
Modeling Argumentation with Labeled Deduction:

Formalization and Theoretical Considerations ?

Carlos Iv¶an Ches~nevar, cic@cs.uns.edu.ar
Guillermo Ricardo Simari, grs@cs.uns.edu.ar

Departamento de Ciencias de la Computaci¶on { Universidad Nacional del Sur
Av.Alem 1253 { B8000CPB Bah¶³a Blanca { Rep¶ublica Argentina

Tel/Fax: (+54) (291) 459 5135/5136 { Email: fcic,grsg@cs.uns.edu.ar

Abstract. In the last years there has been an increasing demand of a variety of logical systems, prompted
mostly by applications of logic in AI, logic programming and other related areas. Labeled Deductive
Systems (LDS) were developed as a °exible methodology to formalize such a kind of complex logical
systems.
During the last decade defeasible argumentation has proven to be a con°uence point for many approaches
to formalizing commonsense reasoning. Di®erent formalisms have been developed, many of them sharing
common features.
This paper summarizes the most relevant features of LDSar, a logical framework for defeasible argumenta-
tion based on LDS. We present a syntactic characterization of the framework, and discuss some emerging
properties. We also show how di®erent existing argumentation frameworks are subsumed in LDSar .

Key words: defeasible argumentation; knowledge representation; logic programming; Labeled
deduction.

1 Introduction and motivations

Defeasible argumentation [SL92,CML00,PV99] has proven to be a successful approach to ¯nd-
ing a suitable formalization for reasoning with incomplete and potentially inconsistent infor-
mation. Recent research (notably [BDKT97]) has shown that defeasible argumentation con-
stitutes a con°uence point for characterizing traditional approaches to model non-monotonic
reasoning, such as extended logic programs [GL90] and default logic [Rei80], among many
others.

During the last decade a number of alternative formalisms for argumentation has been
developed, resulting in technically di®erent models which share some common underlying fea-
tures (such as the notion of argument, attack between arguments, defeat, dialectical analysis,
etc.). This constituted a motivation for the de¯nition of a new, uni¯ed ontology in which such
notions could be abstracted away by specifying a suitable underlying logical language and
appropriate inference rules to capture the argumentative inference process.

Labeled Deductive Systems (LDS) [Gab96] provided the adequate tool to achieve this goal.
In LDS, logical formulas are enriched by labels which carry metalevel information not encoded
in the object language itself. Thus, di®erent components in a complex logical system (such as
logic-based argumentation systems) can be represented in terms of labels.

This paper presents the main features of LDSar, a logical framework for defeasible argu-
mentation based on LDS. The proposed formalization allows to conclude several interesting
? This paper extends previous research work presented in [CS00]. The paper summarizes some of the main results of

the ¯rst author's PhD Thesis [Che01] written under the direction of Guillermo Simari. An electronic version of the
Thesis is available at http:nncs.uns.edu.arn »cic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

theoretical results concerning argumentation theory. We will also show how LDSar allows to
classify and interrelate other existing argumentation frameworks in terms of knowledge encod-
ing capabilities and expressive power. The paper is structured as follows: ¯rst, in section 2 we
will brie°y sketch the LDSar fundamentals, introducing the object language LArg as well as the
notion of argumentative theory. Then in section 3 we will present two consequence relations
which will allow to model argument construction and dialectical analysis, respectively. Sec-
tion 4 discusses the main theoretical contributions which could be proven within LDSar . We
will also discuss how di®erent argumentation frameworks can be interrelated in terms of the
proposed formalization. Finally, section 5 concludes. For space reasons, we will assume that
the reader is familiarized with basic notions of defeasible reasoning and argumentation theory
(see [CML00,PV99] for more details).

2 LDSar: fundamentals

In this section we will introduce a knowledge representation language L
KR

for performing de-
feasible inference, together with a labeling language LLabels. These languages will be used to
de¯ne the object language LArg . Following Gabbay's terminology [Gab96], the basic informa-
tion units in LArg will be called declarative units, having the form Label:w®. In our approach
we will restrict w®s in labeled formulas to ground literals. As we will see in section 3, a ground
literal can be understood as a conclusion of an argument, which will be de¯ned by the label.

A label in a formula L:® will provide three elements which are convenient to take into
account when formalizing defeasible argumentation, namely:

1. For every declarative unit L:® the label L will distinguish whether that declarative unit
corresponds to defeasible or non-defeasible information.

2. The label L will also provide an unique name to identify a w® in the knowledge base ¡ .
3. When performing the inference of a declarative unit L:® from a set ¡ of declarative units,

the label L will provide a trace of the w®s needed to infer L:® from ¡.

W®s in our knowledge representation languageLKR will be a subset of a classic propositional
language L, restricted to rules and facts. The set of all rules and facts in L

KR
will be denoted

Rules(LKR) and Facts(LKR), resp. We de¯ne ProgClauses(LKR) = Rules(LKR) [Facts(LKR). A
modality (label) will be attached to w®s in LKR , indicating whether they are defeasible or
non-defeasible. Formally:

De¯nition 2.1 (Language LKR . W®s in LKR). The language LKR will be composed of

1. A countable set of propositional atoms, possibly subindicated. We will denote propositional
atoms with lowercase letters. Example: a, b, c, d, e, : : : , a1, a2, a3 are propositional atoms.

2. Logical connectives ^, : and Ã.

W®s in LKR will be de¯ned as follows:

1. If ® is an atom in LKR , then ® and »® are w®s called literals in LKR .
2. If ®1, : : : ®k, ¯ are literals in LKR , then ¯ Ã ®1 ; : : : ®k is a w® in LKR .

For the sake of simplicity, when referring to the language LKR the following conventions will
be used: Greek lowercase letters ®, ¯, ° will refer to any w® in L

KR
. Lowercase letters (such

as h, q, etc.) will be used for referring to ground literals in LKR . Greek uppercase letters ¨ , ©,
¡ will refer to a set of w®s in LKR . The conjunction ®1 ^ ®2 ^ : : : ^ ®k will be simply written
as ®1; ®2; : : : ; ®k.

De¯nition 2.2 (Labeling constants). A set Labels = fn1, n2, : : : , d1, d2, : : : g of labeling
constants will include constant names with the form ni and di, standing for non-defeasible and
defeasible information, resp. A set of labeling constants will be denoted as L1, L2, : : : , Lk.

De¯nition 2.3 (Labeling language L
Labels

). A label L in our labeling language L
Labels

can be
either an argument label or a dialectical label, de¯ned as follows:

1. An argument label will be a tuple hLi; ©i where Li µ Labels, © µ }(Wffs(LKR)).
2. If hLi; ©i is an argument label, then TU

j (hLi; ©i), with j 2 Nat and TD
k (hLi; ©i), with k 2 Nat

are dialectical labels in LLabels. For the sake of simplicity, we will write TD
k to denote a

generic dialectical label TD
k (hLi; ©i), for a given argument label hLi; ©i. We will also write

Tk to denote either the functor TD
k or the functor TU

k .
3. If T1, : : : , Tk are dialectical labels, then TU

n (T1; : : : ;Tk), with j 2 Nat, n/2 f1 : : : kg, and
TD
m(T1; : : : ;Tk), with k 2 Nat m/2 f1 : : : kg will also be dialectical labels in LLabels .

De¯nition 2.4 (Defeasible Labeled Language LArg). If LLabels is a labeling language, and
LKR is a knowledge representation language, then the defeasible labeled language, denoted
LArg , is de¯ned as LArg = (LLabels;LKR).

De¯nition 2.5 (Argumentative formula). Given a declarative unit f=Label:®, where
Label=[©; L] is an argument label, then f will be called an argumentative formula. The set
© in [©; L]:® will be called support set in ®. The set L will provide a trace of the w®s used
for deriving ®. Alternatively, we will use the notation f=A:®, where A = ©.

Since LKR is a Horn-like logic language, we will assume an underlying inference mechanism
`sld equivalent to Sld resolution [Llo87], properly extended to handle a negated literal »p
as a new constant name no p. Given P µ ProgClauses(LKR), we will write P s̀ld ® to denote
that ® follows from P via s̀ld .

De¯nition 2.6 (Contradictory set of w®s in L
KR

). Given a set P of w®s in L
KR

, P will
be called contradictory i® literals p y p can be derived via `sld from P . This situation will be
denoted as P `sld ?.

De¯nition 2.7 (Argumentative theory ¡). A ¯nite set ¡ = f °1, °2, : : : , °kg with
¡ µ W®s(LArg) will be called an argumentative theory. We will assume that the set of non-
defeasible information in any argumentative theory ¡ is non-contradictory.

In any argumentative theory we will distinguish:

{ Non-defeasible information, characterized by formulas of the form [;; fnig]:®, where ® 2
ProgClauses(L

KR
).

{ Defeasible information, characterized by formulas of the form [f®g; fdig]:® where ® 2
Rules(L

KR
).

Some distinguished sets will be considered. Strict(¡) is the set of all non-defeasible formulas
in ¡ ; Defeasible(¡) = ¡ ¡ Strict(¡); ¦(¡) is the set of all LKR formulas in ¡ whose support
set is empty; ¢(¡) is the set of all LKR formulas in ¡ whose support set is non-empty.

Example 2.8 (Adapted from [CSG00]). Consider an agent involved in controlling an engine
with three switches sw1, sw2 and sw3. These switches regulate di®erent features of the engine,
such as pumping system, speed, etc. Suppose we have defeasible information about how this
engine works.

[;;fn1g]:»fuel ok Ã pump clogged
[;;fn2g]:sw1 Ã
[;;fn3g]:sw2 Ã
[;;fn4g]:sw3 Ã
[;;fn5g]:heat Ã
[fpump fuel ok Ã sw1g; fd1g]:pump fuel ok Ã sw1
[ffuel ok Ã pump fuel okg; fd2g]:fuel ok Ã pump fuel ok
[fpump oil ok Ã sw2g; fd3g]:pump oil ok Ã sw2
[foil ok Ã pump oil okg; fd4g]:oil ok Ã pump oil ok
[fengine ok Ã fuel ok ;oil okg;fd5g]:engine ok Ã fuel ok ; oil ok
[f»engine ok Ã fuel ok ; oil ok ;heatg; fd6g]:»engine ok Ã fuel ok; oil ok ;heat
[f»oil ok Ã heatg; fd6g]:»oil ok Ã heat
[fpump clogged Ã pump fuel ok ; low speedg;fd7g]:pump clogged Ã pump fuel ok ; low speed
[flow speed Ã sw2g;fd8g]:low speed Ã sw2
[f»low speed Ã sw2 ; sw3g;fd9g]:»low speed Ã sw2 ; sw3
[ffuel ok Ã sw3g; fd10g]:fuel ok Ã sw3

Fig. 1. Argumentative theory ¡engine (example 2.8)

{ If the pump is clogged, then the engine gets no fuel.
{ When sw1 is on, normally fuel is pumped properly.
{ When fuel is pumped properly, fuel usually works ok.
{ When sw2 is on, usually oil is pumped.
{ When oil is pumped, usually it works ok.
{ When there is oil and fuel, usually the engine works ok.
{ When there is fuel, oil, and heat, then the engine is usually not ok.
{ When there is heat, normally there are oil problems.
{ When fuel is pumped and speed is low, there are reasons to believe that the pump is

clogged.
{ When sw2 is on, usually speed is low.
{ When sw3 is on, usually fuel is ok.

Suppose we know sw1, sw2 and sw3 are on, and there is heat. This situation can be modeled
by the argumentative theory ¡engine shown in ¯gure 1.

3 Argument construction. Dialectical analysis

Our ¯rst goal is to de¯ne a logical system (¡; j»
Arg

), where ¡ is a knowledge base and j»
Arg

is a
consequence relation for constructing generalized arguments. The object language will be L

Arg
.

Imposing an additional requirement (minimality) will result in the ¯nal notion of argument as
originally de¯ned in [SL92]. Since arguments can be in con°ict, we will then de¯ne an extended
logical system (¡; j»

T
), in which a dialectical analysis among arguments can be carried out.

3.1 Formalizing argument construction

1. Introducing non-defeasible information (Intro-NR): Non-defeasible argumentative for-
mulas can be introduced in a proof.

[;; fnig]:®
for any [;; fnig]:® 2 Strict(¡).

2. Introducing defeasible information (Intro-RE): Defeasible argumentative formulas can
be introduced in a proof whenever its support set is non-contradictory wrt ¦ (¡).

¦(¡) [© /̀ sld ?
¡ , [©; fdig]:®

for any [©; fdig]:® 2 Defeasible(¡).
3. Introducing conjunction (Intro-^): If [©1; L1]:®1, [©2; L2]:®2, : : : , [©k; Lk]:®k, are w®s

such that ©1 [©2 : : : [©k/̀ sld ?, then the conjunction ®1; ®2; : : : ; ®k can be derived.

¡, [©1; L1]:®1 [©2; L2]:®2 : : : [©k; Lk]:®k ¦(¡) [Si=1:::k ©i/̀ sld ?
¡ , [

S
i=1:::k ©i;

S
i=1:::k Li]:®1; ®2; : : : ; ®k

4. Eliminating implication (Elim-Ã):

¡, [©1; L1]:¯Ã®1; : : : ; ®k [©2; L2]:®1; : : : ; ®k ¦(¡) [©1[©2/̀ sld ?
¡ , [©1 [©2; L1[L2]:¯

De¯nition 3.1 (Generalized argument. Argument. Subargument). Let ¡ be an argu-
mentative theory, and let h 2 Lit(L

KR
) such that ¡ j»

Arg
A:h Then A will be called a generalized

argument for h. If it is not the case that ¡ j»
Arg
B:h, with B ½ A, then A:h is called a minimal

argument or just argument.1 An argument A:h is a subargument of another argument B:q if
A ½ B.

Example 3.2. From ¡engine the argumentsA:engine ok, B:»fuel ok, C:»low speed,D:fuel ok
and E :»engine ok can be derived via j»

Arg
, with

A = f (pump fuel ok Ã sw1), (pump oil ok Ã sw2),
(fuel ok Ã pump fuel ok), (oil ok Ã pump oil ok),
(engine ok Ã fuel ok ; oil ok) g

B = f (pump fuel ok Ã sw1), (low speed Ã sw2),
(pump clogged Ã pump fuel ok ; low speed) g

C = f (»low speed Ã sw2 ; sw3) g
D = f (»low speed Ã sw2 ; sw3) g
E = f (pump fuel ok Ã sw1), (pump oil ok Ã sw2),

(fuel ok Ã pump fuel ok), (oil ok Ã pump oil ok),
(»engine ok Ã fuel ok; oil ok ; heat) g

The following proposition can be proven to hold in our framework.2

Proposition 3.3 (Basic properties of arguments). Let ¡ be an argumentative theory,
and let A:h be an argument in ¡ . Then the following properties hold:

1. Derivability: ¦(¡) [A `sld h.
2. Non-contradiction: ¦(¡) [A /̀ sld p;»p, for any p 2 LKR .
3. Minimality: 6 9B ½ A such that ¦(¡) [B /̀sld h.

1 When needed we will denote this situation by writing Minimal¡ (A:h), or just Minimal(A:h).
2 Proof not included for space reasons. The interested reader is referred to [Che01].

3.2 Con°ict among arguments

Given an argument A:h based on an argumentative theory ¡ , there may exist other con°icting
arguments based on ¡ that defeat it. Con°ict among arguments is captured by the notion of
contradiction (def. 2.6). Defeat among arguments involves a partial order which establishes a
preference criterion on them (e:g: speci¯city [SL92]).

De¯nition 3.4 (Counterargument). Let ¡ be an argumentative theory, and let A:h and
B:q be arguments in ¡ . Then A:h counter-argues B:q if there exists a subargument B0:s of
B:q such that ¦(¡)[fh; sg is contradictory. The argument B0:s will be called disagreement
subargument.

De¯nition 3.5 (Preference order ¹). Let ¡ be an argumentative theory, and let Args(¡)
be the set of arguments that can be obtained from ¡ . A preference order ¹ µ Args(¡)£Args(¡)
is any partial order on Args(¡).

De¯nition 3.6 (Binary relations Â and ³). Let A:h and B:q be arguments. Then we will
write

1. A:h Â B:q if B:q ¹ A:h, and A:h 6¹ B:q. In this case we will say that A:h is strictly
preferred over B:q.

2. A:h ³ B:q if
(a) A:h ¹ B:q and B:q ¹ A:h.
(b) A:h and B:q cannot be compared by ¹ (i:e: A:h 6¹ B:q and B:q 6¹ A:h).

De¯nition 3.7 (Defeater). Let ¡ be an argumentative theory, such that ¡ j»
Arg
A:h and

¡ j»
Arg
B:q. We will say that A:h defeats B:q (or equivalently A:h is a defeater for B:q) if

1. A:h counterargues B:q, with disagreement subargument B0:q0.
2. (a) It holds that A:h Â B0:q 0

(b) It holds that A:h ³ B0:q 0

In case 2a, we will say that A:h is a proper defeater for B:q. In case 2b, we will say that A:h
is a blocking defeater for B:q.

Example 3.8. Consider the argumentative theory from example 2.8. Note thatB:»fuel ok, and
E :»engine ok, are counter-arguments for A:engine ok, whereas C:»low speed and D:fuel ok
are counter-arguments for B:»fuel ok. In each of these cases, counter-arguments are also
defeaters according to the speci¯city preference criterion [SL92].

3.3 Dialectical analysis

A dialectical label can be thought of as a dialogue tree between proponent and opponent.
Branches of the tree are called argumentation lines. Special marks will be associated to dialec-
tical labels in order to determine whether its elements correspond to defeated or undefeated
arguments.

De¯nition 3.9 (Marking a dialectical label). Given a dialectical formula T(A; : : :):h, we
will distinguish three kinds of 'marks' associated with T :

1. * denoting "no mark"

2. U denoting that A in T is an undefeated argument for literal h.
3. D denoting that A in T is a defeated argument for literal h.

De¯nition 3.10 (Argumentation line ¸ in T). An argumentation line ¸ in a dialectical
label T is a sequence [A1;A2; : : : ;Ak] where every Ai, i = 1 : : : k is a formula in T. Formally:

{ If T(A) is a dialectical label, then the sequence ¸= [A] is an argumentation line in T(A):
{ If T(A;T1;T2; : : :Tk) is a dialectical label, and ¸= [A1;A2; : : : ;Aj] is an argumentation

line associated with an immediate sublabel Ti, for some i = 1 : : : k, then the sequence that
results from appending [A] with ¸ is an argumentation line in T(A;T1;T2; : : :Tk).

Given a dialectical label T, we will denote as Lines(T) the set of all argumentative lines
associated with T.

De¯nition 3.11 (Supporting and interfering argumentation line). Given an argu-
mentation line ¸= [A0;A1; : : :An], we will distinguish two sequences associated with ¸:

1. Supporting argumentation line ¸S, formed by even-indexed members in ¸, i:e: ¸S=
[A0;A2;A4 : : :A2k].

2. Interfering argumentation line ¸I, formed by odd-indexed members of ¸, i:e: ¸I=
[A1;A3;A5; : : :A2k+1].

Given a dialectical label T, we will denote as SLines(T) and ILines(T) the set of all
supporting and interfering argumentation lines, respectively, associated with T.

All formulas in LLabels present in a supporting (resp. interfering) argumentation line should
satisfy certain constraints, captured by the notions of commitment set and circularity.

De¯nition 3.12 (Commitment set). Let ¸ = [A0;A1; : : :An] be a supporting (resp. inter-
fering) argumentation line. The commitment set associated with ¸ is de¯ned as ComSet(¸)
=
S
i=1:::nAi.

De¯nition 3.13 (Circularity). Let ¸= [A0;A1; : : :An] be argumentation line. We will say
that ¸ is circular if Aj µ Ai, 0 · i < j · n.

De¯nition 3.14 (Acceptable argumentation line in T). Let T(A; : : :):h be a dialectical
formula. Let Ti(Bi, : : :) be an immediate sublabel in T(A; : : :) (if any), associated with a
dialectical formula Ti(Bi; : : :):qi. Let T1(B1, : : :) be an immediate sublabel of Ti(Bi, : : :) (if
any), associated with a dialectical formula Tj(Cj; : : :):wj. Given the argumentation line ¸=
[A;Bi; Cj : : :], we will say that it is acceptable if it satisfy the following conditions:

Progressive defeat The argumentative formula Bi:qi is a defeater for A:h, and the formula
Cj:wj is a defeater for Bi:qi. In particular, if Bi:qi is a blocking defeater for A:h, then Cj:wj
should be a proper defeater for Bi:qi.

Non-contradiction The commitment sets of supporting and interfering argumentation lines
associated with ¸are non-contradictory wrt ¡ , i:e: ¦(¡)[ComSet(¸S) /̀sld ? and ¦(¡)[
ComSet(¸I) /̀ sld ?.

No circularity ¸ is not circular.

De¯nition 3.15 (Condition VSTree). Let T0(B; : : :):q and T(A; : : :):h be two dialectical
formulas. Let Lines(T0) = f¸1; ¸2; : : : ; ¸kg be the set of argumentation lines in T'. Then T'
will be a valid immediate sublabel associated with T , denoted VSTree(A;T0(B; :::)), if every
argumentation line [A j ¸i], for i = 1 : : : k, is an acceptable argumentation line.

De¯nition 3.16 (Acceptable dialectical label). Let T(A; : : :):h be a dialectical formula,
such that T(A; : : :) is its associated dialectical label. That label will be acceptable i® every
argumentation line in T(A; : : :) is acceptable.

3.4 Building dialectical labels

Inference rules in natural deduction style are provided, in order to characterize an inference
relationship j»T which allows to build dialectical labels. The natural deduction rules for j»T are
the following:

1. Introducing a dialectical tree (Intro-1D): A minimal argument A:h constitutes an
atomic dialectical formula. Formally:

A:h Minimal(A:h)
T¤(A):h

2. N-level dialectical tree (Intro-ND): Intro-ND Given a dialectical tree with a single node,
a new dialectical formula T can be built by introducing T¤

1, : : : , T¤
k as immediate sublabels

such that they are valid wrt A:h (according to def. 3.15).

T¤(A):h T¤
1(B1; : : :):q1 T¤

k(Bk; : : :):qk VSTree(A, T¤
i)

T¤(A;T¤
1; : : : ;T

¤
k):h

1. Marking an atomic dialectical formula: (Mark-Atom) An atomic dialectical formula is
warranted if there are no valid sublabels associated with it. Formally:

T¤(A):h
TU (A):h

2. Marking a dialectical formula as defeated: (Mark-1D) A dialectical label can be
marked as defeated if there exists at least one immediate sublabel as defeated if there
exists at least one immediate sublabel marked as undefeated.

T¤(A;T¤
1; : : : ;T

¤
i ; : : : ;Tk):h TU

i (Bi : : :):qi : VSTree(A,TU
i)

TD(A;T¤
1; : : : ;T

¤
i¡1;T

U
i ;T

¤
i+1; : : : ;T

¤
k):h

for some T¤
i , i = 1 : : : k

3. Marking a dialectical tree as undefeated: (Mark-ND) A dialectical label can be marked
as undefeated if every immediate dialectical sublabel can be marked as defeated.

T¤(A;T¤
1; : : : ;T

¤
i ; : : : ;T

¤
k):h TD

i (Bi; : : :):qi : VSTree(A,TD
i)

TU(A;TD
1 ; : : : ;T

D
i ; : : : ;Tk):h

8 T¤
i , i = 1 : : : k

The notion of warrant corresponds to the notion of \ultimately undefeated". A warranted
belief is that one which is accepted at some time of the dialectical process, and remains in
that state.

De¯nition 3.17 (Warrant { preliminary version). Let Cnk¤(¡) be the set of all dialectical
formulas that can be obtained from ¡ via j»T by i applications of inference rules (i · k). A

literal h is said to be warranted i® TU(A; :::):h 2 Cnk¤(¡), and there is no k0 > k, such that
TD(A; :::):h 2 (Cnk

0
¤ (¡) nCnk¤(¡)).

A:engine ok
(D)¡

¡¡

@
@ @

B:»fuel ok
(D)

E :»engine ok
(U)¡

¡¡

@
@ @

C :»low speed
(U)

D:fuel ok
(U)

A:engine ok
(D)

E :»engine ok
(U)

Fig. 2. Dialectical tree TA:engine ok and associated pruned tree P runed(TA:engine ok)

This approach resembles Pollock's original ideas of (ultimately) justi¯ed belief [Pol95].
Note that it forces us to compute the closure under j»

T
in order to determine whether a literal

is warranted or not. Fortunately this is not the case, since warrant can be captured in terms of a
precedence relation \@ " between dialectical labels. Informally, we will write T@ T' whenever
T re°ects a state in a dialogue which is previous to T' (in other words, T' stands for a dialogue
which evolves from T by incorporating new arguments). A ¯nal label is a label that cannot be
further extended.

De¯nition 3.18 (Warrant { ¯nal version). Let ¡ be an argumentative theory, such that
¡ j»T TU

i (A; : : :):h and TU
i is a ¯nal label (i:e:, it is not the case that ¡ j»T TD

j (A; : : :):h and

TU
i @ TD

j). Then TU
i (A; : : :):h is a warrant. We will also say that h is a warranted literal,

or alternatively that A:h is a warrant in ¡, abbreviating this as ¡ j»
T
A:hU (or just ¡ j»

T
hU).

Example 3.19. Consider the argumentative theory from example 2.8 and the arguments and
defeat relations from examples 3.2 and 3.8. From the argumentative theory ¡engine the following
formulas can be inferred via j»

T
:

¡ j»T T¤
1(A):engine ok via Intro-1D (1)

¡ j»T T¤
2(B):»fuel ok via Intro-1D (2)

¡ j»T T¤
3(C):»low speed via Intro-1D (3)

¡ j»T T¤
4(D):fuel ok via Intro-1D (4)

¡ j»T T¤
5(E):»engine ok via Intro-1D (5)

¡ j»T T¤
2(B;T¤

3(C);T¤
4(D)):»fuel ok via Intro-ND; (3) and (4) (6)

¡ j»T T¤
1(A;T¤

2(B;T¤
3(C);T¤

4(D));T¤
5(E)):engine ok via Intro-ND and (6) (7)

¡ j»
T
TU

5 (E):»engine ok via Mark-Atom (8)
¡ j»

T
TD

1 (A;T¤
2(B;T¤

3(C);T¤
4(D));TU

5 (E)):engine ok via Mark-1D and (8) (9)

Note that the formula obtained in step (7) has a ¯nal label associated with it, since it cannot
be `expanded' from previous formulas. Hence, following de¯nition 3.18, we can conclude that
engine ok is not warranted.

4 Some interesting theoretical results

Next we will discuss some interesting theoretical results that were obtained from the preceding
formalization.3 First, we will present an equivalence theorem which links di®erent ways of
computing warrant. We will then discuss some details of a model-theoretic approach for LDSar.
We will also introduce the role of transformation rules in LDSar. Finally, we will detail how
di®erent argumentation frameworks can be subsumed within our approach.

4.1 Equivalence results

As a result from previous research work, the notion of dialectical tree for an argument A:q
(denoted TA:q) was introduced. This notion corresponds to a procedural, top-down approach to
compute warrant. That tree could be pruned according to an ®¡¯ pruning criterion, resulting
in a new, smaller tree Pruned(TA:q). On the contrary, the LDS approach provides a bottom-up
construction procedure, resulting in complex labels that are built from more simple ones.

Example 4.1. Consider the dialectical label rooted in A:engine ok associated with the ¯nal
dialectical label in example 3.19. This label can be represented as a dialectical tree TA:engine ok,
and it can be represented as shown in ¯gure 2 (left). The root node of TA:engine ok is labeled as
D-node. Note that it is not necessary to compute the whole tree in order to label the root node
as defeated. In fact, considering Pruned(TA:engine ok) as shown in ¯gure 2 (right), an equivalent
answer would have been obtained.

An equivalence theorem proves that warrant can be computed by either of these approaches.
Pruning aspects in the top-down approach correspond to selection of inference rules in the
bottom-up approach.

Theorem 4.2 (Equivalence of top-down and bottom-up computation of warrant).
Given an argumentative theory ¡ , the following three cases are equivalent:

1. The root of TA:q is marked as U-node.
2. The root of Pruned(TA:q), is marked as U-node.
3. It is the case that ¡ j»

T
A:hU.

4.2 Semantics: soundness and completeness

A semantics for LDSar based on special models (called ¦-models) was developed. ¦-models
satisfy the non-defeasible knowledge, ¦ (¡). We will say that a model M is a ¦-model for A:h
if M is a model for A. The class MA of all ¦-models for A:h is called ¦-frame for A:h.

Semantical counterparts of the relationships of counterargument and defeat between ar-
gumentative formulas were de¯ned. Preference order between formulas was mapped into a
set-inclusion relation between classes of activation models. The defeat relation between ¦-
frames resulted in the notion of frame tree. A frame tree rooted in ¦ -frame for A:h. captures
the semantical equivalent of dialectical tree (according to def. 3.16). A frame tree allows to
determine whether a given frame is ¯nally preferred (i:e:, it is ultimately undefeated wrt other
con°icting frames).

The syntactic characterization of warrant (def. 3.18) is equivalent to its semantical coun-
terpart. Therefore the consequence relation j»T in LDSar satis¯es both soundness and com-
pleteness wrt the proposed semantics, as shown in the following theorem:
3 For space reasons the proof of the theorems and propositions in this section are not included in this paper. For

details the reader is referred to [Che01].

Theorem 4.3 (Soundness and completeness of warrant). Let M0 be a frame for an
argument A:h. Then ¡j»

T
A:hU i® M0 is a ¯nally preferred frame wrt ¡ .

4.3 Transformation properties for LDSar

The complexity of the analysis required to determine whether an given argumentative formula
is warranted is directly linked to the size of the associated argumentative theory ¡ . Since
¡ can be arbitrarily large, it is desirable (if possible) to simplify the information it contains
whenever possible. Such a simpli¯cation should be formalized in terms of semantics-preserving
transformation (or rewriting) rules.

In [BD98], a number of transformation rules were introduced which allow to \simplify" a
normal logic program (nlp) P to get its well-founded semantics (WFS). The application of
these rules led to a new, simpli¯ed NLP P 0 from which its WFS can be easily read o®. In the
case of LDSar, similar rules were developed for simplifying both defeasible and non-defeasible
rules. Two distinguished variants of LDSar deserved particular attention, namely SAnot and
SAneg (LDSar restricted to default and strict negation, resp.). The relation between these
variants of SDE and normal logic programming was explored. Di®erent criteria under which
both strict and defeasible rules could be rewritten into a simpler but semantically equivalent
form were de¯ned.

4.4 De¯ning a taxonomy of argumentative systems

Another interesting issue concerns the de¯nition of variants for LDSar. Since LDSar is a
logical framework, its knowledge-encoding capabilities are determined by the underlying logical
language, whereas the inference power is characterized by its natural deduction rules. Adopting
a di®erent KR language or modifying the existing inference rules will lead to di®erent variants
of LDSar. Thus, for instance, adopting a full ¯rst-order language will lead to a logical system
with a behavior similar to the SL framework [SL92]. On the other hand, restricting the KR
language to Horn clauses will result in a formulation closer to normal logic programming (NLP)
under well-founded semantics.4 Figure 3 summarizes some of these variants and shows how
they can be related to some existing argumentation frameworks, such as Simari-Loui's [SL92],
MTDR [SCG94], DeLP [Gar00] and NLP (normal logic programming), conceptualized in an
argumentative setting as suggested in [BDKT97].

SASL

6
SAMTDR

6
SALP

¢
¢¢̧

A
AAK

SAnot

6
SANLP

SAneg

SL

6
MTDR

6
DeLP

¢
¢¢̧

A
AAK

DeLPnot

6
NLP

DeLPneg

Fig. 3. A taxonomy relating the expressive power of LDSar and di®erent argumentation systems

4 A full discussion of di®erent argumentative frameworks encompassed by LDSar can be found in [Che01].

5 Conclusions

Labelled Deductive Systems o®er a powerful tool for formalizing di®erent aspects of defeasible
argumentation. On the one hand, the notion of label allows to capture the concept of argument
as a set of w®s supporting a given proposition. On the other hand, the concept of dialectical
tree can be also captured by a complex label, de¯ned in terms of more simple ones. The LDSar
framework has been de¯ned upon these two notions.

During the last decade, a 'clash of intuitions' has appeared within the argumentation
community, where di®erent, alternative approaches have been intended. As we have brie°y
sketched in section 4.4, having a logical system such as LDSar makes it easier to analyze, com-
pare and relate di®erent features associated with existing argumentative frameworks, providing
at the same time a test-bed for studying other related issues (such as argumentation protocols,
resource-bounded reasoning, etc.). Research in this direction is currently being pursued.

References

[BD98] S. Brass and J. Dix. Characterizations of the Disjunctive Well-founded Semantics: Con°uent Calculi and
Iterated GCWA. Journal of Automated Reasoning, 20(1):143{165, 1998.

[BDKT97] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-theoretic approach
to default reasoning. Arti¯cial Intelligence, 93(1-2):63{101, 1997.

[Che01] Carlos Iv¶an Ches~nevar. Formalizaci¶on de los Procesos de Argumentaci¶on Rebatible como Sistemas Deductivos
Etiquetados. PhD thesis, Departamento de Ciencias de la Computaci¶on - U.N.S. - Argentina, January 2001.

[CML00] Carlos Iv¶an Ches~nevar, Ana Maguitman, and Ronald Loui. Logical Models of Argument. ACM Computing
Surveys, 32(4):337{383, December 2000.

[CS00] Carlos I. Ches~nevar and Guillermo R. Simari. Formalizing Defeasible Argumentation using Labelled Deduc-
tive Systems. Journal of Computer Science & Technology, 1(4):18{33, 2000.

[CSG00] Carlos I. Ches~nevar, Guillermo R. Simari, and Alejandro Garc¶³a. Pruning Search Space in Defeasible Ar-
gumentation. In Proc. of the Workshop on Advances and Trends in Artī cial Intelligence. XX International
Conference of the SCCC { Santiago, Chile, November 2000.

[Gab96] Dov Gabbay. Labelling Deductive Systems (vol.1). Oxford University Press (Volume 33 of Oxford Logic
Guides), 1996.

[Gar00] Alejandro J. Garc¶³a. Programaci¶on en L¶ogica Rebatible: Lenguaje, Sem¶antica Operacional y Paralelismo.
PhD thesis, Dep. de Cs. de la Computaci¶on, Universidad Nacional del Sur, December 2000.

[GL90] Michael Gelfond and Vladimir Lifschitz. Logic programs with classical negation. In Proceedings of the 7th
International Conference on Logic Programming. Jerusalem, June 1990.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, second edition edition, 1987.
[Pol95] John L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. Massachusetts Institute of

Technology, 1995.
[PV99] Henry Prakken and Gerard Vreeswijk. Logics for Defeasible Argumentation. In Dov Gabbay, editor, Hand-

book of Philosophical Logic. Kluwer Academic Publisher, 1999.
[Rei80] Raymond Reiter. A Logic for Default Reasoning. Arti¯cial Intelligence, 13(1,2):81{132, April 1980.
[SCG94] Guillermo R. Simari, Carlos I. Ches~nevar, and Alejandro J. Garc¶³a. The role of dialectics in defeasible

argumentation. In Anales de la XIV Conferencia Internacional de la Sociedad Chilena para Ciencias de la
Computaci¶on. Universidad de Concepci¶on, Concepci¶on (Chile), November 1994.

[SL92] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Reasoning and its
Implementation. Arti¯cial Intelligence, 53:125{157, 1992.

