
Consequence Operators for Defeasible Argumentation:

characterization and logical properties?

Carlos Iv¶an Ches~nevar, cic@cs.uns.edu.ar
Guillermo Ricardo Simari, grs@cs.uns.edu.ar

Departamento de Ciencias de la Computaci¶on { Universidad Nacional del Sur
Av.Alem 1253 { B8000CPB Bah¶³a Blanca { Rep¶ublica Argentina

Tel/Fax: (+54) (291) 459 5135/5136 { Email: fcic,grsg@cs.uns.edu.ar

Abstract. Arti¯cial Intelligence (AI) has long dealt with the issue of ¯nding a suitable formalization
for commonsense reasoning. Defeasible argumentation has proven to be a successful approach in many
respects, proving to be a con°uence point for many alternative logical frameworks. Di®erent formalisms
have been developed, most of them sharing the common notions of argument and warrant.
In defeasible argumentation, an argument is a tentative (defeasible) proof for reaching a conclusion.
An argument is warranted when it ultimately prevails over other con°icting arguments. In this context,
defeasible consequence relationships for modeling argument and warrant as well as their logical properties
have gained particular attention.
This paper discusses two consequence operators for the LDSar framework for defeasible argumentation.
The operators are intended for modeling argument construction and dialectical analysis (warrant), re-
spectively. Their associated logical properties are studied and contrasted with SLD-based Horn logic. We
contend that this analysis provides useful comparison criteria that can be extended and applied to other
argumentation frameworks.

Key words: defeasible argumentation; knowledge representation; non-monotonic inference;
labeled deduction.

1 Introduction and motivations

Arti¯cial Intelligence (AI) has long dealt with the issue of ¯nding a suitable formalization
for commonsense reasoning. Defeasible argumentation has proven to be a successful approach
in many respects, proving to be a con°uence point for many alternative logical frameworks.
Di®erent formalisms have been developed, most of them sharing the common notions of ar-
gument and warrant. In defeasible argumentation, an argument is a tentative (defeasible)
proof for reaching a conclusion. An argument is warranted when it ultimately prevails over
other con°icting arguments. In this context, defeasible consequence relationships for modeling
argument and warrant as well as their logical properties have gained particular attention.

The study of logical properties of defeasible argumentation motivated the development
of LDSar [Che01], an argumentation formalism based on the labeled deduction methodol-
ogy [Gab96]. In labeled deduction, the usual notion of formula is replaced by the notion of
labeled formula, expressed as Label :f, where Label represents a label associated with the w®
f. A labeling language LLabel and knowledge-representation language Lkr can be combined
to provide an enriched object language, in which labels convey additional information also
encoded at object-language level.

This paper introduces two consequence operators Carg and Cwar , used for argument con-
struction and warrant computation, respectively. These operators were de¯ned within the
? The paper summarizes some of the main results of the ¯rst author's PhD Thesis [Che01] written under the direction

of Guillermo Simari. An electronic version of the Thesis is available at http:nncs.uns.edu.arn »cic

LDSar framework [Che01]. Logical properties that characterize the behavior of these opera-
tors are discussed and contrasted with those present in a logic programming setting.

The paper is structured as follows: ¯rst, in section 2 we present an overview of the ba-
sic notions concerning consequence operators, non-monotonic inference and their properties.
Section 3 introduces the de¯nitions of the operators C arg and Cwar , based on the inference
relationships provided by LDSar to build arguments (defeasible proofs) and compute warrant
by performing a dialectical analysis.1 In sections 4 and 5 di®erent logical properties of these
operators are presented and analyzed. Section 6 concludes and summarizes the role of these
properties in the context of the proposed formalism, discussing also some related work.

2 Non-monotonic Inference Relationships: fundamentals2

In classical logic, inference rules allow us to determine whether a given w® ° follows via \`"
from a set ¡ of w®s. In classical logic the \`" relationship is a consequence relationship (sat-
isfying idempotence, cut and monotonicity). As non-monotonic and defeasible logics evolved
into a valid alternative to formalize commonsense reasoning, a similar concept was needed to
capture consequence without demanding some of these requirements (e:g: monotonicity). This
led to the de¯nition of a more generic notion of inference, namely inference relationships. New
properties were de¯ned and gained interest in this setting. In this section we will introduce the
de¯nition of (non-monotonic) inference relationship, as well the de¯nitions some distinguished
properties that characterize them.

2.1 Inference relationship. Pure logical properties

De¯nition 2.1 (Inference relationship j» . Inference operator C(¡)). Let ¡ be a set
of w®s in a language L and let ° be a w® in ¡ . We will write ¡ j» ° if ° is a (non-monotonic)
consequence of ¡ . We de¯ne C(¡) = f° j ¡ j» °g.

Given an inference relationship \j» " and a set ¡ of sentences, the following are called
basic (or pure) properties associated with any inference operator C(¡):

1. Inclusion: ¡ µ C(¡)
2. Idempotence: C(¡) µ C(C(¡))
3. Cut: ¡ µ © µ C(¡) implies C(©) µ C(¡)
4. Cautious monotonicity: ¡ µ © µ C(¡) implies C(¡) µ C(©).
5. Cummulativity: ¡ µ © µ C(¡) implies C(¡) = C(©).
6. Monotonicity: ¡ µ © implies C(¡) µ C(©)

The intuitive meaning of inclusion and idempotence should be clear without further com-
ments. The cut rule states that expanding the information in ¡ by adding new propositions
from C(¡) does not result in new conclusions being obtained. Cautious monotonicity consti-
tutes somehow the `inverse' of cut : adding new lemmas does not decrease inference power, i:e:
the set of conclusions that can be obtained from a given theory. Combining cut and cautious
monotonicity we get cummulativity, which states that intermediate proofs (lemmas) can be

1 In order to make the paper self-contained, an appendix is included with the main de¯nitions that characterize
argument construction and warrant in the LDSar framework.

2 This section is based on the excellent overview on consequence and inference relationships given in [Ant96].

used as part of other (more complex) proofs without a®ecting the soundness of their conclu-
sions.

These properties are called pure, since they can be applied to any language L, and are
abstractly de¯ned for an arbitrary inference relationship \j» ". Nevertheless, other properties
which link classical inference with an arbitrary inference relationship can be stated. These
properties will be discussed next. In what follows we will assume that Th stands for an op-
erator that characterizes classical inference, whereas C corresponds to some (non-monotonic)
inference relationship \j» ".

2.2 Horn and non-Horn logical properties

A common name for cataloging non-pure properties is the distinction between Horn properties
and non-Horn properties. Horn properties have the form \from the presence of some particular
inferences, the presence of some other inferences can be assured". Non-Horn properties, on the
other hand, have the form \from the absence of some particular inferences, the absence of some
other inferences can be assured". Next we summarize the most important non-pure properties:3

Horn properties

1. Supraclassicality: Th(A) µ C(A)
2. Left logical equivalence: T h(A) = Th(B) implies C(A) = C(B)
3. Right weakening: If x ¾ y 2 T h(A) and x 2 C(A) then y 2 C(A).4

4. Conjunction of conclusions: If x 2 C(A) and y 2 C(A) then x ^ y 2 C(A).
5. Subclassical cummulativity: If A µ B µ T h(A) then C(A) = C(B).
6. Left absorption: Th(C(¡)) = C(¡).
7. Right absorption: C(Th(¡)) = C(¡).

Non-Horn properties

1. Rationality of negation: if Aj» z then either A [fxgj» z or A [f:xgj» z.
2. Disjunctive rationality: if A [fx _ ygj» z then A [fxgj» z or A [fygj» z.
3. Rational monotonicity: if Aj» z then either A [fxgj» z or Aj» :x.

3 Capturing argument construction and warrant in LDSar

LDSar provides a uni¯ed logical framework based on labeled deduction for modeling defeasible
argumentation. In defeasible argumentation, an argument is a tentative (defeasible) proof for
reaching a conclusion. An argument is warranted when it ultimately prevails over other con-
°icting arguments. In what follows, we will consider these concepts in the context of the LDSar
framework. The reader is referred to the appendix A, where basic concepts and de¯nitions of
LDSar are summarized in order to make this paper self-contained.5

When de¯ning consequence operators in LDSar, there is an important di®erence to take
into account: LDSar is based on an extension of logic programming, where literals can be
3 An in-depth discussion of these properties can be found in [Ant96].
4 It should be noted that \¾" stands for material implication, to be distinguished from the symbol \ Ã " used in a

logic programming setting.
5 A complete description can be found in [Che01], Chapter 3.

preceded by strong negation, and some pieces of information can be distinguished (labeled) as
`defeasible'. Clearly the notion of theorem in a logic programming setting is more restricted
than the one used in classical logic. This leads us to consider a specialized consequence operator
for Horn-like logics. Formally:

De¯nition 3.1 (Consequence Operator Thsld (¡)). Given an argumentative theory ¡ , we
de¯ne Th

sld
(¡) = f[;; fnig]:h j ¡ j»Arg [;; fnig]:hg

According to de¯nition 3.1, `classical' consequences from an argumentative theory ¡ will
be arguments (defeasible proofs) whose support set is empty (i:e:, they do not rely on any
defeasible information). We want to compare this notion of derivation with respect to infer-
ence relationships j»

Arg
and j»T . We will de¯ne two specialized consequence operators for those

arguments that can be derived from ¡

De¯nition 3.2 (Consequence operators C arg(¡) and Cwar(¡)). Given an argumentative
theory ¡, we will de¯ne two consequence operators Carg(¡) and Cwar(¡) as follows:

Carg (¡) = fA:® j ¡ j»
Arg
A:® and ® is a literal in L

KR
g

Cwar(¡) = f[;; fnig]:h j ¡j»T hUg

Operators C arg(¡) and Cwar(¡) can be associated with the process of argument construc-
tion and warrant computation, respectively. In what follows we will analyze the di®erent logical
properties discussed in section 2 in the context of LDSar.

4 Logical properties of C
arg

Inclusion does not hold in general for Carg, since not every piece of defeasible information can
be used as part of an argument. However, it does hold for (non-defeasible) facts. Therefore we
refer to it as restricted inclusion.

Proposition 4.1 (Restricted inclusion). The operator Carg (¡) only satis¯es inclusion wrt
the non-defeasible information present in ¡ .

Proof. Let ¡ be an argumentative theory, and let [;; fnig]:® be a non-defeasible formula in
¡ . Clearly, from rule Intro-NR we can derive [;; f®g]:ni from ¡ , i:e: ¡ j»

Arg
[;; fnig]:®. Then if

[;; fnig]:® 2 ¡ then [;; fnig]:® 2 C arg(¡).

The logical properties of idempotence and monotonicity do not hold. Formally:

Proposition 4.2 (Idempotence). The operator Carg (¡) does not satisfy idempotence, i:e:
Carg(¡) 6µ Carg (Carg (¡))

Proof. A counterexample su±ces. Consider ¡=f [;; fn1g]:q , [fp Ã qg; fd1g]:p Ã q g.
Then Carg(¡) =fA1:q, A2:q g, with A1 = ; and A2=fp Ã q g resp. If we consider
C arg (Carg(¡)), it follows that A1:q 2 C arg(C arg (¡)) but A2:p 62 C arg(Carg (¡)), since j»

Arg

does not allow to introduce empty arguments.

Proposition 4.3 (Monotonicity). The operator Carg (¡) does not satisfy monotonicity.

Proof. A counterexample su±ces. Consider the argumentative theory ¡ = f [;; fn1g]:q
, [fp Ã qg; fd1g]:p Ã q g. Clearly ¡ j»

Arg
A:p, with A = fp Ã qg. But ¡ 0 =

¡ [f[;; fn1g]:»pg is such that ¡ 6 j»
Arg
A:p.

Semi-monotonicity is an interesting property suggested by D.Makinson [MS91] for analyz-
ing non-monotonic consequence relationships. It is satis¯ed if all defeasible consequences from
a given theory are preserved when the theory is augmented with new defeasible information.
Next we show that semi-monotonicity holds for j»

Arg
.

Proposition 4.4 (Semi-monotonicity). The operator Carg(¡) satisfy semi-monotonicity,
i:e: Carg(¡) µ Carg(¡ [¡ 0), where ¡ 0 is a theory involving only defeasible information.

Proof. Proof is direct from the structure of the inference rules. Assume ¡ j»
Arg
A:®, and consider

¡ [¡ 0 as stated above. Clearly, the sequence of steps in the proof ¡ [¡ 0j»
Arg
A:® is still

valid, since all preconditions in inference rules are de¯ned wrt ¦(¡) = ¦(¡ [¡ 0). Hence
¡ [¡ 0j»

Arg
A:®.

Cummulativity holds for argument construction. The importance of this property will be
discussed later in section 6.

Lemma 4.5 (Cummulativity). 6 Let ¡ be an argumentative theory, and let ®1 and ®2 be
w®s in ProgClauses(LKR). Then ¡ j»

Arg
A1:®1 implies that

¡ [fA1:®1g j»ArgA2:®2 i® ¡ j»
Arg
A2:®2

Proposition 4.6 (Horn supraclassicality). The operator Carg (¡) satis¯es Horn supraclas-
sicality wrt Thsld , i:e: Thsld(¡) µ Carg (¡).

Proof. Proof is direct from the de¯nition 3.1. Every member in Th
sld

(¡) is an empty argument,
and as such it is a member in C arg (¡). Therefore Thsld(¡) µ C arg (¡).

Proposition 4.7 (Left-logical equivalence). The operator Carg(¡) does not satisfy left-
logical equivalence (i:e:, given two theories ¡ and ¡ 0, if Th

sld
(¡) = Th

sld
(¡ 0) this does not

imply that Carg (¡) = Carg (¡
0).

Proof. A counterexample su±ces. Consider the theories ¡1 = f [;; fn1g]:p ,
[fq Ã pg; fd1g]:q Ã p g and ¡2 = f [;; fn3g]:p g. Clearly, Thsld (¡1) = Thsld (¡2).
However, Carg (¡1) 6= C arg(¡2), since there is an argument for q in ¡1 but not in ¡2.

Note that the property of right weakening cannot be considered (in a strict sense) in
LDSar, since the deductive system associated with Thsld does not allow the application of the
deduction theorem. Therefore, w®s of the form \x Ã y" cannot be derived via `sld . However,
an alternative approach can be intended, introducing a new property in which right weakening
is restricted to Horn-like clauses:

Proposition 4.8 (Horn Right Weakening). The operator Carg (¡) satis¯es Horn right
weakening, i:e: if A:y 2 Carg(¡) and [;; fnig]:x Ã y 2 Thsld(¡), then A0:x 2 Carg(¡).

6 Proof not included for space reasons.

Proof. Suppose A:y 2 C arg(¡). Clearly, ¦ (¡) [fx Ã yg 6 `sld ? (otherwise it would not
have been possible to infer A:y). Then applying rule Elim-Ã it holds that A:x can be derived
from ¡ , or equivalently A:x 2 Carg(¡).

Proposition 4.9 (Conjunction of conclusions). 7 The operator Carg (¡) does not satisfy
conjunction of conclusions, i:e: if x 2 Carg (¡) and y 2 Carg(¡), then it does not hold that
x ^ y 2 Carg (¡).

Proof. A counterexample su±ces. Consider the following theory ¡ = f
[fp Ã qg; fd1g]:p Ã q , [fr Ã zg; fd2g]:r Ã z , [;; fn1g]:q , [;; fn2g]:z ,
[;; fn3g]:w , [;; fn4g]:»w Ã p; r g. Then there exists an argument A1:p with A1=f
p Ã q g, and an argument A2:r with A2=f r Ã z g. However, the formula A3:p; r
cannot be derived (nor any other with conclusion p; r) since ¦ (¡) [fp; rg`sld ?.

Proposition 4.10 (Subclassical cummulativity). The operator Carg(¡) satis¯es subclas-
sical cummulativity, i:e: ¡ µ ¡ 0 µ Thsld (¡) implies Carg (¡) = Carg (¡

0)

Proof. If ¡ is an argumentative theory, then Thsld(¡) involves only facts (i:e: literals that can
be derived via Sld from ¦(¡)). By assumption ¡ µ Thsld(¡). Then ¡ involves only facts.
But if ¡ involves only facts, then every w® in ¡ follows trivially via Sld from ¦(¡). Therefore
¡ = Thsld(¡), and by assumption it holds that ¡ 0 = ¡ . Then it holds that C arg (¡) = Carg(¡

0),
as we wanted to proof.

Proposition 4.11 (Left absorption). The operator Carg (¡) does not satisfy left absorption,
i:e: Th

sld
(Carg(¡)) 6= Carg (¡).

Proof. Th
sld

(Carg (¡)) involves only empty arguments that can be derived from C arg (¡): But
there can exists non-empty arguments in C arg (¡): Therefore Thsld(C arg(¡)) 6= C arg (¡).

Proposition 4.12 (Right absorption). The operator Carg (¡) does not satisfy right absorp-
tion, i:e: Carg(Thsld (¡)) 6= Carg (¡).

Proof. As shown in proposition 4.7, when computing Thsld(¡) all defeasible information that
might appear in ¡ is lost. However, this information could appear in arguments in C arg (¡).
Then it holds that C arg (Thsld(¡)) = C arg(¡).

Proposition 4.13 (Rational negation). The operator C(¡) does not satisfy rational nega-
tion.

Proof. A counterexample su±ces. Consider the following theory ¡=f [;; fn1g]:»p Ãx ,
[;; fn2g]:»p Ã»x , [;; fn3g]:r , [fz Ãpg; fd1g]:z Ãp , [fp Ãrg; fd2g]:p Ãr g. Then
¡ j»

Arg
A:z, with A = fz Ãp, p Ãr g. However, ¡ [fxg6 j»

Arg
A:z, and ¡ [f»xg6 j»

Arg
A:z (since

in both cases the use of d2 is not valid because of consistency constraints).

Proposition 4.14 (Rational Monotonicity). The operator C(¡) does not satisfy rational
monotonicity.

Proof. Consider example 4, where ¡ j»
Arg
A:z, with A = fz Ãp, p Ãr g. If we consider now

¡ [fxg it holds that ¡ [fxg6 j»
Arg
A:z, and ¡ 6 j»

Arg
»x. Therefore rational monotonicity is

not satis¯ed.

Clearly, the operator Carg does not satisfy disjunctive rationality either, since disjunctions
cannot be expressed as formulas in LKR .
7 Conjunction of conclusions in an argument is not possible in a strict sense (since conclusions are restricted to literals).

However, we consider the general case as it is allowed by the inference rules in j»
Arg

.

5 Logical properties of C
war

Next we will analyze some relevant logical properties of Cwar .

Proposition 5.1 (Restricted inclusion). The operator Cwar (¡) only satis¯es inclusion wrt
(non-defeasible) facts in ¡ .

Proof. Let ¡ be an argumentative theory, and let [;; fnig]:p be a non-defeasible fact in ¡ .
Clearly, from rule Intro-NR it follows that ¡ j»

Arg
[;; fnig]:p. The formula [;; fnig]:p provides

an argument for p that has no defeaters. Therefore p is a warranted literal, or equivalently
p 2 Cwar(¡).

Proposition 5.2 (Idempotence). The operator Cwar (¡) satis¯es idempotence, i:e:
Cwar (¡) µ Cwar(Cwar(¡))

Proof. If we consider Cwar(¡) as a set of non-defeasible facts, it is clear that all they are
warranted wrt Cwar(¡). Therefore Cwar(¡)= Cwar (Cwar(¡)), and in particular, Cwar(¡) µ
Cwar(Cwar (¡)).

Proposition 5.3 (Monotonicity). The operator Cwar(¡) does not satisfy monotonicity.

Proof. A counterexample su±ces. Consider the example given in proposition 4.3. In that case,
¡ j»T pU hence p is warranted. However, in ¡ [f[;; fn1g]:qg there is no argument with conclusion
p (and consequently p is not warranted).

In contrast with j»
Arg

, semi-monotonicity does not hold for j»T . The reason is the following:
adding new defeasible information cannot invalidate existing arguments, but it can enable
building new arguments that were not derivable before. Hence, dialectical relationships among
arguments are di®erent. Arguments that were warranted may therefore no longer keep that
status. Formally:

Proposition 5.4 (Semi-monotonicity). The operator Cwar(¡) does not satisfy semi-
monotonicity, i:e: Cwar(¡) 6µ Cwar(¡ [¡ 0), where ¡ 0 is an argumentative theory which involves
only defeasible information.

Proof. Consider the following counterexample. Given the theory ¡ = f [;; fn1g]:q ,
[fp Ã r g; fd1g]:p Ã r , [fr Ã qg; fd1g]:r Ã q g, it is clear that p 2 Cwar(¡), since
there exists an argument A:p with A=fp Ã r , r Ã q g, such that A:p has no defeaters
(and hence p is warranted).

Consider now ¡ 0=¡ [f[f»p Ã qg; fd2g]:»p Ã qg. In this case, an argument B:»p could
be obtained, with B=f»p Ã q g, such that B:»p defeats A:p. Therefore p 62 Cwar(¡

0).

Proposition 5.5 (Cummulativity). The relationship j»T does not satisfy cummulativity.

Proof. Consider the theory ¡ = f [;; fn1g]:»s Ã q , [;; fn2g]:p , [fq Ã pg; fd1g]:q Ã p
, [fs Ã pg; fd2g]:s Ã p , [f»q Ã sg; fd3g]:»q Ã s g. Consider the arguments A:q
with A=f q Ã p g, and B:»q with B=f »q Ã s , s Ã p g, based on ¡. Note that ¡ j»

T
sU,

i:e: s is a warranted literal in ¡ . Consider now ¡ 0 = ¡ [f[;; fn3g]:sg. Note that ¡ 0j»T »qU
(i:e:, »q is warranted). But ¡ 6 j»T »qU (since A:q defeats B:»q).

Proposition 5.6 (Horn Supraclassicality). The operator Cwar(¡) satis¯es Horn supra-
classicality wrt Th

sld
, i:e: Th

sld
(¡) µ Cwar(¡).

Proof. All literals in Thsld (¡) have arguments with no defeaters. Therefore they are warranted,
and hence they are members of Cwar (¡).

Proposition 5.7 (Left-logical equivalence). The operator Cwar(¡) does not satisfy left-
logical equivalence, i:e: given two theories ¡ and ¡ 0, such that Thsld (¡) = Thsld(¡

0) then it
does not follow that Cwar (¡) = Cwar(¡

0).

Proof. Consider the counterexample given in proposition 5.7.

Note that right weakening cannot be considered wrt j»T , since there is no way of warranting
formulas of the form \x Ã y". However, as in the case of j»

Arg
, an alternative version can be

provided.

Proposition 5.8 (Horn Right Weakening). The operator Cwar (¡) satis¯es Horn right
weakening, i:e: if [;; fnig]:y 2 Cwar (¡) and it holds that [;; fnjg]:x Ã y 2 Thsld(¡), then
[;; fnkg]:x 2 Cwar(¡).

Proof. Assume that [;; fnkg]:x 62 Cwar(¡). Assume there is an argument A:y, such that y is
warranted. In particular, the empty set is A is also an argument for x, i:e: A:x via Elim-Ã.
Argument A:x and argument A:y have the same set of associated defeaters. Therefore, if
A:y is warranted, then so is A:x. Hence [;; fnkg]:x 2 Cwar(¡) (contradiction).

Proposition 5.9 (Conjunction of conclusions). The operator Cwar(¡) does not satisfy
conjunction of conclusions, i:e: if x 2 Cwar(¡) and y 2 Cwar(¡), then it does not hold x^ y 2
Cwar (¡).

Proof. Consider the counterexample shown in proposition 4.9.

Proposition 5.10 (Subclassical Cummulativity). The operator Cwar(¡) satis¯es sub-
classical cummulativity, i:e: ¡ µ ¡ 0 µ Thsld(¡) implies Cwar(¡) = Cwar (¡

0)

Proof. We can reason as in proposition 4.10. Given a theory ¡, clearly Thsld(¡) will involve
only facts (i:e: literals derivable via Sld from ¦(¡)). By assumption, ¡ µ Thsld(¡). Then
¡ is formed only by facts. But if this is the case, then it follows that every formula in ¡ is
trivially provable via Sld from ¦ (¡). Therefore ¡ = Th

sld
(¡), and by assumption it follows

that ¡ 0 = ¡ . Hence Cwar(¡) = Cwar (¡
0).

The Cwar operator satis¯es left absorption, but not right absorption. This follows from the
epistemic status assigned to warranted literals: if they are incorporated as new facts into a
given theory, clearly they will be also derivable via Sld. The converse is not true, since not
every warranted literal is derivable via Sld.

Proposition 5.11 (Left absorption). The Cwar(¡) operator satis¯es left absorption, i:e:
Thsld (Cwar(¡)) = Cwar(¡).

Proof. (=)): Suppose h is warranted, and consequently [;; fnig]:h 2 Cwar(¡). Clearly
¡ j»

Arg
[;; fnig]:h, and in particular from def. 3.1, it follows that [;; fnig]:h 2 Thsld (Cwar(¡)).

((=): Suppose [;; fnig]:h 2 Thsld (Cwar(¡)). Then from def. 3.1 there exists an empty argument
;:h. Therefore h is warranted, or equivalently [;; fnig]:h 2 Cwar(¡).

Property j»
Arg

j»T C Comments

Inclusion yes yes P Restricted to non-defeasible information. Propositions 4.1 and 5.1.
Idempotence no yes P Propositions 4.2 and 5.2.
Cummulativity yes no P Lemma 4.5 and proposition 5.5.

Monotonicity no no P Propositions 4.3 and 5.3.
Horn Supraclassicality yes yes H Supraclassicality restricted to Horn-like formulas (Prop. 4.6 and 5.6)
Left-logical equivalence no no H Prop. 4.7 and 5.7
Horn Right Weakening yes yes H Weakening restricted to Horn-like formulas (Propositions 4.8 and 5.8)
Conjunction of conclusions no no H Propositions 4.9 and 5.9.
Subclassical cummulativity yes yes H Propositions 4.10 and 5.10.
Left absorption no yes H Propositions 4.11 and 5.11.

Right absorption no no H Propositions 4.12 and 5.12.
Rational Negation no no NH Propositions 4.13 and 5.13.
Disjunctive Rationality no no NH Not considered due to object language constraints.
Rational monotonicity no no NH Propositions 4.14 and 5.14.

Note: Column C denotes the kind of property (P=pure; H=Horn; N=non-Horn)

Fig. 1. Logical properties in LDSar: summary

Proposition 5.12 (Right absorption). The Cwar(¡) operator does not satisfy right absorp-
tion, i:e: Cwar(Thsld (¡)) 6= Cwar(¡).

Proof. A counterexample su±ces. Consider the theory ¡ = f [fp Ã qg; fd1g]:p Ã q ,
[;; fn1g]:q g. Clearly p and q are warranted literals. In particular [;; fnig]:p 2 Cwar(¡).
Note that Th

sld
(¡)=f [;; fn1g]:q g, and consequently Cwar (Th

sld
(¡)) = Th

sld
(¡): But

[;; fnig]:p 62 Cwar(Thsld (¡)).

Proposition 5.13 (Rational negation). The Cwar(¡) operator does not satisfy rational
negation.

Proof. Consider example 4. In this case there is only one argument for z, namely ¡ j»
Arg
A:z,

and such an argument has no defeaters. Consequently z is warranted wrt ¡ .
However, ¡ [f[;; fnig]:xg6 j»ArgA:z, and ¡ [f[;; fnig]:»xg6 j»ArgA:z (since in both cases the

use of d2 is not allowed by consistency constraints). Therefore z is not warranted in either of
these cases.

Proposition 5.14 (Rational monotonicity). The Cwar (¡) operator does not satisfy ratio-
nal monotonicity.

Proof. Consider again example 4, where ¡j»
Arg
A:z, with A = fz Ãp, p Ãr g. If we consider

now ¡ [fxg it holds that ¡ [fxg6 j»
Arg
A:z, and ¡ 6 j»

Arg
»x. Therefore rational monotonicity

does not hold.

Finally, note that the Cwar operator does not satisfy disjunctive rationality. The reasons
are the same as those discussed for the C arg operator.

6 Conclusions. Related work

Research in logical properties for defeasible argumentation was started by G.Vreeswijk [Vre93]
and H.Prakken [PV99]. In particular, the work of S.Sardi~na [SS98] focused on logical properties

of the original Simari-Loui framework [SL92] and of defeasible logic programming [Gar00]. This
research is partly motivated by these results.

As we have shown in this paper, LDSar provides a useful framework for analyzing di®erent
logical properties of defeasible argumentation, providing a better understanding of how argu-
ment construction and warrant behave. Figure 1 provides a summary of the logical properties
discussed before.

When formalizing argument construction (operator Carg), restricted inclusion ensures that
non-defeasible facts can be ontologically understood as empty arguments. Cummulativity al-
lows to keep any argument obtained from a theory ¡ as an `intermediate proof' (lemma) to be
used in building more complex arguments. Horn supraclassicality indicates that every conclu-
sion that follows via Sld can be considered as a special form of argument (namely, an empty
argument), whereas Horn right weakening tells us that strong rules in LDSar preserve the
intuitive semantics of a Horn rule(the existence of a strong rule [;; fnig]:y Ã x makes every
argument A for x be also an argument for y) Finally, subclassical cummulativity indicates
that two argumentative theories ¡ and ¡ 0 whose information is a subset of those literals that
can be derived via Sld from ¡ (or ¡ 0) are equivalent when considering the arguments that
can be obtained from them.

Computing warrant, on the other hand, can also be better understood in the light of some
logical properties of Cwar . Restricted inclusion ensures that any non-defeasible fact in a theory
¡ can be considered as warranted. Idempotence indicates that successive applications of Cwar

on a the set S of warranted literals returns exactly the same set. From Horn supraclassicality it
follows that every conclusion obtained via Sld is a particular case of warranted literal, whereas
Horn right weakening indicates that non-defeasible rules behave as such in the meta-level (a
strong rule [;; fnig]:y Ã x ensures that every warrant A for a literal x is also a warrant for
y). From subclassical cummulativity it follows that two theories ¡ and ¡ 0, whose information is
a subset of the conclusions that can be obtained from ¡ (or ¡ 0) are equivalent when considering
the set of literals that can be warranted from them. Finally, left absorption in Cwar wrt Carg

indicates that once a set of warranted literals have been obtained, Sld derivation does not
add any inferential power.8

We contend that a formal analysis of defeasible consequence is mandatory in order to get an
in-depth understanding of the behavior of argumentation frameworks. The logical properties
discussed in this paper provide a natural tool for characterizing that behavior, as well as
useful comparison criteria when developing new argumentation frameworks, or assessing their
expressive power.

A Appendix: LDSar fundamentals

In this section we will introduce a knowledge representation language L
KR

for performing defeasible inference, together
with a labeling language LLabels . These languages will be used to de¯ne the object language LArg . Following Gabbay's
terminology [Gab96], the basic information units in LArg will be called declarative units, having the form Label:w®. In our
approach we will restrict w®s in labeled formulas to ground literals. A ground literal can be understood as a conclusion
of an argument, which will be de¯ned by the label.

A label in a formula L:® will provide three elements which are convenient to take into account when formalizing
defeasible argumentation, namely:

1. For every declarative unit L:® the label L will distinguish whether that declarative unit corresponds to defeasible
or non-defeasible information.

2. The label L will also provide an unique name to identify a w® in the knowledge base ¡ .

8 This is due to the limitations of our formalism, in the sense that only literals can be warranted.

3. When performing the inference of a declarative unit L:® from a set ¡ of declarative units, the label L will provide
a trace of the w®s needed to infer L:® from ¡ .

W®s in our knowledge representation languageL
KR

will be a subset of a classic propositional language L, restricted
to rules and facts. The set of all rules and facts in LKR will be denoted Rules(LKR) and Facts(LKR), resp. We de¯ne
ProgClauses(LKR) = Rules(LKR) [Facts(LKR). A modality (label) will be attached to w®s in LKR , indicating whether
they are defeasible or non-defeasible.

De¯nition A.1 (Language L
KR

. W®s in L
KR

). The language L
KR

will be composed of

1. A countable set of propositional atoms, possibly subindicated. We will denote propositional atoms with lowercase
letters. Example: a, b, c, d, e, : : : , a1, a2, a3 are propositional atoms.

2. Logical connectives ^, : and Ã.

W®s in LKR will be de¯ned as follows:

1. If ® is an atom in LKR , then ® and »® are w®s called literals in LKR .
2. If ®1, : : : ®k, ¯ are literals in LKR, then ¯ Ã ®1 ; : : : ®k is a w® in LKR .

For the sake of simplicity, when referring to the language LKR the following conventions will be used: Greek lowercase
letters ®, ¯, ° will refer to any w® in LKR . Lowercase letters (such as h, q, etc.) will be used for referring to ground
literals in LKR . Greek uppercase letters ¨ , ©, ¡ will refer to a set of w®s in LKR . The conjunction ®1 ^®2 ^ : : : ^®k will
be simply written as ®1 ;®2 ; : : : ;®k.

De¯nition A.2 (Labeling constants). A set Labels = fn1, n2, : : : , d1, d2, : : : g of labeling constants will include
constant names with the form ni and di, standing for non-defeasible and defeasible information, resp. A set of labeling
constants will be denoted as L1, L2, : : : , Lk.

De¯nition A.3 (Labeling language LLabels). A label L in our labeling language LLabels can be either an argument
label or a dialectical label.9 An argument label will be a tuple hLi;©i where Li µ Labels and © µ }(Wffs(LKR)).

De¯nition A.4 (Defeasible Labeled Language LArg). If LLabels is a labeling language, and LKR is a knowledge
representation language, then the defeasible labeled language, denoted LArg , is de¯ned as LArg = (LLabels , LKR)

De¯nition A.5 (Argumentative formula). Given a declarative unit f=Label:®, where Label=[©; L] is an argument
label, then f will be called an argumentative formula. The set © in [©;L]:® will be called argument support in ®. The
set L will provide a trace of the w®s used for deriving ®. Alternatively, we will use the notation f=A:®, where A = ©.

Since LKR is a Horn-like logic language, we will assume an underlying inference mechanism s̀ld equivalent to
Sld resolution [Llo87], properly extended to handle a negated literal »p as a new constant name no p. Given P µ
ProgClauses(L

KR
), we will write P `sld ® to denote that ® follows from P via `sld .

De¯nition A.6 (Contradictory set of w®s in L
KR

). Given a set P of w®s in L
KR

, P will be called contradictory
i® literals p and p can be derived via s̀ld from P. This situation will be denoted as P `sld ?.

De¯nition A.7 (Argumentative theory ¡). A ¯nite set ¡ = f °1, °2, : : : , °kg with ¡ µ W®s(LArg) will be called
an argumentative theory.

We will assume that the set of non-defeasible information ¦(¡) in any argumentative theory ¡ is non-contradictory.

Some distinguished sets will be considered. Strict(¡) is the set of all non-defeasible formulas in ¡ ; Defeasible(¡) =
¡ ¡ Strict(¡); ¦(¡) is the set of all LKR formulas in ¡ whose support set is empty; ¢(¡) is the set of all LKR formulas
in ¡ whose support set is non-empty.

A.1 Formalizing argument construction and warrant

1. Introducing non-defeasible information (Intro-NR): Non-defeasible argumentative formulas can be introduced
in a proof.

[;;fn ig]:®

for any [;;fnig]:® 2 Strict(¡).

9 A formal treatment of dialectical labels is outside the scope of this appendix. For details see [Che01].

2. Introducing defeasible information (Intro-RE): Defeasible argumentative formulas can be introduced in a proof
whenever its support set is non-contradictory wrt ¦(¡).

¦(¡) [© /̀ sld ?
¡ , [©;fdig]:®

for any [©;fd ig]:® 2 Defeasible(¡).
3. Introducing conjunction (Intro-^): If [©1 ;L1]:®1, [©2; L2]:®2 , : : : , [©k;Lk]:®k, are w®s such that ©1 [©2 : : : [

©k/̀ sld ?, then the conjunction ®1 ;®2 ; : : : ; ®k can be derived.

¡ , [©1 ;L1]:®1 [©2 ;L2]:®2 : : : [©k;Lk]:®k ¦(¡) [Si=1:::k ©i/̀sld ?
¡ , [

S
i=1:::k ©i;

S
i=1:::k Li]:®1 ;®2 ; : : : ;®k

4. Eliminating implication (Elim-Ã):

¡ , [©1 ;L1]:¯Ã®1 ; : : : ;®k [©2 ;L2]:®1; : : : ;®k ¦(¡) [©1 [©2/̀ sld ?
¡ , [©1 [©2 ;L1 [L2]:¯

De¯nition A.8 (Generalized argument). Let ¡ be an argumentative theory, and let h 2 Lit(LKR) such that
¡ j»

Arg
A:h Then A will be called a generalized argument for h.

If it is not the case that ¡ j»
Arg

B:h, with B ½ A, then A:h is called a minimal argument or just argument.

Given an argument A:h derivable from a theory ¡ , there may be other con°icting arguments also supported by
¡ which defeat it according to some preference criterion. A common syntactic preference criterion is speci¯city [SL92],
which prefers those arguments which are more informed or more `direct'. However, any partial order on the set of all
possible arguments could be used. Since defeaters are arguments, they may be on its turn defeated, and so on. This
leads to a recursive analysis, in which a tree structure rooted in A:h results. If A:h ultimately prevails over other
con°icting arguments, then A:h is called a warrant. In LDSar , this situation is formalized in terms of an inference
relationship j»T .

For space reasons we just give a brief sketch of the notion of warrant in order to understand some logical properties
discussed in section 5. A full discussion can be found in [Che01].

De¯nition A.9 (Warrant (sketch)). Let ¡ be an argumentative theory, such that ¡ j»
Arg

A:h, andA:h is an argument

such that: a) it has no defeaters; or b) every defeater for A:h is ultimately defeated. Then A:h is a warranted argument.
In that case, we will also say that h is warranted, denoting this as ¡ j»T h

U.

References

[Ant96] Grigoris Antoniou. Nonmonotonic Reasoning. The MIT Press, 1996.
[Che01] Carlos Iv¶an Ches~nevar. Formalizaci¶on de los Procesos de Argumentaci¶on Rebatible como Sistemas Deductivos

Etiquetados. PhD thesis, Departamento de Ciencias de la Computaci¶on - U.N.S. - Argentina, January 2001.
[Gab96] Dov Gabbay. Labelling Deductive Systems (vol.1). Oxford University Press (Volume 33 of Oxford Logic

Guides), 1996.
[Gar00] Alejandro J. Garc¶³a. Programaci¶on en L¶ogica Rebatible: Lenguaje, Sem¶antica Operacional y Paralelismo. PhD

thesis, Dep. de Cs. de la Computaci¶on, Universidad Nacional del Sur, December 2000.
[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, second edition edition, 1987.
[MS91] David Makinson and Karl Schlechta. Floating conclusions and zombie paths: two deep di±culties in the directly

skeptical approach to defeasible inference nets. Arti¯cial Intelligence, 48:199{209, 1991.
[PV99] Henry Prakken and Gerard Vreeswijk. Logics for Defeasible Argumentation. In Dov Gabbay, editor, Handbook

of Philosophical Logic. Kluwer Academic Publisher, 1999.
[SL92] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Reasoning and its Imple-

mentation. Artī cial Intelligence, 53:125{157, 1992.
[SS98] Sebasti¶an Sardi~na and Guillermo R. Simari. Propiedades del Operador de Consecuencia Argumentativo. In

Anales del IV Congreso Argentino de Ciencias de la Computaci¶on (Neuqu¶en, Argentina), October 1998.
[Vre93] Gerard A.W. Vreeswijk. Studies in Defeasible Argumentation. PhD thesis, Vrije University, Amsterdam

(Holanda), 1993.

