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Abstract

In this paper we deal with the problem of forecasting local rainfall at multiple
meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian
network is introduced for relating rainfall to broad-scale atmospheric circulation pat-
terns. In this way statistical historic information gathered at the available stations
is combined with numerical atmospheric predictions developed at different weather
services, resulting a single consensus prediction. This technique can be considered
an hybrid statistical-numerical method for precipitation downscaling (predicting lo-
cal values based on broad-scale grided predictions), and can be easily adapted to
other meteorological variables of interest.
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1 Introduction

Nowadays, the problem of weather forecasting is solved with the help of numerical At-

mospheric Circulation Models (ACMs), which are daily integrated by different weather

services on coarse-grained resolution grids, covering wide geographical areas. The spatial

resolution of these models is currently constrained by both computational and physical

considerations to scales of approximately 50 to 100 Km. However, meteorological phe-

nomena such as rainfall, vary on much more local scales. With the aim of gaining sub-grid

detail in the prediction of regional areas of interest, several methods have been proposed in

the literature; these techniques are referred to as downscaling methods. Several downscal-

ing procedures apply different standard statistical techniques to model the relationship

between gridded atmospheric patterns and local climate variables (e.g., rainfall) at multi-

ple local meteorological stations (regression analysis [1], hidden Markov models [2], etc.).

However these techniques assume different statistical independence relationships that may

neglect important information among the variables in the model.

In this paper we illustrate how Bayesian networks (BNs) and dynamical Bayesian net-

works (DBNs) offer a sound and practical methodology for building probabilistic models

from data with. In BNs, relationships among the variables are represented by a graph,

which also gives a simple factorized form of the probability distribution of the variables

[3]. Similarly, DBNs use dynamical graphical graph structures to model time dependence

in an intuitive way. First, we shall use BNs to capture the spatial dependence among

rainfall in different meteorological stations over the Iberian peninsula. Then, we shall

analyze different dynamic networks for representing temporal relationships among the

rainfall BN and the atmospheric patterns given by an ACM.

In Section 2 we analyze the problems associated with statistical rainfall forecasting

methods. In Sec. 3 we introduce BNs and analyze both the construction and usage steps.

Section 4 describes how to incorporate information from atmospheric circulation models,

and analyze different DBNs for this task. Finally, some conclusions and further remarks

are given in Sec. 5.

2 Statistical Methods for Forecasting Rainfall

Suppose we are given a database of atmospheric circulation patterns 1xt (integrated by

an atmospheric ACM) and the simultaneous historical precipitation records, 1y
k
t , at a

local station of interest k (hereafter 1xt stands for the vector (y1, . . . , yt); analogously, the

super-index denotes a particular grid point, or a particular meteorological station). In this

paper we shall use the daily atmospheric patterns given by the ECMWF reanalysis project

ERA-15 covering the period from 1979 to 1993 [4]. Each pattern is given by the daily

Temperature (T), relative Humidity (H), Geopotential (Z) and U, V wind components at

six pressure levels (from 300 to 1000 mb). The geographical area of interest in this work

is the Iberian Peninsula. Therefore, we restrict the reanalysis to the local grid covering

the area of interest shown in Fig. 1(a).
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Figure 1: (a) High resolution limited area grid with 1.0◦ (aprox. 80 Km) for both latitude
and longitude. (b) Primary network of 112 climatic stations of the INM.

In regarding the local climate records database, we shall use rainfall values from the

primary network of 112 climatic stations from the the Spanish National Weather Service

−Instituto Nacional de Meteoroloǵıa, INM− (see Figure 1(b)).

Given this information, a standard statistical procedure for obtaining local predictions

is fitting the linear model yk
T = axT + b + ε using paired samples (xn, y

k
n), n = 1, . . . , t of

data. This allows adapting a gridded prediction of present weather to the local climate

in an straightforward way (see, e.g. [5]). Other authors suggests more general nonlinear

models using modern nonparametric techniques (feedforward neural networks [6], etc.).

The main shortcoming of these methods is that they assume spatial independence of

precipitation records at different stations. However, in practise, there is a strong spatial

correlation among different stations and, therefore, the above models neglect an important

information which may spoil their practical results.



This problem could be solved by considering a multiple regression model yk
T = azT+b+ε,

where zT = (xT, y1
T , . . . , y112

T ). However, such a model is useless due to larger number of

variables involved which involves the joint probability distribution (JPD) of a large set of

variables P (xT, y1
T , . . . , y112

T ).

An alternative and efficient solution for this problem is determining the strongest

dependencies among the variables y1, . . . , y112, obtaining a simpler joint probability dis-

tribution. This task can be easily accomplished using Bayesian networks, which provide

a graphical framework for analyzing dependencies when dealing with uncertainty.

3 Bayesian Networks

The basic idea of Bayesian networks (BNs) is to reproduce the most important dependen-

cies and independencies among a set of variables in a graphical form (a directed acyclic

graph) which is easy to understand and interpret. Let us consider the subset of climatic

stations shown in the graph in Fig. 2, where the variables (rainfall) are represented pic-

torially by a set of nodes; one node for each variable (for clarity of exposition, the set of

nodes is denoted {x1, . . . , xn}). These nodes are connected by arrows, which represent

a cause and effect relationship. That is, if there is an arrow from node xi to node xj,

we say that xi is the cause of xj, or equivalently, xj is the effect of xi. Another popular

terminology of this is to say that xi is a parent of xj or xj is a child of xi. For example,

in Figure 2, the node Valladolidis a parent of Leon and a child of Burgos and Segovia (the

set of parents of a node xi is denoted by πi).

Figure 2: Directed graph associated with 31 main stations over the Iberian peninsula (the
nodes are displayed maintaining their spatial geographical disposition).



Directed graphs provide a simple definition of independence (d-separation) based on the

existence or not of certain paths between the variables in the graph (see [3] for a de-

tailed introduction to probabilistic network models). BNs are probabilistic models con-

sisting of a directed acyclic graph, and a JPD of the set of variables with the depen-

dency/independency structure displayed by the graph. This is facilitated by a well known

result in probability theory which states that any JPD of the variables can be expressed

as a product of several conditional distributions as follows:

Pr(x1, x2, . . . , xn) =
n∏

i=1

P (xi|xi+1, . . . , xn). (1)

This result has at least two implications:

1. The JPD is determined by the product of smaller distributions.

2. The JPD can be represented graphically. Variables are represented by nodes and for

each of the conditional distributions P (xj|xj+1, xj+2, . . . , xn), a link is drawn from

each of the variables xj+1, xj+2, . . . , xn to variable xj.

The JPD factorized according a BN is given by the simpler factorization

Pr(x1, x2, . . . , xn) =
n∏

i=1

P (xi|πi), (2)

since some of the variables are independent in the graph and, therefore, some of the

conditional probabilities in (1) can be simplified.

A BN is defined as a directed acyclic graph, together with a factorization of the JPD

of the variables given by (2). For instance, the JPD of a BN defined by the graph given

in Fig. 2 requires the specification of 31 conditional probabilities, one for each variable

conditioned to its parents’ set. Fig. 3 shows some of these probability tables, considering

rainfall discretized into four different states (0=“no rain”, 1=“weak rain”, 2=“moderate

rain”, 3=“heavy rain”), associated with the thresholds 0, 1, 10, and 50 l/m2, respectively.

Figure 3: Conditional probability tables P (Santiago), P (Madrid), P (Almeria),
P (Leon|V alladolid), and P (Segovia|Madrid) corresponding to the BN given by the
graph in Fig. 2.



3.1 Learning Bayesian Networks from Data

In addition to the graph structure, a BN requires that we specify the conditional prob-

ability of each node given its parents. However, in many practical problems, we do not

know neither the complete topology of the graph, nor some of the required probabilities.

For this reason, several methods haven recently introduced for learning the graphical

structure and estimating probabilities from data (we do not discuss this issue here, see

[3, 7] for a review). For instance, Fig. 4 shows a database of precipitation records, start-

ing at 1/1/1985. Note that the database includes some missing values (aprox. 15%)

corresponding to mistakes and lost information while elaborating the information.

Figure 4: Database of precipitation records covering a period of five years (1985-1990).
Symbol “NA” denotes missing values.

The graph in Fig. 2 and the corresponding probabilities (as those given in Fig. 3)

were obtained using the learning algorithm for partial data (missing values) described in

[8]. This algorithm consists of a three phase mechanism. The three phases are: drafting,

thickening and thinning. In the first phase, this algorithm computes the mutual infor-

mation of each pair of nodes as a measure of closeness and creates a draft based on this

information. In the second phase, the algorithm adds links when the pairs of nodes can-

not be d-separated. In the third phase, each link of the current graph is examined using

independence tests and are removed if the two nodes of the edge can be d-separated (this

results in a sparse graph). Once the graph is known, the required probabilities can be

estimated from data using the EM algorithm. The resulting probabilistic model keeps all

the dependency structures embedded into the data, up to a threshold value given by the

user for the mutual information; below this value, no link will be added between couples

of nodes. For instance, the graph in Fig. 2 only includes the strongest couples when

applying the algorithm.

From this graph we can see how strong links (strong dependencies) are established between



geographically close stations (we can even distinguish different basins from this figure). If

the same algorithm is applied with half threshold value, the graph in Fig. 5 is obtained.

We shall use this last graph in the following sections.

Figure 5: Directed graph obtained with a low mutual information threshold value.

3.2 Inference

Once a model describing the relationships among the set of variables has been selected,

it can then be used to answer queries when evidence becomes available. Before any infor-

mation is known about the rainfall at the different stations, there is an initial or a priori

marginal probability for precipitation at each station k, P (xi = k), k = 0, 1, 2, 3. These

initial probabilities can be efficiently calculated taking advantage of the independence

relationships encoded in the graph (see [3] for a detailed description of inference methods

in BNs). For instance, Table 1 shows the initial probabilities of some nodes. From this

table we can see the different rain regimes on the geographical area of study. The most

rainy station is Santiago with almost half probability of rain. On the other hand, Malaga

has less than 10% probability of rain.

Now, as soon as we receive some information e, the above probabilities P (xi) may

change as a result of this new evidence or knowledge. The way by which the new prob-

abilities P (xi|e) are calculated is called uncertainty or evidence propagation. There are

several methods for uncertainty propagation in the literature. Some of these methods are

exact and others are approximate (see [3] for details). For instance, Table 2 shows how

different pieces of evidence produce changes of different conditional probabilities (those

associated with nodes which are dependent on the evidence variables). The effect of the



Stations (initial probability P (xi))
State Coruña Santiago Santander Bilbao Madrid Valladolid Barcelona Málaga

0 0.579 0.550 0.584 0.587 0.808 0.788 0.842 0.901
1 0.209 0.189 0.240 0.218 0.131 0.152 0.050 0.061
2 0.174 0.172 0.150 0.161 0.057 0.056 0.041 0.028
3 0.038 0.089 0.027 0.034 0.004 0.004 0.021 0.010

Table 1: Initial marginal probability distributions of some variables of the BN in Fig. 5.

evidence on the probabilities of other diseases and symptoms can be seen by comparing

the probabilities in Table 2 to the corresponding initial probabilities in Table 1.

Stations (P (xi|Coruna = 3))
State Coruña Santiago Santander Bilbao Madrid Valladolid Barcelona Málaga

0 0.000 0.001 0.519 0.587 0.808 0.788 0.842 0.901
1 0.000 0.047 0.265 0.218 0.131 0.152 0.050 0.061
2 0.000 0.254 0.174 0.161 0.057 0.056 0.041 0.028
3 1.000 0.699 0.042 0.034 0.004 0.004 0.021 0.010

Stations (P (xi|Malaga = 3))
State Coruña Santiago Santander Bilbao Madrid Valladolid Barcelona Málaga

0 0.579 0.550 0.584 0.587 0.808 0.788 0.771 0.000
1 0.209 0.189 0.240 0.218 0.131 0.152 0.109 0.000
2 0.174 0.172 0.150 0.161 0.057 0.056 0.077 0.000
3 0.038 0.089 0.027 0.034 0.004 0.004 0.043 1.000

Table 2: Conditional probability distributions given the evidences Coruna = 3 and
Malaga = 3 of some variables of the BN in Fig. 5. Conditional probabilities differ-
ent from the initial ones are underlined. Evidence has been boldfaced.

In order to complete the above BN, besides of the historical precipitation records, yk
t ,

we can also consider the simultaneous series of states of the atmosphere xt, provided by

an ACM. In this way, the probability distribution over the 31 stations factorized according

to the graph will also depend on a new variable AS (Atmospheric State):

P (y1, . . . , y31, AS) = P (y1, . . . , y31|AS)P (AS) =
31∏

i=1

P (yi|πi, AS)P (AS). (3)

Therefore, the resulting directed graph contains a new directed link from variable AS to all

other variables in the network, as shown in Fig. 6. The state variable can be discretized by

performing a clustering algorithm (e.g., the k-means algorithm) to the ERA-15 database,

associating a specific state to each of the clusters resulting from this process.
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Figure 6: Adding a state variable to the model shown in Fig. 5. (a) Schematic model.
(b) Complete model (only the North basin is displayed in the figure).

4 Dynamic Bayesian Networks for Rainfall Forecast

Fig. 7 shows a dynamic Bayesian network (DBN) which represents the evolution over

time of variables y and x; only three time slices are shown, since we shall only consider

first order interactions between the variables at different times. In this case we have two

different types of links. Contemporary relationships are established between variables in

the same time slice; we assume that all the contemporary relationships are given by a

directed acyclic graph which is invariant over time (we consider the graph described in

Fig. 6). On the other hand, since the value of xt will be always available from an ACM,

we only consider non-contemporary relationships between each rainfall variable yk
t and

the same variable at the next time step yk
t+1. The graph given in Fig. 7 represents these

relationships.
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Figure 7: Sketch of a DBN considering only the variables at time t − 1, t, and t + 1.



Therefore, from the above graphical structure we have:

P (yk
t |1yt−1,1 xt−1) = P (yk

t |yk
t−1, π

k
t , xt) (4)

Taking into account that for every instant t, that some values from yt−1 and xt are

available as evidence at time t, rainfall forecasting will be obtained by computing the

probabilities (4) according to the graph, conditioned on the observed evidence in each

case. We started performing some experiments to check the efficiency of this method for

operative forecasting; the results will be soon published elsewhere.

5 Conclusions and Future Work

We have introduced dynamical probabilistic networks and show their applicability for

local weather forecasting and downscaling. The preliminary results presented in this

paper only illustrate how such models can be built and how they can use for performing

inference (obtaining conditional probabilities of nodes given some evidence). Further

analysis is still needed for determining the practical operative efficiency of these models;

first experiments are being promising. The models presented in this paper can be also very

useful to perform sensitivity analysis of the conditional probabilities of nodes, depending

on the parameters of the model (initial marginal or conditional probabilities of different

stations or atmospheric patterns). This could be done by generalizing the result found in

Bayesian networks for conditional means and variances of the nodes given the evidence

[9].
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