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Abstract 
In the Laboratory of Research and Development on Computer Science of the National University of 
La Plata, a face recognition system has been developed. This article describes a series of testings 
based on parallel processing, with the objective of optimizing the said system response times 
developed in Ada programming language on SGI Origin 2000 parallel architecture known as 
Clementina  II. Then, the results obtained are analyzed 
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1. Introduction 
In the frame of the projects carried out by the Laboratory of Research and Development on 
Computer Sciences of the National University of La Plata, a face recognition system has been 
developed as dissertation [5]. 
Basically, the system uses a face image database and it draws certain characteristics from the each 
of them, in a process called training. 
The trained system is able to receive a face image and determine whether it corresponds to some of 
the faces which are found in the image database, and in such case, to which of them it corresponds. 
This process is known as recognition. 
Many applications which use this technology can be found. For example, in a security access 
system to physical or electronic places based on the face of whoever wants to enter. 
Furthermore, considering that the processing and recognition of f inger prints is expensive as regards 
time and computing resources, other example could be an application which, given the photo of a 
person, it finds a set as reduced as possible of candidates, in order to, just then, start the analysis on 
finger prints.  
However, most of the applications, if not all , need the best possible performance, and precisely if 
we taken into account the fact that they need an image database with a large quantity of faces. The 
quantity of the necessary calculation, both for training and recognition, increases proportionally to 
the quantity of faces of the database. 
It is clear that the parallelism of thick grain will benefit the application’s performance. For example, 
it is not diff icult to prove that in the training process, the eigenvectors computation of an parallel 
image set  requires  approximately the same time than the required for the same computation of a 
single image. 
Face recognition system is principally based on matrixes operations. In the testing, the 
determination of how beneficiary the parallelism could be at the level of these operations using Ada 
and Clementina II is looked for in order to estimate their effect on the improvement of the 
performance which would be  obtained by parallelizing the face recognition system. 
Being the multiplication of the matrixes an operation that could be considered as representative of 
BLAS level 3 [1], and having several researches been developed about it [2][3][4][6][7], this 
operation is used for the development of the tests. 
 
2.1. Training and Recognition Algorithms 
 
Face recognition application is based on the EigenFaces method [8][9], which basically consists of 
a training process and a recognition process. Both processes use a face database composed by a set 

MΓΓΓ ,...,, 21 of images of size NxN . 
Training consists of the following stages: 
 

1- Each image 

iΓ  with Mi ,..,2,1=  

is reorganized as a vector of size 2N , whose value is  formed as a concatenation of each of 
the lines of the images, thus forming a matrix xMN 2  

 

2- Ψ  average face is obtained according to the formula      
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3- Ψ  average face obtained is substracted from each of the images   iΓ  with i  between M..1  

thus obtaining  a new set of vectors 



Ψ−Γ=Φ ii  
which compose the matrix [ ]MΦΦΦ=Λ ,...,, 21  of xMN 2 . 
 

4-  A reduced covariance matrix is obtained. 
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 of MxM  size. 
5- L  autovectors are obtained; all of which, ordered in a descending fashion according to their 

corresponding autovalues, constitute matrix v . 
 
6- u  “eigenvectors” are computed as a lineal combination of Λ  columns and v  columns  
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7- A pattern is obtained 

[ ]M
T
i ωωω ,...,, 21=Ω  con Mi ,...,2,1=  

where 
( )Ψ−Γ= i

T
kk uω  con Mk ,...,2,1=  

 
Given a face image, the recognition process tries to find in the image database that one which 
corresponds to the given face, for which its Ω  pattern is computed using the same procedure 
preciously described, and the minimum distance is looked for. 

( )2
min iΩ−Ω

 with  Mi ,...,2,1=  
Once the minimum distance is found, if the same is within the limits stipulated by the error 
percentage admitted which is received as a parameter, the system shows which the corresponding 
image is. On the contrary, it shows the non-existence of the correspondence. 
 
2.2. Architecture Description 
 
The experiments carried out were carried out in the supercomputer known as Clementina II 
[11][12][13]. 
Clementina II is a Cray Origin 2000 system manufactured by the firm SGI (new name for Silicon 
Graphics). It has forty processors MIPS RISC R12000 of 300 MHz., with a secondary cache  of 4 
MB, a principal memory of 10 GB shared by all the processors, 360 GB of disk storing. 
The operative system of this supercomputer is Irix 6.5 [14], which was developed by Silicon 
Graphics. Irix is compatible (compliant) with UNIX System V Release 4 and with standards of The 
Open Group, including UNIX 95, Year 2000 and POSIX.  
Irix has a support for symmetric multiprocessing (SMP) scalable up to 128 processors and support 
for 32 and 64 bits. 
 
3. Testings Carried Out 
 
The testings were carried out by using matrixes multiplication, since this operation is the most 
representative of BLAS level 3. 
Square matrixes of MxM  with 2000,1500,1000,500,250=M were used.  



The multiplication is divided in several tasks. Each of these is in charge of carrying out the 
corresponding computations to a part of the resulting matrix. The division of the resulting matrix is 
carried out by rows, according to the following scheme: 
Let it M be the size of the matrix and T be the quantity of tasks used, the resulting matrix is divided  

in T  groups of T
M  l ines each one. The task iT  is in charge of computing the corresponding values 

to the line group iT  with Ti ,...,2,1= . 

The tests were carried out by using T  with 40,30,20,10,5,1=T . 
Whit the objective of using the division of the most convenient resulting matrix in relation to the 
influence this could have on the utilit y of the cache memory, the way in which Ada language 
internally represents the matrixes was identified. Ada compiler for the architecture used represents 
the matrixes per files. The same criterion was then used in order to divide the resulting matrix in as 
many  portions as tasks.  
The work conditions were those of normal use, i.e., without having exclusive access to the 
architecture. These conditions make the quantity of processors used to be dependant on the work 
charge which each of them has at the time of the execution of the matrix multiplication process, and 
in the particular case of Clementina II , this charge is commonly high. 
The operating system allows to obtain the total time of effective process execution. This time is 
equal to the sum of the time periods in which each of the tasks composing the process occupy a 
processor. 
On the other hand, the creation time of tasks and of operating and resulting matrixes is not 
significant in relation to the processing time, as well as the influence of the use of the cache 
memory. 
Consequently, if there existed a free access to the whole architecture of Clementina II , the total time 
of the processing would approximately be equal to the executing time of only one of the talks which 
the process uses. 
This is the criterion used in order to compute the performance with exclusive access, in function of 
the performance in normal work conditions. 
 
4. Results obtained 
”Raw” results obtained are showed in the following tables. Each table shows in detail (for each one 
of the different quantities of tasks used): the user time and the system time which the execution of 
the process took; the total time as the sum of the two previous ones; the time of each task; the time 
increasing (speedup) of the parallel solutions in respect to the sequential and the achieved Mflops. 
All time measures are expressed in seconds. 
 

Table 1: Matrixes of 250x250 

Tasks User T System T Total Time Task Time Speedup Mflops 
1 1,973 0,025 1,998 1,998 1,000 15,609 
5 1,977 0,027 2,004 0,401 4,985 77,813 

10 1,989 0,023 2,012 0,201 9,930 155,007 

20 1,976 0,034 2,010 0,101 19,880 310,317 
30 2,007 0,040 2,047 0,068 29,278 457,006 
40 2,009 0,056 2,065 0,052 38,695 604,007 

 

Table 2: Matrixes of 500x500 

Tasks User T System T Total Time Task Time Speedup Mflops 
1 15,889 0,054 15,943 15,943 1,000 15,665 



5 15,885 0,061 15,946 3,189 4,999 78,311 
10 15,881 0,070 15,951 1,595 9,995 156,573 

20 16,019 0,075 16,094 0,805 19,812 310,364 
30 16,006 0,082 16,088 0,536 29,729 465,713 
40 16,108 0,100 16,208 0,405 39,345 616,350 

 

Table 3: Matrixes of 1000x1000 

Tasks User T System T Total Time Task Time Speedup Mflops 
1 162,420 0,256 162,676 162,676 1,000 12,288 

5 166,869 0,325 167,194 33,439 4,865 59,781 
10 163,464 0,276 163,740 16,374 9,935 122,084 

20 168,993 0,338 169,331 8,467 19,214 236,106 
30 165,542 0,306 165,848 5,528 29,426 361,595 
40 166,494 0,390 166,884 4,172 38,991 479,135 

 

Table 4: Matrixes of 1500x1500 

Tasks User T System T Total Time Task Time Speedup Mflops 

1 661.273 0.646 661.919 661.919 1.000 10.194 

5 694.430 1.077 695.507 139.101 4.759 48.510 

10 683.000 1.019 684.019 68.402 9.677 98.649 

20 688.620 1.259 689.879 34.494 19.189 195.621 
30 687.938 1.312 689.250 22.975 28.810 293.700 

40 673.474 1.064 674.538 16.863 39.252 400.141 

 

Table 5: Matrixes of 2000x2000 

Tasks User T System T Total Time Task Time Speedup Mflops 
1 1840,688 1,843 1842,531 1842,531 1,000 8,682 

5 1917,263 2,552 1919,815 383,963 4,799 41,660 
10 1871,282 2,133 1873,415 187,342 9,835 85,384 

20 1884,615 2,851 1887,466 94,373 19,524 169,497 
30 1907,235 3,122 1910,357 63,679 28,935 251,199 
40 1898,128 3,324 1901,452 47,536 38,761 336,501 

 
These results cannot be shown in a one single graphic since temporal scales are excessively 
different. Therefore, they are shown in one graphic for each size of matrix. The corresponding 
values to the tests with 5 tasks are not included in order to avoid distortion which, logically, will 
introduce in the graphic. 
 



250x250

0,000

0,500

1,000

1,500

2,000

2,500

T
im

e 
(s

ec
.)

Tasks 1,998 0,201 0,101 0,068 0,052

1 10 20 30 40

 
Figure 1: Executing Times for matrixes of 250x250 
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Figure 2: Executing Times for matrixes of 500x500 
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Figure 3: Executing Times for matrixes of 1000x1000 

 

1500x1500

0,000

200,000

400,000

600,000

800,000

T
im

e 
(s

ec
.)

Tasks 661,919 68,402 34,494 22,975 17,091

1 10 20 30 40

 
Figure 4: Executing Times for matrixes of 1500x1500 
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Figure 5: Executing Times for matrixes of 2000x2000 

 
The previous graphics show curves whose shapes are very similar between them. This shows that 
the performance has approximately the same improvement for all the tests as the number of 
processors used increases. 
In order to observe more precisely the improvement of the performance, the following graphic 
shows speed increasings of the parallel solutions with respect to the sequential solution (speedup) 
obtained in the different tests. 
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Figure 6: Speedups obtained 



 
According to the shape of the curves which represent the different speedups, it is observed that this 
is lineal and very close to the optimum. Thus, the improvement of the performance is directly 
proportional to the quantity of processors used. 
This lineal, almost optimum, speedup is achieved by simply dividing the processing of tasks in 
order to take advantage of the availabili ty of several processors. If tuning techniques of the 
application are also used in order to make the most of the possibil ities of the architecture, 
extraordinary improvements can be obtained. 
In the previous tables a column is included with the Mflops achieved in the processing. These 
columns are used in order to build up the following table and in order to make the computing of the 
average of Mflops achieved by a task, i.e., Mflops of a processor. 
 

Table 6: Mflops 

Tasks 250x250 500x500 1000x1000 1500x1500 2000x2000 Total Mflops Average by 
amount of tasks 

Average by 
tasks 

1 15,609 15,665 12,288 10,194 8,682 62,439 12,488 12,488 
5 77,813 78,311 59,781 48,510 41,660 306,075 61,215 12,243 

10 155,007 156,573 122,084 98,649 85,384 617,697 123,539 12,354 
20 310,317 310,364 236,106 195,621 169,497 1221,905 244,381 12,219 
30 457,006 465,713 361,595 293,700 251,199 1829,213 365,843 12,195 
40 604,007 616,350 479,135 394,814 336,501 2430,806 486,161 12,154 

         

       
Average of 

Mflops by tarea 12,275 
 
By using  ATLAS [10], the maximum potential of the computation of an architecture in particular 
can be practically obtained by means of automatic tuning which it provides. On a processor 
R10000, it reaches some 306,2 Mflops for multiplication of matrixes of 500x500, thus it surpasses 
that quantity on processors R12000. Therefore, the performance obtained can be improved in 25 
times. 
 
5. Conclusions 
The use of the programming language Ada for the development of parallel applications which 
require a large quantity of calculation is feasible and realistic.  
Logically, the results obtained cannot be applied to all types of algorithms, though they can be 
applied to those which can take advantage of shared memory parallel architectures as in the case of 
Clementina II . 
The results obtained show that the use of parallelisms at the level of operation on matrixes will be 
really beneficiary as regards performance of the face recognition system and of any other 
application based on computations of the same nature.  
 
6. Further Works 
In function of the results obtained, a parallel solution of the face recognition system using Ada wil l 
be developed, and the improvement of its performance with respect to the same solution - in this 
case sequential – wil l be verified. 
On the other hand, it is known that by using the automatic tuning tool ATLAS, Mflops can be 
achieved 25,5 times greater than the obtained. For this reason, in the face recognition system, once 



the division of the resulting matrix is carried out, we will i nteract with language C in order to take 
advantage of ATLAS utiliti es. 
It is also possible to apply these experiences to the Real Time research line, in particular as to what 
computer vision concerns. 
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