarge quantity of faces. The
guantity of the necessary calculation, both for training and recognition, increases proportionally to
the quantity of faces of the database.

Itisclear that the pardldism of thick grain will benefit the gplication’ s performance. For example,
it isnot difficult to provethat in the training process the eigenvectors computation of an paralé
image set requires approximately the same time than the required for the same computation of a
singleimage.

Face recognition system is principally based on matrixes operations. In the testing, the
determination of how beneficiary the parall elism could be & thelevel of these operationsusing Ada
and Clementinall islooked for in order to estimate their eff ect on the improvement of the
performance which would be obtained by paral€izing the face recognition system.

Being the multiplication of the matrixes an operation that could be considered as representative of
BLAS level 3[1], and having severa researches been developed about it [2][3][4][6][7], this
operation is used for the development of the tests.

2.1. Training and Recognition Algorithms

Face recognition application is based on the EigenFaces method [8][9], which basicdly consists of
atraining processand areagnition process Both processes use aface database composed by a set

r,,r,,..r, of imagesof sze NxN .
Training consists of the following stages:

1- Eadhimage
I, withi=12,..,.M
is reorganized as avedor of size N*, whose valueis formed as a cncatenation of each of
the lines of the images, thus forming amatrix N?xM

2- W averagefaceisobtained according to the formula
M
w=1 r
M &

3- W average faceobtained is substracted from each of theimages T, with i between 1.M
thus obtaining a new set of vectors

® =r -y
which compose the matrix A = [®,,®,,...®,,] of N?xM .

4- A reduced covariance matrix is obtained.
L= i/\T/\
M
of MxM size
5- L autovedors are obtained; all of which, ordered in a descending fashion according to their
corresponding autoval ues, congtitute matrix v.

6- u “eigenvectors’ are cmputed as alineal combination of A columnsand v colymns

7- A pattern is obtained
Qf :[a)l,wz,...,a)M] con i=12.. M
where

w, =u (M -¥ k=12,..,M

:) con

Given aface image, the recognition processtriesto find in the image database that one which
corresponds to the given face, for which its Q pattern is computed using the same procedure
preciously described, and the minimum distance is looked for.

. 2 .
mm@Q—QiH)With i=12...M
Once the minimum distance isfound, if the same is within the limits stipulated by the error

percentage admitted which isreceived as a parameter, the system shows which the corresponding
image is. On the contrary, it shows the non-existence of the correspondence.

2.2. Architecture Description

The experiments carried out were carried out in the supercomputer known as Clementinall
[11][12][13].

Clementinall isaCray Origin 2000 system manufactured by the firm SGI (new name for Silicon
Graphics). It hasforty processors MIPS RISC R12000 of 300 MHz., with a secondary cache of 4
MB, aprincipal memory of 10 GB shared by al the processors, 360 GB of disk storing.

The operative system of this supercomputer islrix 6.5 [14], which was developed by Silicon
Graphics. Irix is compatible (compliant) with UNIX System V Release 4 and with standards of The
Open Group, including UNIX 95, Year 2000 and POSI X.

Irix has a support for symmetric multiprocessing (SMP) scalable up to 128 processors and support
for 32 and 64 bits.

3. Tegtings Carried Out

The testings were carried out by using matrixes multiplication, since this operation is the most
representative of BLAS leved 3.
Square matrixes of MxM with M = 250,500,1000,1500,2000 were used.

The multiplication isdivided in several tasks. Each of theseisin charge of carrying out the
corresponding computations to a part of the resulting matrix. The division of the resulting matrix is
carried out by rows, according to the following scheme:

Let it M bethe size of the matrix and T be the quantity of tasks used, the resulting matrix isdivided

in T groups of 'V%. lineseach one. Thetask T, isin charge of computing the crresponding va ues

tothelinegroup T, with i =12,...,T .

Thetestswere crried out by using T with T =1,510,20,30,40.

Whit the objective of using the division of the most convenient resulting matrix in relation to the
influencethis could have on the utility of the cahe memory, the way in which Adalanguage
internally represents the matrixes was identified. Ada compil er for the achitecture used represents
the matrixes per files. The same aiterion was then used in order to divide the resulting matrix in as
many portions as tasks.

The work conditions were those of normal use, i.e., without having exclusive access to the
architecture. These mnditions make the quantity of processors used to be dependant on the work
charge which each of them has at the time of the execution of the matrix multipli cation process, and
in the particular case of Clementinall, this charge is commonly high.

The operating system all ows to obtain the total time of eff edive processexecution. Thistimeis
equal to the sum of the time periods in which each of the tasks composing the processoccupy a
Procesor.

On the other hand, the aeation time of tasks and of operating and resulting matrixesis not
significant in relation to the processing time, as well asthe influence of the use of the cahe
memory.

Consequently, if there existed afree acessto the whole achitecture of Clementinall, thetotal time
of the processing would approximately be equal to the executing time of only one of thetalkswhich
the process uses.

Thisisthe aiterion used in order to compute the performance with exclusive access, in function of
the performance in norma work conditions.

4. Results obtained

"Raw” results obtained are showed in the following tables. Each table showsin detail (for each one
of the diff erent quantities of tasks used): the user time and the system time which the exeaution o
the process took; the total time as the sum of the two previous ones; the time of each task; the time
increasing (speedup) of the parallel solutionsin resped to the sequential and the adieved Mflops.
All time measures are expressd in seconds.

Table 1: Matrixes of 250x250

Tasks | User T | System T | Tota Time | Task Time | Speadup | Mflops
1 1,973 0,025 1,998 1,998 1,000 15,609
5 1,977 0,027 2,004 0,401 4,985 77,813
10 1,989 0,023 2,012 0,201 9,930 155,007
20 1,97§ 0,034 2,010 0,101 19,880 310,317
30 2,007 0,040 2,047 0,068 29,278 457,006
40 2,009 0,056 2,065 0,052 38,695 604,007

Table 2: Matrixes of 500x500

Tasks | User T | SystemT | Total Time | Task Time | Speadup | Mflops
1 15,889 0,054 15,943 15,943 1,000 15,665

5 15,885 0,061 15,946 3,189 4,999 78,311
10 15,881 0,070 15,951 1,595 9,995 156,573
20 16,019 0,075 16,094 0,805 19,812 310,364
30 16,006 0,082 16,088 0,536 29,729 465,713
40 16,108 0,100 16,208 0,405 39,345 616,350

Table 3: Matrixes of 1000x1000

Tasks | User T | System T | Tota Time | Task Time | Speedup | Mflops
1 162,420 0,256 162,676 162,676 1,000 12,288
5 166,869 0,325 167,194 33,439 4,865 59,781
10 163,464 0,274 163,740 16,374 9,935 122,084
200 168,993 0,338 169,331 8,467 19,214 236,106
300 165,542 0,306 165,848 5,528 29,426 361,595
40 166,494 0,390 166,884 4,172 38,991 479,135

Table4: Matrixes of 1500x1500

Tasks | User T | SystemT | Total Time | Task Time | Speedup | Mflops
1 661.273 0.646 661.919 661.919 1.000 10.194
5 694.430 1.077 695.507 139.101 4,759 48.510

10 683.000 1.019 684.019 68.402 9.677 98.649
20| 688.620) 1.259 689.879 34.494 19.189 195.621
30 687.938 1.312 689.250 22,975 28.810] 293.700
40 673.474 1.064 674.538| 16.863 39.252| 400.141

Table5: Matrixes of 2000x2000

Tasks | User T | System T | Tota Time | Task Time | Speedup | Mflops
1 1840,688 1,843 1842,531] 1842,531] 1,000 8,682
5 1917,263 2,552 1919,815 383,963 4,799 41,660
10 1871,282 2,133 1873,415 187,342 9,835 85,384

20| 1884,615 2,851 1887,466 94,373 19,524 169,497
30 1907,235 3,122 1910,357 63,679 28,935 251,199
40 1898,128 3,324 1901,452 47,5360 38,761 336,501

These results cannot be shown in a one single graphic since temporal scales are excessively
different. Therefore, they are shown in one graphic for each size of matrix. The corresponding
values to the tests with 5 tasks are not included in order to avoid distortion which, logically, will
introduce in the graphic.

250x250

2,500
— 2,000
o
o 1,500
)
§ 1,000
= 0,500
0,000
1 10 20 30 40
—e— Tasks 1,998 0,201 0,101 0,068 0,052
Figure 1: Executing Timesfor matrixes of 250x250
500x500
20,000
~—
R 15,000
)
n
~ 10,000
)
€
[5,000
0,000
1 10 20 30 40
—e— Tasks 15,943 1,595 0,805 0,536 0,405

Figure 2: Executing Timesfor matrixes of 500x500

1000x1000

200,000
~—

S 150,000
)
L

° 100,000
€

= 50,000

0,000

1 10 20 30 40
—o—Tasks| 162,676 16,374 8,467 5,528 4,172
Figure 3: Executing Timesfor matrixes of 1000x1000
1500x1500

800,000
~—

S 600,000
)
n

~ 400,000
)
€

= 200,000

0,000

1 10 20 30 40
—o—Tasks| 661,919 68,402 34,494 22,975 17,091

Figure4: Executing Timesfor matrixes of 1500x1500

2000x2000
2000,000
G 1500,000 \\
Q
2
>~ 1000,000
Q
£ \
= 500,000 \\g
0,000 = . —=
1 10 20 30 40
—e—Tasks | 1842,531 | 187,342 94,373 63,679 47,536

Figure5: Executing Timesfor matrixes of 2000x2000

The previous graphics show curves whose shapes are very similar between them. This shows that
the performance has approximately the same improvement for all the tests as the number of

processors used increases.

In order to observe more precisely the improvement of the performance, the following graphic
shows speed increasings of the parallel solutions with respect to the sequentia solution (speedup)

obtained in the different tests.

Speedups
45,000
40,000 o
35,000 o
/ :
30,000 -
25,000 ek
20,000
15,000 ot
10,000 s’
~
5,000 — v
0,000 il
1 10 20 30 40
—e— 250x250 1,000 9,930 19,880 29,278 38,695
— _m — 500500 1,000 9,995 19,812 29,729 39,345
1000x1000 | 1,000 9,935 19,214 29,426 38,991
1500x1500 | 1,000 9,677 19,189 28,810 38,729
_.x. 2000x2000| 1,000 9,835 19,524 28,935 38,761

Figure 6: Speedups obtained

According to the shape of the aurves which represent the different speedups, it is observed that this
islined and very close to the optimum. Thus, the improvement of the performanceis directly
proportional to the quantity of procesors used.

Thislineal, dmost optimum, speadup is achieved by smply dividing the processng o tasksin
order to take advantage of the avail ability of severd procesors. If tuning techniques of the
application are dso used in order to make the most of the posshbilities of the achitecture,
extraordinary improvements can be obtained.

In the previous tables a wlumn isincluded with the Mflops achieved in the processing. These
columnsare used in order to build up thefollowing table and in order to make the computing of the
average of Mflops achieved by atask, i.e., Mflops of a processor.

Table 6: Mflops
Average by Average by
Tasks|250x250[500x500[1000x1000j1500x1500[2000x2000[Total Mflops amount of tasks tasks
1] 15,609 15,665 12,288 10,194 8,682 62,439 12,488 12,488
5| 77,813 78,311 59,781 48,510 41,660 306,075 61,215 12,243
10|155,007|156,573] 122,084 98,649 85,384 617,697 123,539 12,354
20|310,317/310,364f 236,106 195,621] 169,497 1221,905 244,381 12,219
30|457,006/465,713| 361,595 293,700 251,199 1829,213 365,843 12,195
40[604,007|616,350] 479,135 394,814 336,501 2430,806 486,161 12,154
Average of
Mflops by tarea| 12,275

By using ATLAS[10], the maximum potential of the computation of an architedure in particular
can be practicdly obtained by means of automatic tuning which it provides. On a processor
R10000, it reaches ssme 306,2 Mflops for multiplication o matrixes of 500x500, thusit surpasses
that quantity on processrs R12000. Therefore, the performance obtained can be improved in 25
times.

5. Conclusons

The use of the programming language Adafor the development of parall el applications which
require alarge quantity of cdculation isfeasible and redistic.

Logicdly, the results obtained cannot be gplied to all types of algorithms, though they can be
applied to those which can take advantage of shared memory pardld architectures asin the case of
Clementinall.

The results obtained show that the use of parall elisms at the level of operation on matrixeswill be
realy beneficiary as regards performance of the face recognition system and of any other
application based on computations of the same nature.

6. Further Works

In function d the results obtained, a parall el solution o the face reagnition system using Ada will
be developed, and the improvement of its performance with respect to the same solution - in this
case sequential — will be verified.

On the other hand, it is known that by using the automatic tuning tool ATLAS, Mflops can be
achieved 25,5 times greder than the obtained. For this reason, in the face recognition system, once

the division of the resulting matrix is carried out, we will i nteract with language C in order to take
advantage of ATLAS utiliti es.

It isaso possbleto apply these experiences to the Real Time research line, in particular asto what
computer vision concerns.

7. Acknowledgements
The authors would like to thank the invauable mllaboration of MSc. Fernando Tinetti.

8. References

[1] AndersonE., Ba Z., Bischof C., Demme J., DongarraJ., DuCroz J., Greenbaum
A., Hammarling S., McKenney A., Sorensen D. “LAPACK: A Portable Linear
AlgebraLibrary for High-Performance Computers’. Proceedings of
Supercomputing ' 90, pages 1-10, |EEE Press, 1990.

[2] Bilmes J, Asanovic K., Chin C., Demmel J. “Optimizing matrix multiply using
phipac aportable, high-performance, ans ¢ coding methodology”. Proceedings
of the International Conference on Supercomputing, Vienna, Austria, ACM
SIGARC. July 1997

[3] ChoiJ. “A New Parallel Matrix Multi plication Algorithm on Distributed-
Memory Concurrent Computers’. Procealings of the High-Performance
Computing on the Information Superhighway, |IEEE, HPC-Asia 97. 1997.

[4] Choi J., Dongarrad., Walker D. “PUMMA: Parald Universal Matrix
Multiplication Algorithm on Distributed Memory Concurrent Computers, in
Concurrency: Practice and Experience’. 6:543-570. 1994.

[5] CorreaMartin, Chichizola Franco. “ Sistema de reconocimiento de rostros’.
Trabajo de grado. Faaultad de Informédtica. 2001.

[6] Dekel E., Nassmi D., Sahni S. “Parallel matrix and graph algorithms’. SIAM
Journal on Computing, 10:657-673. 1981.

[7] Golub G., Van Loan C. “Matrix Computation” Second Edition. The John
Hopkins University Press Baltimore, Maryland. 1989.

[8] JunZhang, YoungYan, and Martin Lades. “FaceReaognition: Eigenface, Elastic
Matching, and Neural Nets.” Proceedings of the IEEE vol. 85. No. 9, pp.1422-
1435, 1997.

[9] M. TurkandA. Pentland, “Face recognition usng eigenfaces’, in Procealings of
International Conferenceon Pattern Recognition , pp. 586-591,1991

[10] Whdey R., Dongarra J. “Automaticaly Tuned Linea Algebra Software’. PhD
Thesis. Dept. of Computer Sciences, Univ of TN, Knoxvill e. 1998.

[11] www.cab.cnea.gov.ar/difusion/Clementinall Nacion.html

[12] www.setcip.gov.ar

[13] www.sgi.com/origin/2000

[14] www.sgi.com/softwarelirix6.5

