View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by El Servicio de Difusion de la Creacion Intelectual

A Fast Retrieval Method for Local or Distributed Data

Rafael O. Fontao, Member |EEE (*)

Abstract—in this paper, we propose an improvement to an gpproach to data retrieval
which is performed in only one access to a bucket hash table or file. The ideabehind it, isto
let the system assign one digit to the record key <0 that the hashed new record key is
"forced " to fdl in abucket according to some practica criteria. From auser point of view
this forced hash procedure could be thought of as a“user-system cooperating code
assgnment”, since the user isfree to code an object to be retrieved but the system may
append sadigit to that code. For one access retrieva purposes, the new code key-digit is
used to find its address. However, should the digit is not known, the retrieva process will
find the key in its surrounding, provided it exigts. In this gpproach it is unnecessary a bucket
overflow area of any kind, since this method alows a high load factor for practical use. In
the event of the hash table is nearly full, a smple procedure could be ran to extend the table
gze ether by keeping the origind digit or assgning new ones.

For digtributed data sets this methodology shows an gppeding performancein red life and
amulation results.

Index terms: Disributed data searchi ng, Hashing, one accessretrieva, system
cooperating code assgnment, key management.

(*) Departamento de Ingenieria Eléctrica, Universdad Naciond del Sur,Bahia Blanca -
ARGENTINA
e-mail: fontao@ieee.org

https://core.ac.uk/display/301043736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I ntroduction

Searching in data bases is dways aworthy subject of research. Fast retrieva of records
with agiven key is essentid to any data processing. Even thought the speed and store
capacity of individua computers are increasing every day, searching on locdl or distributed
data base on a network, as the Web, still poses aproblem [3],[5].

Among the searching methods, the hashing techniques are well known and gpplied
everywhere. The technique proposed here is an improvement to an existing method [2] and
may deserve such qudifications. The underlining idea came from the use of achecking
digit attached to some type of unique key (for examplein Socia Security, Payroll Persona
Number, Unique Identifying Key for Tax Purposes, even the University Student ID.)

The checking digit was inherited from the batch processing era when data were typed
more than once for vaidation purposes. However, in on line data processing, where as
soon asthe key istyped the user can visudly check for the correct entry, the checking digit
aready implemented in existing information systems could be used for other purposes.

For instance, it can be used to provide additiona information to “ force” agiven key to fall
down in abucket (or bucket file) , so that bucket overflow will only occur when the
available space isamog full. This dlowsto give the buckets a Size aslarge as a disk sector,
so theretrieva of arecord key will take only one disk access. For distributed data among
severd files, the bucket itsdlf isafile, and the one access characteridic is made onit.

Simulation results show that this technique may dlow aload factor grater than 0.93 in the
worst cases. Henceforth we do not need to reserve large hash table space asin the
standard hash bucket technique to prevent the overflow [3].

Therefore we may implement insertion, deletion and searching of arecord without taking
caeof theoverflow problem, thereafter in maintenance period, keep control of the load
factor, and eventudly rehash the table.

The Standard Bucket Hash Methodology .

Let ushave aset of a most N data records with a unique identifying key field named
RecordK ey of length L Recor dK ey. The problem of searching arecord asfast as
possble given its Recor dK ey vaue, isin the core of dl information systems. One of the
gpproaches to deal with this problem isto use hashing techniques. Hash functions map the
set of datarecordsinto aset of integers{ 1,2,3,...., MaxHashTable } which are the
entriesin a Hash Table that contains information where the data record is physicaly located.
Perfect hash functions map any two different RecordK ey’s into different values.

Additiondly a perfect hash function is caled minimal when every entry isjus filled only
once (i.e. MaxHashTable =N). Unfortunatdly, such functions are hard to find for
dynamic data sets (if possible at dl), so the practica hash function we can recur to, will
digtribute as evenly as possible the data record key among the entries{ 1,2, ,....,
MaxHashTable}.

Eventudly, there may be two or more Recor d K ey which will map to the same entry, giving
riseto the collision problem.

Bucket hashisamong the most useful solutions proposed in the literature. In this technique
each entry at the hash table islarge enough to hold a set of record keys with the same hash
vaue. The sze of the bucket isadesign parameter. When abucket isfull (bucket overflow
) thistechnique will take additiond consderations to ded with this problem [4],[8].

A bucket hash table could be of the type formed by BucketCapacity records, whichin
turn, are formed by two fidds:

1) Recor dK ey as gring of length L Recor dK ey which sores the key identifying the
record, and

2) Pointer as numeric variable to point the record in the file where the data containing the
RecordK ey islocated

The Figure 1.0 shows how a given datarecord is hashed into a bucket which (if exists)
points to the data record.

DATA FILE
Bucket
Hash Table 1
SET OF DATA 1
N
-2|Data Record
| KeyI
MaxHashTablg
N

Local data Figure 1.0

If the data file were digtributed on a set of files either loca or on a network then the figure
1.0 would look asfigure 1.1

Bucket Hash Tablefiles

BUCKET 1 DATAFILE 1
I
Set of Data
BUCKET 2
DATAFILE 2
e
BUCKET DATAFILE
MaxHashTable MaxHashTable
D

Digtributed Data Fig. 1.1

For local data sets the parameter BucketCapacity will depend on disk or massve sorage
device sector length and L Recor dK ey. For ingtanceif L Recor dK ey is 12 bytes, the length
to store apointer takes 4 bytes, then a bucket record of BucketL enght=512 byteswill be
enough to hold BucketCapacity =32 entries ((12+4)*32 = 512) at the bucket hash table.

However for distributed data sets, the BucketCapacity will depend on each node (1 to
MaxHashTable) storage capacity.

In elther case the maximum bucket record M axHashT able will depend of the sze of the
Data Set, the BucketCapacity, N and the load factor. (also named in the literature as the
hash table density) by the following rdation:

N

MaxHashTable>=
BucketCapacity * L oadFactor

Let hash(Key) be a hash function which maps the set of record keysinto the set
{123,...... ,MaxHashTable}.

In the search and insertion procedure the standard bucket hash technique tries to search for
agiven record key in the hash(key) bucket. If it isfound, then the data record is retrieved
from the data file given by the pointer. Otherwise the key isinserted in afree entry a the
bucket or eventually in an overflow bucket located in an overflow area, usudly at the end of
the table.

While this slandard technique is useful for load factor of lessthan 0.50 (% 50 full), the
management of the overflow problem is very time consuming.

Moreover, searching for arecord key located in the overflow area may take severd access
operations at the bucket table. For heavy aload factor, say more than 0.80 the deletion
processis quite complex [7].

The forced digit modification [2]

Now assume that in the insertion process we not only search for afree placein the
hash(key) bucket, but dso in itsneighborhood, hash(key)+1, hash(key)+2, ,
hash(key)+9. At this point two approaches can be taken to assign aforced digit:

First fit: choosethefirst non empty bucket
Best fit: choose the emptiest bucket.

Ineither caseif hash(key) + ForcedDigit > MaxHashT able then the bucket
entry may take dl the way around and assign bucket:

hash(key) + ForcedDigit - MaxHashTable.

Furthermore, within a bucket the keys could be stored in order so that thereis aways a
quick sorted reference of the Datarecords (likein merge-sort schema).

The For cedDigit isreturned to the user and attached to the key for future reference as
amilar asthe checking digit was assgned to every key in achecking digit sysem.

This technique of forced digits may be thought as a user -cooper ating-sear ch schema
since, for faster access, the user hasto provide the key and additiona information by means
of agngle digit. The user provides the key and the system attaches a digit to form a new key
(Key plusforced digit).

No claim is made that this schemais for generd purpose gpplications. The keys may exist in
contexts where the user has no control over them. For instance, in medicine product names,
it should be impossible to assgn adigit for every name. However, if the user concern iswith
the designing of the keys asin stock code items or persond ID numbers, attaching a digit
may be taken as part of the coding process.

In searching for agiven key, if ForcedDigit is known then the key retrieva takes only one
disk access into the bucket hash(key)+For cedDigit. If the key isnot there no further
search isrequired; the key is not in the file. Overflow buckets will not be used.

However, should the user forget the forced digit, it may be found by searching into a most
10 (eventudly consecutive) buckets, hash(key), hash(key)+1,............. , hash(key)+9.
On digtributed data sets the idea of consecutive does not necessarily means geographic

proximity.

The fact of usng adecimd digit isameatter of human factor. Everybody is aware of the
effort to remember some extra digit assgned if it help the systems performance. However, a
few people will be glad to remember alarge number of digits or characters for the same
purpose.

Simulation Resultsfor alocal Data Set

The following table summarizes asmulation results assgning by Best Fit for vauesof N
from 5000 to 50000 and bucket length of 2,4,8,16 and 32. An entry shows the load density
reached at the first overflow (when 10 consecutive buckets are full). For each entry the

result is the average of three different runs.

Bucket Capacity

N 2 4 8 16 32

5000 0.4556 0.7386 0.8750 0.9390 0.9702
10000 0.4942 0.7020 0.8369 0.9276 0.9702
15000 0.5339 0.7451 0.8609 0.9122 0.9561
20000 0.5678 0.6991 0.7839 0.9135 0.9323
25000 0.5236 0.7218 0.8194 0.9060 0.9592
30000 0.5149 0.6700 0.8340 0.9293 0.9509
35000 0.5595 0.6484 0.7938 0.8833 0.9470
40000 0.4943 0.6657 0.8420 0.8762 0.9433
45000 0.4932 0.7065 0.8246 0.8965 0.9464
50000 0.4682 0.7275 0.8181 0.9054 0.9351

From a practica standpoint this approach may start with aload factor about 0.80 and then
dlow the datafile to grow on its own dynamic of insertion and/or deletion.

However, for aload factor maintenance (say below 90%) from time to timeit can beran
an utility to expand, shrink or eventually to rehash the bucket hash table to keep the load
factor under control. 1n case of rehashing, to expand the table, the forced digits aready
assigned must be preserved.

On the digtributed data arena, each node (or archive) may have different storage capacity.
However, this fact maybe taken into account to assign forced digits to keep the nodes as
balanced as possible.

Besdes[2], other approaches to one-access somehow related to this paper can be found in
the literature [1],[6],[7].

Future extensions

Instead of aforced digit it may be possible to attach afor ced char acter, or some alowed
st of characters For instance, by alowing digits plus upper case |etters we may extend the
consecutive buckets from 10 to 36.

The smulation results for Bucket Capacity = 32 and 36 character alowed, the load factor
for N=50000 was 0.9716 and for N=6000 was 0.9950. (only 30 keys out of 6000 did not
fit).

Ancther research direction in the loca data arena may be the following: while inserting a new
key when an overflow is detected (i.e. 10 consecutive buckets are full) choose akey insde
one of these consecutive buckets and rehash it by assigning another ForcedDigit in order to
make room for the new key. This characteristic is gppeding whenever the user can delay
the release of the key codes until dl keys are inserted.

Another extension could bein user/password identification. In syssems where an unique 1D
Is necessary, a digit may be attached the user/password to speed up the retrieva operation.
In this case the user should have to remember one additiond digit to his’her password.

Conclusion

A novel gpproach to one access retrieva has been presented. This method may not be
goplied everywhere. We just claim that the gpproach has been highly useful in designing
medium sze information systems. It is Smple to program and shows arobust behavior.

Acknowledgment
The author whishes to thank Prof. Claudio Ddrieux and Guillermo Kaocai, from

Departamento de Ingenieria Eléctrica, Universdad Naciona del Sur, Bahia Blanca,
Argentina, for acritical reading of the manuscript.

Appendix
Some of the principa routinesin pseudo (Pascd like) code are given:

Searching for agiven K ey (its ForcedDigit may not be given)

if ForcedDigit exist then

Begin
Remark: ONLY ONE DISK ACCESS
If Key isinthe Hash(Key)+ForcedDigit bucket then
Key isfound
Else
Key isNOT found,
End
Else
Begin
Remark: the ForcedDigit does not exist (isnot given)
I thereis a ForcedDigit (0 to 9) such that Key isin the
Hash(Key)+ForcedDigit bucket then
Key isfound
Else
Key isNOT found,

End;
If Key isfound then
Return the Data Recor d pointed by Pointer

Else
Return KEY NOT FOUND;

Insart anew Key

If Key isNOT FOUND then
Begin
Remark: Insertion by Best Fit
Choose ForcedDigit (0 to 9) so that the bucket Hash(key)+ForcedDigit
isthe emptiest. Then look for afree record in the Data File Pointer,
fill the entry a the Bucket with K ey and this Pointer and return
the For cedDigit.
End
Else

Return KEY EXIST;

Delete aKey

If Key isfound then
Begin
Mark as empty the corresponding entry at the Bucket
End;

Refer ences

[1] Cesaxrini, F., Soda G. A Dynamic hash method with sgnature. ACM Trans.
on Database Systems, Vol 16, 2 (1991).

[2] Fontao, R. O. Forced Hash: A smple One Accessretrieval Method. ICIEY 2K,
UBA (April 2000).

[3] Hilford, V. & d EH* - Extendible Hashing in a Distributed Environment
COMPSAC ' 97 — 21% International Computer Software and Applications
Conference (1997).

[4] Knuth, The Art of Computer Programming. Vol I11. “Sorting and Searching”
Addison “Wedey, Reading, Mass (1973)

[5] Kun-Lung, W. and Yu, P. Load Bdancing and Hot Spot Relief for Hash Routing
among a Collection of Proxy Caches. Proc. |IEEE International Conf, on
Digtributed Computing Systems. (1998).

[6] Larson, P. Kgla, A. File Organization: Implementation of a Method Guaranteeing
Retrieval in One-Access. Communications of the ACM 27(7) July (1984).

[7] Larson, P. Linear hashing with separators- a dynamic hashing scheme achieving
one-access. ACM TDS Vol 13, 3,(1988)

[8] Martin, J. Computer Data-Base Organization.
Prentice-Hall, (1977)

iKe) — |
A > P0|_nter to data
register
M
Objetive: Find afunction
H:SET OF DATAKEY > {1..M}
such that it scattersthe SET OF DATA KEY into apseudo random address 1..M
Figurel. THE HASHING APPROACH
H(Key1)
—1 » Pointer
H(Key2)
O
SET OF DATA KEY

HASH TABLE

IF Keyl not equal Key2 AND h(key1)=h(key2) then Collision hash

Figure2. THE COLLISION PROBLEM

Bucket capacity

f—

Figure 3. The Bucket Hash Approach
1
H(key)
M
SET OF DATA KEY
Bucket Overflow

Ovearflow Area

Pointer

complicated.

When the buckets become nearly full, its necessary an Overflow Area, but...Insertion and deletions are

Figure4. THE FORCED HASH APPROACH

H(Key)

\
H(Key)}‘

H(Key)+1
H(Key)+2

H(Key)+9

SET OF DATA KEY

For each Key associate a digit (forced digit) to form anew

Key-Digit key so to find in only one table access then data record pointer.

Figure5: HOW TO ASSIGN FORCED DIGITS ‘

H(Key)

FIRST FIT in

Bucket

BEST FIT in
Bucket

e

—

Best Baanced

012345678
9

© 60N O 01 A WODN P+, O

BUCKET HASH

|o2]

.C=Bucket

Capacity

[

o
©

o
[

1
2

g

Load Capacit
o
[6)]

A LA,

L U

AL

A

N A n AA

—
/<
>

<

' W VU”\]N\’\/\N\M/

A
v/\
VW

A

AWALNY)

AN

MAALAN

=
'S
il
i
;

<
r
7
]

AN
V

B.C=32

B.C=16

Load Capacit

Load Capacit!

FORCED HASH - BEST FIT

B.C=Bucket Capacity

/\/\/v\f\/\/v\/-_/—\/\/\/v\w B.C=32
/\vl-\ - A, B.C=16

0,9 \Vam mmn— v ~

Hi
;

AR

VZAAVA
ooty NN TWAAN A AN ANAASRNBCS
| \/ PMVAA AANAANIA AN A Nalp coa

0,7 \/\/\ v v/ Y /Y U\/ vvv‘\/V\/
AW

0,6 \/\/\/
LA M N rd NAN oo

05 Y 1% <NV

0,4

03

02

0,1

0

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N (Hash Table Capacity)

Figure 6

FORCED HASH - FIRST FIT

B.C=Bucket Capacity

i
5

Y " \/\/\/\/\/\/'\/'V'\/‘v\/\/\ B.C=32

R

0.8 A NN J g :/\/\\/\/\VJ\M/\ VNS YOG RN s
or Pt m\/\/\/\\/\f\/‘/\'\/\’\’\/\f/\ \A/\/\N\/\V »/\”V Aec=s
0,6 /\\/ \\MI\—-J\’\V/\V/V\/\/\/\V/*/\ AN~ A At \/Av/\v NB.c=a
05 /\/\V/\’\/\ AAUA A .
0. V v \/vv WWMPM/\W

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
N (Hash Table Capacity)

Figure 7

Load Capacit)

Load Capacit!

FORCED HASH - BALANCED FORCED DIGIT

B.C=Bucket Capacity

1
0.9 ‘\A\Kt\\/ VW2V AND SNV MV A A B C=32
0.8 41—\ \T/:/?/W/\/\/\WMN\NV\/"\PM\/\J\/\ B.C=16
TN T VY A]
s E s
\/\/__, B.C=4

. \/\W v Ar\/\/v\r’\v /\/WJ\VIV\A
05 /\/\/-\/\/\/\'\ ,\/\/\ /\'/—/\ A/\ /N _ \.,\M A A B.C=2
i ' \Wj J VAR AV ~ VVV

0,4

0,3

0,2

0,1

° 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N (Hash Table Capacity)
Figure 8

FORCED HASH - COMBINED (BALANCED FORCED DIGIT & BEST FIT)

B.C=Bucket Capacity

1
7 A O R
mw AvAmwxmxﬁw
07 \/\ ’\VI\AV \/A\A\/A\/\/\M\/\/\/\[\/_/\/\ _

N Ty Ay
WL M AA) WXMWA DT =

N (Hash Table Capacity)

Fgure 9

